Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biological imaging of chemical bonds by stimulated Raman scattering microscopy

Abstract

All molecules consist of chemical bonds, and much can be learned from mapping the spatiotemporal dynamics of these bonds. Since its invention a decade ago, stimulated Raman scattering (SRS) microscopy has become a powerful modality for imaging chemical bonds with high sensitivity, resolution, speed and specificity. We introduce the fundamentals of SRS microscopy and review innovations in SRS microscopes and imaging probes. We highlight examples of exciting biological applications, and share our vision for potential future breakthroughs for this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of SRS microscopy.
Fig. 2: Instrumental advances.
Fig. 3: Imaging probe development.
Fig. 4: Application of SRS microscopy in cell biology, lipid biology and microbiology.
Fig. 5: Application of SRS microscopy in tumor biology, neurobiology, developmental biology, and pharmaceuticals.

Similar content being viewed by others

References

  1. Ploetz, E., Laimgruber, S., Berner, S., Zinth, W. & Gilch, P. Femtosecond stimulated Raman microscopy. Appl. Phys. B 87, 389–393 (2007).

    Article  CAS  Google Scholar 

  2. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nandakumar, P., Kovalev, A. & Volkmer, A. Vibrational imaging based on stimulated Raman scattering microscopy. New J. Phys. 11, 033026 (2009).

    Article  CAS  Google Scholar 

  4. Ozeki, Y., Dake, F., Kajiyama, S., Fukui, K. & Itoh, K. Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy. Opt. Express 17, 3651–3658 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Bloembergen, N. The stimulated Raman effect. Am. J. Phys. 35, 989 (1967).

    Article  CAS  Google Scholar 

  6. Owyoung, A. Sensitivity limitations for CW stimulated Raman-spectroscopy. Opt. Commun. 22, 323–328 (1977).

    Article  CAS  Google Scholar 

  7. Levine, B. F., Shank, C. V. & Heritage, J. P. Surface vibrational spectroscopy using stimulated Raman-scattering. IEEE J. Quantum Elect. 15, 1418–1432 (1979).

    Article  Google Scholar 

  8. Levenson, M. D. & Kano, S. S. Introduction to Nonlinear Laser Spectroscopy (Acad. Press, 1988).

  9. Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Min, W., Freudiger, C. W., Lu, S. J. & Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62, 507–530 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Cheng, J. X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, aaa8870 (2015).

    Article  PubMed  CAS  Google Scholar 

  12. Camp, C. H. & Cicerone, M. T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photon. 9, 295–305 (2015).

    Article  CAS  Google Scholar 

  13. Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ozeki, Y. et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photon. 6, 844–850 (2012).

    Article  CAS  Google Scholar 

  16. Wakisaka, Y. et al. Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nat. Microbiol. 1, 16124 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Freudiger, C. W. et al. Stimulated Raman scattering microscopy with a robust fibre laser source. Nat. Photon. 8, 153–159 (2014).

    Article  CAS  Google Scholar 

  18. Kong, L. et al. Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator. Opt. Lett. 38, 145–147 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  19. Suhalim, J. L. et al. Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy. Biophys. J. 102, 1988–1995 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Freudiger, C. W. et al. Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy. Nat. Photon. 5, 103–109 (2011).

    Article  CAS  Google Scholar 

  21. Zhang, D. et al. Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. Anal. Chem. 85, 98–106 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Andresen, E. R., Berto, P. & Rigneault, H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Opt. Lett. 36, 2387–2389 (2011).

    Article  PubMed  Google Scholar 

  23. Fu, D., Holtom, G., Freudiger, C., Zhang, X. & Xie, X. S. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117, 4634–4640 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. He, R. Y. et al. Stimulated Raman scattering microscopy and spectroscopy with a rapid scanning optical delay line. Opt. Lett. 42, 659–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Alshaykh, M. S. et al. High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines. Opt. Lett. 42, 1548–1551 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Liao, C. S. et al. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. Optica 3, 1377–1380 (2016).

    Article  CAS  Google Scholar 

  27. Figueroa, B. et al. Broadband hyperspectral stimulated Raman scattering microscopy with a parabolic fiber amplifier source. Biomed. Opt. Exp. 9, 6116–6131 (2018).

    Article  CAS  Google Scholar 

  28. He, R. Y. et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging. Optica 4, 44–47 (2017).

    Article  CAS  Google Scholar 

  29. Lu, F. K. et al. Multicolor stimulated Raman scattering (SRS) microscopy. Mol. Phys. 110, 1927–1932 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Seto, K., Okuda, Y., Tokunaga, E. & Kobayashi, T. Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection. Rev. Sci. Instrum. 84, 083705 (2013).

    Article  PubMed  CAS  Google Scholar 

  31. Rock, W., Bonn, M. & Parekh, S. H. Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array. Opt. Express 21, 15113–15120 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Liao, C. S. et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci. Appl. 4, e265 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, C. et al. Stimulated Raman scattering flow cytometry for label-free single-particle analysis. Optica 4, 103–109 (2017).

    Article  CAS  Google Scholar 

  34. Fu, D. et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134, 3623–3626 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Liao, C. S. et al. Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Sci. Adv. 1, e1500738 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Saltarelli, F. et al. Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher. Opt. Exp. 24, 21264–21275 (2016).

    Article  CAS  Google Scholar 

  37. Wei, L. et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Meth. 11, 410–412 (2014).

    Article  CAS  Google Scholar 

  38. Hu, F. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. Meth. 15, 194–200 (2018).

    Article  CAS  Google Scholar 

  39. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Xiong, H. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photon. 13, 412–417 (2019).

    Article  CAS  Google Scholar 

  41. Frontiera, R. R., Henry, A. I., Gruenke, N. L. & Van Duyne, R. P. Surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2, 1199–1203 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photon. 8, 650–656 (2014).

    Article  CAS  Google Scholar 

  43. Zong, C. et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Preprint at arXiv https://arxiv.org/abs/1903.05167 (2019).

  44. Bi, Y. et al. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm. Light Sci. Appl. 7, 81 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Gong, L. & Wang, H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: a theoretical study. Phys. Rev. A 90, 013818 (2014).

    Article  CAS  Google Scholar 

  46. Gong, L. & Wang, H. F. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency-like scheme and its application for super-resolution microscopy. Phys. Rev. A 92, 023828 (2015).

    Article  CAS  Google Scholar 

  47. Kim, D. et al. Selective suppression of stimulated Raman scattering with another competing stimulated Raman scattering. J. Phys. Chem. Lett. 8, 6118–6123 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Silva, W. R., Graefe, C. T. & Frontiera, R. R. Toward label-free super-resolution microscopy. ACS Photon. 3, 79–86 (2016).

    Article  CAS  Google Scholar 

  50. Gong, L., Zheng, W., Ma, Y. & Huang, Z. W. Saturated stimulated-Raman-scattering microscopy for far-field superresolution vibrational imaging. Phys. Rev. Appl. 11, 034041 (2019).

    Article  CAS  Google Scholar 

  51. Wei, M. et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 116, 6608–6617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, X. L. et al. Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. Nat. Commun. 8, 15117 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  53. Liao, C. S. et al. In vivo and in situ spectroscopic imaging by a handheld stimulated Raman scattering microscope. ACS Photon. 5, 947–954 (2018).

    Article  CAS  Google Scholar 

  54. Ji, M. et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci. Transl. Med. 5, 201ra119 (2013).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Freudiger, C. W. et al. Multicolored stain-free histopathology with coherent Raman imaging. Lab. Investig. 92, 1492–1502 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, M. C., Min, W., Freudiger, C. W., Ruvkun, G. & Xie, X. S. RNAi screening for fat regulatory genes with SRS microscopy. Nat. Meth. 8, 135–138 (2011).

    Article  CAS  Google Scholar 

  57. Fu, D. et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136, 8820–8828 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Lu, F. K. et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 112, 11624–11629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, P. et al. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. Engl. 52, 13042–13046 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yue, S. et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19, 393–406 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Saar, B. G. et al. Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. Engl. 49, 5476–5479 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Ding, S. Y. et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 1055–1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Wei, L. et al. Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes. Acc. Chem. Res. 49, 1494–1502 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shen, Y., Hu, F. & Min, W. Raman imaging of small biomolecules. Annu. Rev. Biophys. 48, 347–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Saar, B. G., Contreras-Rojas, L. R., Xie, X. S. & Guy, R. H. Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharma. 8, 969–975 (2011).

