Abstract
Single-molecule localization microscopy (SMLM), while well established for cultured cells, is not yet fully compatible with tissue-scale samples. We introduce single-molecule oblique-plane microscopy (obSTORM), which by directly imaging oblique sections of samples with oblique light-sheet illumination offers a deep and volumetric SMLM platform that is convenient for standard tissue samples and small intact animals. We demonstrate super-resolution imaging at depths of up to 66 µm for cells, Caenorhabditis elegans gonads, Drosophila melanogaster larval brain, mouse retina and brain sections, and whole stickleback fish.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Label-free adaptive optics single-molecule localization microscopy for whole zebrafish
Nature Communications Open Access 13 July 2023
-
Extending resolution within a single imaging frame
Nature Communications Open Access 02 December 2022
-
DaXi—high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy
Nature Methods Open Access 21 March 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Code availability
The custom MATLAB codes for the localization analysis used in this study are available as Supplementary Software.
Change history
09 September 2019
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
References
Rust, M. J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).
Betzig, E. et al. Science 313, 1642–1645 (2006).
Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Biophys. J. 91, 4258–4272 (2006).
Thompson, R. E., Larson, D. R. & Webb, W. W. Biophys. J. 82, 2775–2783 (2002).
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Nat. Methods 5, 159–161 (2008).
Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Nat. Methods 5, 1047–1052 (2008).
Mlodzianoski, M. J. et al. Nat. Methods 15, 583–586 (2018).
Bon, P. et al. Nat. Methods 15, 449–454 (2018).
Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Science 305, 1007–1009 (2004).
Cella Zanacchi, F. et al. Nat. Methods 8, 1047–1049 (2011).
Gebhardt, J. C. M. et al. Nat. Methods 10, 421–426 (2013).
Meddens, M. B. M. et al. Biomed. Opt. Express 7, 2219–2236 (2016).
Gustavsson, A.-K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. Nat. Commun. 9, 123 (2018).
Galland, R. et al. Nat. Methods 12, 641–644 (2015).
Greiss, F., Deligiannaki, M., Jung, C., Gaul, U. & Braun, D. Biophys. J. 110, 939–946 (2016).
Dunsby, C. Opt. Express 16, 20306–20316 (2008).
Kim, J., Li, T., Wang, Y. & Zhang, X. Opt. Express 22, 11140–11151 (2014).
Li, T. et al. Sci. Rep. 4, 7253 (2014).
Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Science 317, 1749–1753 (2007).
Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Nat. Methods 6, 383–387 (2009).
Kittel, R. J. et al. Science 312, 1051–1054 (2006).
Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810–813 (2008).
Vaughan, J. C., Jia, S. & Zhuang, X. Nat. Methods 9, 1181–1184 (2012).
Vettenburg, T. et al. Nat. Methods 11, 541–544 (2014).
Bouchard, M. B. et al. Nat. Photonics 9, 113–119 (2015).
Botcherby, E. J., Juškaitis, R., Booth, M. J. & Wilson, T. Opt. