Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brillouin microscopy: an emerging tool for mechanobiology

Abstract

The role and importance of mechanical properties of cells and tissues in cellular function, development and disease has widely been acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations. Recently, Brillouin microscopy, a type of optical elastography, has emerged as a non-destructive, label- and contact-free method that can probe the viscoelastic properties of biological samples with diffraction-limited resolution in 3D. This led to increased attention amongst the biological and medical research communities, but it also sparked debates about the interpretation and relevance of the measured physical quantities. Here, we review this emerging technology by describing the underlying biophysical principles and discussing the interpretation of Brillouin spectra arising from heterogeneous biological matter. We further elaborate on the technique’s limitations, as well as its potential for gaining insights in biology, in order to guide interested researchers from various fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brillouin scattering in heterogeneous biological samples.
Fig. 2: Schematic of Brillouin scattering.
Fig. 3: Spectrometer realizations in Brillouin microscopy.
Fig. 4: Synopsis of the main elastic moduli involved in mechanobiology.
Fig. 5: Brillouin microscopy in current biology and medicine.

Similar content being viewed by others

References

  1. Petridou, N. I., Spiró, Z. & Heisenberg, C.-P. Multiscale force sensing in development. Nat. Cell Biol. 19, 581–588 (2017).

    CAS  PubMed  Google Scholar 

  2. van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).

    PubMed  Google Scholar 

  3. Mathieu, S. & Manneville, J.-B. Intracellular mechanics: connecting rheology and mechanotransduction. Curr. Opin. Cell Biol. 56, 34–44 (2019).

    CAS  PubMed  Google Scholar 

  4. Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lam, W. A., Rosenbluth, M. J. & Fletcher, D. A. Increased leukaemia cell stiffness is associated with symptoms of leucostasis in paediatric acute lymphoblastic leukaemia. Br. J. Haematol. 142, 497–501 (2008).

    PubMed  Google Scholar 

  6. Bongiorno, T., Chojnowski, J. L., Lauderdale, J. D. & Sulchek, T. Cellular stiffness as a novel stemness marker in the corneal limbus. Biophys. J. 111, 1761–1772 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006). This seminal paper shows how substrate stiffness can direct stem cell differentiation in vitro.

    CAS  PubMed  Google Scholar 

  8. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wei, S. C. et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17, 678–688 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ng, M. R., Besser, A., Danuser, G. & Brugge, J. S. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199, 545–563 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018). This work suggests that changes in tissue mechanics can trigger collective cell migration in Xenopus laevis neural crest cells and thus shows the importance of mechanical cues for tissue scale morphogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ortiz, D., Piñero, D., Shabayek, M. H., Arnalich-Montiel, F. & Alió, J. L. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J. Cataract Refract. Surg. 33, 1371–1375 (2007).

    PubMed  Google Scholar 

  13. Yun, S. H. & Chernyak, D. Brillouin microscopy: assessing ocular tissue biomechanics. Curr. Opin. Ophthalmol. 29, 299–305 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Mohammadi, H. & Sahai, E. Mechanisms and impact of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    CAS  PubMed  Google Scholar 

  15. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Heisenberg, C.-P. & Bellaïche, Y. Forces in tissue morphogenesis and patterning. Cell 153, 948–962 (2013).

    CAS  PubMed  Google Scholar 

  17. Sasai, Y. Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318–326 (2013).

    CAS  PubMed  Google Scholar 

  18. Panciera, T., Azzolin, L., Cordenonsi, M. & Piccolo, S. Mechanobiology of YAP and TAZ in physiology and disease. Nat. Rev. Mol. Cell Biol. 18, 758–770 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Siedlik, M. J., Varner, V. D. & Nelson, C. M. Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods 94, 4–12 (2016).

    CAS  PubMed  Google Scholar 

  20. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018). This analysis paper highlights and discusses the fact that different methods to assess cell mechanical properties report substantially varying elastic and viscous moduli for the same MCF-7 breast cancer cell line.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2018).

    Google Scholar 

  22. Tan, J. L. et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    CAS  PubMed  Google Scholar 

  23. Hochmuth, R. M. Micropipette aspiration of living cells. J. Biomech. 33, 15–22 (2000).

    CAS  PubMed  Google Scholar 

  24. Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199 (2015).

    CAS  PubMed  Google Scholar 

  25. Wang, N., Butler, J. & Ingber, D. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    CAS  PubMed  Google Scholar 

  26. Zhang, H. & Liu, K.-K. Optical tweezers for single cells. J. R. Soc. Interface 5, 671–690 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    CAS  PubMed  Google Scholar 

  28. Tassieri, M. et al. Microrheology with optical tweezers: measuring the relative viscosity of solutions `at a glance’. Sci. Rep. 5, 8831 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kennedy, B. F., Wijesinghe, P. & Sampson, D. D. The emergence of optical elastography in biomedicine. Nat. Photonics 11, 215–221 (2017).

    CAS  Google Scholar 

  30. Ophir, J., Cespedes, I., Ponnekanti, H., Yazdi, Y. & Li, X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason. Imaging 13, 111–134 (1991).

    CAS  PubMed  Google Scholar 

  31. Manduca, A. et al. Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med. Image Anal. 5, 237–254 (2001).

    CAS  PubMed  Google Scholar 

  32. Brillouin, L. Diffusion de la lumière et des rayons X par un corps transparent homogène-influence de l’agitation thermique. Ann. Phys. 9, 88–122 (1922).

    Google Scholar 

  33. Dil, J. G. Brillouin scattering in condensed matter. Rep. Prog. Phys. 45, 285 (1982).

    Google Scholar 

  34. Koski, K. J. & Yarger, J. L. Brillouin imaging. Appl. Phys. Lett. 87, 1–4 (2005).

    Google Scholar 

  35. Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Phot. 2, 39–43 (2008). This paper marks the first demonstration of Brillouin microscopy inbiology, and describes the use of a VIPA in the spectrometer.

    CAS  Google Scholar 

  36. Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015). Here the authors measure intracellular longitudinal moduli in fibroblasts with high optical resolution and report mechanical changes due to cytoskeletal modulation and cell-volume regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Antonacci, G. & Braakman, S. Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci. Rep. 6, 1–7 (2016). In this work, high-contrast Brillouin microscopy revealed a liquid-to solid phase transition in intracellular stress granules in response to recruitment of a mutant ALS-linked protein.

    Google Scholar 

  38. Elsayad, K. et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci. Signal. 9, rs5 (2016). This paper provides a proof of principle for the organism-wide applicability of Brillouin microscopy by showing how cellular hydrostatic pressure and cytoplasm viscoelasticity modulate the mechanical signatures of plant extracellular matrices.

    PubMed  Google Scholar 

  39. Antonacci, G., de Turris, V., Rosa, A. & Ruocco, G. Background-deflection Brillouin microscopy reveals altered biomechanics of intracellular stress granules by ALS protein FUS. Commun. Biol. 1, 139 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. De Santis, R. et al. Mutant FUS and ELAVL4 (HuD) aberrant crosstalk in amyotrophic lateral sclerosis. Cell Rep. 27, 3818–3831 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schlüßler, R. et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by brillouin imaging. Biophys. J. 115, 911–923 (2018).

    PubMed  PubMed Central  Google Scholar 

  42. Scarcelli, G., Besner, S., Pineda, R. & Yun, S. H. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest. Ophthalmol. Vis. Sci. 55, 4490–4495 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Scarcelli, G. et al. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest. Ophthalmol. Vis. Sci. 54, 1418–1425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Scarcelli, G. & Yun, S. H. In vivo Brillouin optical microscopy of the human eye. Opt. Express 20, 9197 (2012). By employing a low-power, 780 nm laser, the authors demonstrate the first Brillouin measurement of the human eye in vivo and thus paved the way for clinical applications of Brillouin microscopy.

    PubMed  PubMed Central  Google Scholar 

  45. Koski, K. J., Akhenblit, P., McKiernan, K. & Yarger, J. L. Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262 (2013). This work reports the first measurement of the entire stiffness tensors of a biomaterial using Brillouin light scattering.

    CAS  PubMed  Google Scholar 

  46. Palombo, F., Madami, M., Stone, N. & Fioretto, D. Mechanical mapping with chemical specificity by confocal Brillouin and Raman microscopy. Analyst 139, 729–733 (2014).

    CAS  PubMed  Google Scholar 

  47. Antonacci, G. et al. Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma. J. R. Soc. Interface 12, 20150843 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Scarcelli, G., Besner, S., Pineda, R., Kalout, P. & Yun, S. H. In vivo biomechanical mapping of normal and keratoconus corneas. JAMA Ophthalmol. 133, 480–482 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. Steelman, Z., Meng, Z., Traverso, A. J. & Yakovlev, V. V. Brillouin spectroscopy as a new method of screening for increased CSF total protein during bacterial meningitis. J. Biophotonics 8, 408–414 (2015).

    CAS  PubMed  Google Scholar 

  50. Mattana, S., Caponi, S., Tamagnini, F., Fioretto, D. & Palombo, F. Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis. J. Innov. Opt. Health Sci. 10, 1742001 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Wu, P.-J. et al. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat. Methods 15, 561–562 (2018). This correspondence highlights the fact that in highly hydrated materials the Brillouin shift is insensitive to Young’s modulus, and thus cannot be considered a proxy for stiffness.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Scarcelli, G. & Yun, S. H. Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’. Nat. Methods 15, 562–563 (2018).