    Article  CAS  Google Scholar 

  66. Zhang, D., Slipchenko, M. N. & Cheng, J. X. Highly sensitive vibrational imaging by femtosecond pulse stimulated Raman loss. J. Phys. Chem. Lett. 2, 1248–1253 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Wei, L., Yu, Y., Shen, Y., Wang, M. C. & Min, W. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 110, 11226–11231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hu, F., Wei, L., Zheng, C., Shen, Y. & Min, W. Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling. Analyst 139, 2312–2317 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Alfonso-Garcia, A., Pfisterer, S. G., Riezman, H., Ikonen, E. & Potma, E. O. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. J. Biomed. Opt. 21, 061003 (2016).

    Article  Google Scholar 

  70. Li, J. & Cheng, J. X. Direct visualization of de novo lipogenesis in single living cells. Sci. Rep. 4, 6807 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Wei, L. et al. Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling. ACS Chem. Biol. 10, 901–908 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Shi, L. Y., Shen, Y. H. & Min, W. Visualizing protein synthesis in mice with in vivo labeling of deuterated amino acids using vibrational imaging. Appl. Photon. 3, 092401 (2018).

    Article  CAS  Google Scholar 

  73. Shi, L. et al. Optical imaging of metabolic dynamics in animals. Nat. Commun. 9, 2995 (2018).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Zhang, L. et al. Spectral tracing of isotope deuterium (STRIDE) for imaging glucose metabolism. Nat. Biomed. Eng. 3, 402–413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen, Y., Xu, F., Wei, L., Hu, F. & Min, W. Live-cell quantitative imaging of proteome degradation by stimulated Raman scattering. Angew. Chem. Int. Ed. Engl. 53, 5596–5599 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Yamakoshi, H. et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J. Am. Chem. Soc. 133, 6102–6105 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Yamakoshi, H. et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J. Am. Chem. Soc. 134, 20681–20689 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Prescher, J. A. & Bertozzi, C. R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Grammel, M. & Hang, H. C. Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Hu, F., Lamprecht, M. R., Wei, L., Morrison, B. & Min, W. Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Sci. Rep. 6, 39660 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Hong, S. et al. Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules. Angew. Chem. Int. Ed. Engl. 53, 5827–5831 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Hu, F. et al. Vibrational imaging of glucose uptake activity in live cells and tissues by stimulated Raman scattering. Angew. Chem. Int. Ed. Engl. 54, 9821–9825 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lee, H. J. et al. Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. Sci. Rep. 5, 7930 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Gaschler, M. M. et al. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem. Biol. 13, 1013–1020 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Chen, Z. et al. Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette. J. Am. Chem. Soc. 136, 8027–8033 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Mansfield, J. C. et al. Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy. Anal. Chem. 85, 5055–5063 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Crawford, J. M., Portmann, C., Zhang, X., Roeffaers, M. B. & Clardy, J. Small molecule perimeter defense in entomopathogenic bacteria. Proc. Natl. Acad. Sci. USA 109, 10821–10826 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Hu, F., Brucks, S. D., Lambert, T. H., Campos, L. M. & Min, W. Stimulated Raman scattering of polymer nanoparticles for multiplexed live-cell imaging. Chem. Commun. 53, 6187–6190 (2017).

    Article  CAS  Google Scholar 

  90. Jin, Q. et al. Multicolor Raman beads for multiplexed tumor cell and tissue imaging and in vivo tumor spectral detection. Anal. Chem. 91, 3784–3789 (2019).

    Article  CAS  PubMed  Google Scholar 

  91. Long, R. et al. Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering. Chem. Commun. 54, 152–155 (2018).

    Article  CAS  Google Scholar 

  92. Shen, Y. et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 114, 13394–13399 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Li, J. J. et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20, 303–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Yu, Y., Mutlu, A. S., Liu, H. & Wang, M. C. High-throughput screens using photo-highlighting discover BMP signaling in mitochondrial lipid oxidation. Nat. Commun. 8, 865 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  95. Villareal, V. A., Fu, D., Costello, D. A., Xie, X. S. & Yang, P. L. Hepatitis C virus selectively alters the intracellular localization of desmosterol. ACS Chem. Biol. 11, 1827–1833 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Bae, K., Zheng, W., Ma, Y. & Huang, Z. Real-time monitoring of pharmacokinetics of antibiotics in biofilms with Raman-tagged hyperspectral stimulated Raman scattering microscopy. Theranostics 9, 1348–1357 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Ji, M. et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci. Transl. Med. 7, 309ra163 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Orringer, D. A. et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat. Biomed. Eng. 1, 0027 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  101. Zhang, L. Y. & Min, W. Bioorthogonal chemical imaging of metabolic changes during epithelial-mesenchymal transition of cancer cells by stimulated Raman scattering microscopy. J. Biomed. Opt. 22, 106010 (2017).

    PubMed Central  Google Scholar 

  102. Fu, D., Yang, W. & Xie, X. S. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering. J. Am. Chem. Soc. 139, 583–586 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, H. J. et al. Label-free vibrational spectroscopic imaging of neuronal membrane potential. J. Phys. Chem. Lett. 8, 1932–1936 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Tian, F. et al. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat. Commun. 7, 13283 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Ji, M. et al. Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy. Sci. Adv. 4, eaat7715 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Chen, A. J. et al. Fingerprint stimulated Raman scattering imaging reveals retinoid coupling lipid metabolism and survival. Chem. Phys. Chem. 19, 2500–2506 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Tipping, W. J., Lee, M., Serrels, A., Brunton, V. G. & Hulme, A. N. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev. 45, 2075–2089 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Slipchenko, M. N. et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst 135, 2613–2619 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Francis, A. T. et al. In situ stimulated Raman scattering (SRS) microscopy study of the dissolution of sustained-release implant formulation. Mol. Pharma. 15, 5793–5801 (2018).

    Article  CAS  Google Scholar 

  110. Wang, C. C. et al. In situ chemically specific mapping of agrochemical seed coatings using stimulated Raman scattering microscopy. J. Biophoton. 11, e201800108 (2018).

    Article  CAS  Google Scholar 

  111. Fu, D. et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat. Chem. 6, 614–622 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Chiu, W. S. et al. Molecular diffusion in the human nail measured by stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 112, 7725–7730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tipping, W. J., Lee, M., Serrels, A., Brunton, V. G. & Hulme, A. N. Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy. Chem. Sci. 8, 5606–5615 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Seidel, J. et al. Structure-activity-distribution relationship study of anti-cancer antimycin-type depsipeptides. Chem. Commun. https://doi.org/10.1039/c9cc03051d (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330, 353–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, D. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  117. Robles, F. E., Zhou, K. C., Fischer, M. C. & Warren, W. S. Stimulated Raman scattering spectroscopic optical coherence tomography. Optica 4, 243–246 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Tamma, V. A., Beecher, L. M., Shumaker-Parry, J. S. & Wickramasinghe, H. K. Detecting stimulated Raman responses of molecules in plasmonic gap using photon induced forces. Opt. Exp. 26, 31439–31453 (2018).

    Article  CAS  Google Scholar 

  119. Knoll, B. & Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article  CAS  Google Scholar 

  120. Zeng, C., Hu, F., Long, R. & Min, W. A ratiometric Raman probe for live-cell imaging of hydrogen sulfide in mitochondria by stimulated Raman scattering. Analyst 143, 4844–4848 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang, J. et al. Small unnatural amino acid carried Raman tag for molecular imaging of genetically targeted proteins. J. Phys. Chem. Lett. 9, 4679–4685 (2018).

    Article  CAS  PubMed  Google Scholar 

  122. Hiramatsu, K. et al. High-throughput label-free molecular fingerprinting flow cytometry. Sci. Adv. 5, eaau0241 (2019).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  123. Suzuki, Y. et al. Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1902322116 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Wei, L. Shi, H. Xiong and X. Liu for reading the manuscript. W.M. acknowledges support from National Institutes of Health (NIH) Director’s New Innovator Award, NIH R01 (EB020892 to W. M.), NIH R01 (GM128214 to W. M.), NIH R01 (GM132860 to W. M.), the Alfred P. Sloan Foundation, the Camille and Henry Dreyfus Foundation, and a Pilot and Feasibility grant from the New York Obesity Nutrition Research Center. F.H. acknowledges support from a Raymond and Beverly Sackler Center Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

F. H., L. S., and W. M. conceived and wrote the paper.

Corresponding author

Correspondence to Wei Min.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Shi, L. & Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods 16, 830–842 (2019). https://doi.org/10.1038/s41592-019-0538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0538-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing