Laser phase plate for transmission electron microscopy

Article metrics


Transmission electron microscopy (TEM) of rapidly frozen biological specimens, or cryo-EM, would benefit from the development of a phase plate for in-focus phase contrast imaging. Several types of phase plates have been investigated, but rapid electrostatic charging of all such devices has hindered these efforts. Here, we demonstrate electron phase manipulation with a high-intensity continuous-wave laser beam, and use it as a phase plate for TEM. We demonstrate the laser phase plate by imaging an amorphous carbon film. The laser phase plate provides a stable and tunable phase shift without electrostatic charging or unwanted electron scattering. These results suggest the possibility for dose-efficient imaging of unstained biological macromolecules and cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Laser-based control of the electron phase in a TEM.
Fig. 2: Electron micrographs of a standing laser wave.
Fig. 3: Phase-contrast imaging with a laser-based phase plate.
Fig. 4: Continuous variation of the unscattered beam retardation.

Data and materials availability

The raw TEM images collected over the course of this study are available from the corresponding author upon request.

Code availability

The code for fitting the light wave micrographs is available from the corresponding author upon request.


  1. 1.

    Cheng, Y., Glaeser, R. M. & Nogales, E. How Cryo-EM became so hot. Cell 171, 1229–1231 (2017).

  2. 2.

    Mahamid, J. et al. Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351, 969–972 (2016).

  3. 3.

    Glaeser, R. M. Invited Review article: methods for imaging weak-phase objects in electron microscopy. Rev. Sci. Instrum. 84, 111101 (2013).

  4. 4.

    Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 686–698 (1942).

  5. 5.

    Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

  6. 6.

    Boersch, H. Über die Kontraste von Atomen im Elektronenmikroskop. Z. für. Naturforsch. A 2, 615–633 (1947).

  7. 7.

    Danev, R., Buijsse, B., Khoshouei, M., Plitzko, J. M. & Baumeister, W. Volta potential phase plate for in-focus phase contrast transmission electron microscopy. Proc. Natl Acad. Sci. USA 111, 15635–15640 (2014).

  8. 8.

    Danev, R., Tegunov, D. & Baumeister, W. Using the Volta phase plate with defocus for cryo-EM single particle analysis. eLife 6, e23006 (2017).

  9. 9.

    Jones, E., Becker, M., Luiten, J. & Batelaan, H. Laser control of electron matter waves. Laser Photonics Rev. 10, 214–229 (2016).

  10. 10.

    Müller, H. et al. Design of an electron microscope phase plate using a focused continuous-wave laser. New J. Phys. 12, 073011 (2010).

  11. 11.

    Schwartz, O. et al. Near-concentric Fabry-Pérot cavity for continuous-wave laser control of electron waves. Opt. Express 25, 14453–14462 (2017).

  12. 12.

    McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

  13. 13.

    Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

  14. 14.

    Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

  15. 15.

    Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Math. Proc. Camb. Phil. Soc. 29, 297–300 (1933).

  16. 16.

    Spence, J. C. H. High-Resolution Electron Microscopy 4th edn (Oxford Univ. Press, 2013).

  17. 17.

    Ryabov, A. & Baum, P. Electron microscopy of electromagnetic waveforms. Science 353, 374–377 (2016).

  18. 18.

    Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

  19. 19.

    Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

  20. 20.

    Vanacore, G. M. et al. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun. 9, 2694 (2018).

  21. 21.

    Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

  22. 22.

    Frank, J. Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat. Protoc. 12, 209–212 (2017).

  23. 23.

    Danev, R. & Baumeister, W. Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol. 46, 87–94 (2017).

  24. 24.

    Merk, A. et al. Breaking Cryo-EM resolution barriers to facilitate drug fiscovery. Cell 165, 1698–1707 (2016).

  25. 25.

    Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506–510 (2017).

  26. 26.

    Pinard, L. et al. Mirrors used in the LIGO interferometers for first detection of gravitational waves. Appl. Opt. 56, C11–C15 (2017).

  27. 27.

    Freimund, D. L. & Batelaan, H. Bragg scattering of free electrons using the Kapitza-Dirac effect. Phys. Rev. Lett. 89, 283602 (2002).

  28. 28.

    Yasin, F. S. et al. Probing light atoms at subnanometer resolution: realization of scanning transmission electron microscope holography. Nano Lett. 18, 7118–7123 (2018).

  29. 29.

    Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016).

  30. 30.

    Juffmann, T. et al. Multi-pass transmission electron microscopy. Sci. Rep. 7, 1699 (2017).

  31. 31.

    Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2000).

  32. 32.

    Martin, M. J. Quantum Metrology and Many-Body Physics: Pushing the Frontier of the Optical Lattice Clock PhD thesis, Univ. Colorado Boulder (2013).

Download references


We thank R. Adhikari, B. Buijsse, W. T. Carlisle, A. Chintangal, E. Copenhaver, P. Dona, S. Goobie, P. Grob, B. G. Han, P. Haslinger, M. Jaffe, F. Littlefield, G. W. Long, E. Nogales, Z. Pagel, R. H. Parker, X. Wu, V. Xu and J. Ye for helpful discussions and assistance in various aspects of the experiment. This work was supported by the US National Institutes of Health grant 5 R01 GM126011-02, the US National Science Foundation Grant no. 1040543, the David and Lucile Packard Foundation grant 2009-34712, and Bakar Fellows Program. O.S. is supported by the Human Frontier Science Program postdoctoral fellowship LT000844/2016-C. J.J.A. is supported by the US National Science Foundation Graduate Research Fellowship Program Grant no. D.G.E. 1752814. S.L.C. is supported by the Howard Hughes Medical Institute Hanna H. Gray Fellows Program Grant no. GT11085.

Author information

R.M.G. and H.M. conceived and supervised the project. O.S., J.J.A., S.L.C. and C.T. performed the experiments and processed the data. All authors contributed to the preparation of the manuscript.

Correspondence to Holger Müller.

Ethics declarations

Competing interests

O.S., J.J.A., R.M.G. and H.M. are inventors on US patent application no. 15/939,028. All other authors have no competing interests.

Additional information

Peer review information Allison Doerr was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwartz, O., Axelrod, J.J., Campbell, S.L. et al. Laser phase plate for transmission electron microscopy. Nat Methods 16, 1016–1020 (2019) doi:10.1038/s41592-019-0552-2

Download citation

Further reading