    CAS  PubMed  Google Scholar 

  53. Dellasega, D. et al. Boron films produced by high energy pulsed laser deposition. Mater. Des. 134, 35–43 (2017).

    CAS  Google Scholar 

  54. Pierno, M., Casari, C. S., Piazza, R. & Bottani, C. E. Structural evolution of crystalline polymer latex films: Propagating and confined acoustic modes. Appl. Phys. Lett. 82, 1532–1534 (2003).

    CAS  Google Scholar 

  55. Bottani, C. E. & Fioretto, D. Brillouin scattering of phonons in complex materials. Adv. Phys. X 6149, 1–27 (2018).

    Google Scholar 

  56. Grady, M. E., Composto, R. J. & Eckmann, D. M. Cell elasticity with altered cytoskeletal architectures across multiple cell types. J. Mech. Behav. Biomed. Mater. 61, 197–207 (2016).

    CAS  PubMed  Google Scholar 

  57. Gardel, M. L. et al. Elastic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305 (2004).

    CAS  PubMed  Google Scholar 

  58. Guo, M. et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate. Proc. Natl Acad. Sci. USA 114, E8618–E8627 (2017).

    CAS  PubMed  Google Scholar 

  59. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Margueritat, J. et al. High-frequency mechanical properties of tumors measured by Brillouin light scattering. Phys. Rev. Lett. 122, 018101 (2019).

    CAS  PubMed  Google Scholar 

  61. Pollard, T. D. & Cooper, J. A. Actin and actin-binding proteins: a critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55, 987–1035 (1986).

    CAS  PubMed  Google Scholar 

  62. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    CAS  PubMed  Google Scholar 

  63. Preston, G. M., Carroll, T. P., Guggino, W. B. & Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28. Protein Sci. 256, 385–387 (1992).

    CAS  Google Scholar 

  64. Martin, A. C., Kaschube, M. & Wieschaus, E. F. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457, 495–499 (2009).

    CAS  PubMed  Google Scholar 

  65. Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J. Cell Biol. 207, 283–297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pukhlyakova, E., Aman, A. J., Elsayad, K. & Technau, U. β-Catenin-dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proc. Natl Acad. Sci. USA 115, 6231–6236 (2018).

    CAS  PubMed  Google Scholar 

  67. Palombo, F. et al. Biomechanics of fibrous proteins of the extracellular matrix studied by Brillouin scattering. J. R. Soc. Interface 11, 20140739 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Bevilacqua, C., Sánchez-Iranzo, H., Richter, D., Diz-Muñoz, A. & Prevedel, R. Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy. Biomed. Opt. Express 10, 1420 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Antonacci, G., Foreman, M. R., Paterson, C. & Török, P. Spectral broadening in Brillouin imaging. Appl. Phys. Lett. 103, 221105 (2013).

    Google Scholar 

  70. Lindsay, S. M., Anderson, M. W. & Sandercock, J. R. Construction and alignment of a high performance multipass vernier tandem Fabry–Perot interferometer. Rev. Sci. Instrum. 52, 1478–1486 (1981).

    CAS  Google Scholar 

  71. Shirasaki, M. Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21, 366 (1996).

    CAS  PubMed  Google Scholar 

  72. Fiore, A., Zhang, J., Shao, P., Yun, S. H. & Scarcelli, G. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media. Appl. Phys. Lett. 108, 203701 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Antonacci, G., Lepert, G., Paterson, C. & Török, P. Elastic suppression in Brillouin imaging by destructive interference. Appl. Phys. Lett. 107, (2015).

  74. Meng, Z., Traverso, A. J. & Yakovlev, V. V. Background clean-up in Brillouin microspectroscopy of scattering medium. Opt. Express 22, 5410 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. Antonacci, G. Dark-field Brillouin microscopy. Opt. Lett. 42, 1432 (2017).

    CAS  PubMed  Google Scholar 

  76. Antonacci, G., De Panfilis, S., Di Domenico, G., DelRe, E. & Ruocco, G. Breaking the contrast limit in single-pass fabry-pérot spectrometers. Phys. Rev. Appl. 6, 54020 (2016).

    Google Scholar 

  77. Edrei, E., Gather, M. C. & Scarcelli, G. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. Opt. Express 25, 6895–6903 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Mattana, S. Non-contact mechanical and chemical analysis of single living cells by micro-spectroscopic techniques. Light Sci. Appl. 7, e17139 (2018).

    Google Scholar 

  79. Traverso, A. J. et al. Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging. Anal. Chem. 87, 7519–7523 (2015).

    CAS  PubMed  Google Scholar 

  80. Scarponi, F. et al. High-performance versatile setup for simultaneous Brillouin-Raman microspectroscopy. Phys. Rev. X 7, 31015 (2017).

    Google Scholar 

  81. Coppola, S., Schmidt, T., Ruocco, G. & Antonacci, G. Quantifying cellular forces and biomechanical properties by correlative micropillar traction force and Brillouin microscopy. Biomed. Opt. Express 10, 2202 (2019).

    PubMed  PubMed Central  Google Scholar 

  82. Edrei, E., Nikolic, M. & Scarcelli, G. Improving localization precision of Brillouin measurements using spectral autocorrelation analysis. J. Innov. Opt. Health Sci. 10, 1742004 (2017).

    Google Scholar 

  83. Elsayad, K. Spectral phasor analysis for Brillouin microspectroscopy. Front. Phys. 7, (2019).

  84. Liu, P. Y. et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16, 634–644 (2016).

    CAS  PubMed  Google Scholar 

  85. Abuhattum, S. et al. Intracellular mass density increase is accompanying but not sufficient for stiffening and growth arrest of yeast cells. Front. Phys. 6, 131 (2018).

    Google Scholar 

  86. Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717 (2007).

    CAS  PubMed  Google Scholar 

  87. Marquet, P. et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005).

    PubMed  Google Scholar 

  88. Fiore, A., Bevilacqua, C. & Scarcelli, G. Direct three-dimensional measurement of refractive index via dual photon-phonon scattering. Phys. Rev. Lett. 122, 103901 (2019).

    CAS  PubMed  Google Scholar 

  89. Nikolić, M. & Scarcelli, G. Long-term Brillouin imaging of live cells with reduced absorption-mediated damage at 660nm wavelength. Biomed. Opt. Express 10, 1567 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Remer, I. & Bilenca, A. Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering. Opt. Lett. 41, 926–929 (2016).

    CAS  PubMed  Google Scholar 

  91. Ballmann, C. W. et al. Stimulated Brillouin scattering microscopic imaging. Sci. Rep. 5, 18139 (2016).

    Google Scholar 

  92. Ballmann, C. W., Meng, Z., Traverso, A. J., Scully, M. O. & Yakovlev, V. V. Impulsive Brillouin microscopy. Optica 4, 124 (2017).

    Google Scholar 

  93. Zhang, J., Fiore, A., Yun, S.-H., Kim, H. & Scarcelli, G. Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci. Rep. 6, 35398 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shao, P. et al. Effects of corneal hydration on brillouin microscopy in vivo. Investig. Ophthalmol. Vis. Sci. 59, 3020–3027 (2018).

    CAS  Google Scholar 

  95. Crest, J., Diz-Muñoz, A., Chen, D., Fletcher, D. A. & Bilder, D. Organ sculpting by patterned extracellular matrix stiffness. eLife 6, e24958 (2017).

    PubMed  PubMed Central  Google Scholar 

  96. Troyanova-Wood, M., Meng, Z. & Yakovlev, V. V. Elasticity-based identification of tumor margins using Brillouin spectroscopy. In Proc. Biophysics, Biology, and Biophotonics: the Crossroads (eds. Wax, A. & Backman, V.) 9719OP (2016).

  97. Kim, M. et al. Shear Brillouin light scattering microscope. Opt. Express 24, 319 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Carpenter, D. K. Dynamic light scattering with applications to chemistry, biology, and physics. J. Chem. Educ. 54, A430 (1977).

    Google Scholar 

  99. Scarcelli, G., Kim, P. & Yun, S. H. In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy. Biophys. J. 101, 1539–1545 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Landau, L. D. & Lifshitz, E. M. Theory of Elasticity (Pergamon Press, 1970).

Download references

Acknowledgements

We thank G. Scarcelli and C. J. Chan for insightful discussions and feedback on the manuscript, Q. Yang and P. Liberali (Friedrich Miescher Institute, Basel) as well as V. de Turris and A. Rosa (Istituto Italiano di Tecnologia, Roma) for providing the samples shown in Fig. 5a and c, respectively; and C. Bevilacqua and M. Bergert for help with figures. This work was supported by the European Molecular Biology Laboratory (R.P., A.D.-M.), the COST Action CA16124 (‘BioBrillouin’) and the Deutsche Forschungsgemeinschaft (DFG) research grant DI 2205/2-1 (A.D.-M.).

Author information

Authors and Affiliations

Authors

Contributions

R.P., A.D.-M., G.R. and G.A. wrote the manuscript.

Corresponding authors

Correspondence to Robert Prevedel or Alba Diz-Muñoz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nina Vogt was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prevedel, R., Diz-Muñoz, A., Ruocco, G. et al. Brillouin microscopy: an emerging tool for mechanobiology. Nat Methods 16, 969–977 (2019). https://doi.org/10.1038/s41592-019-0543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0543-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing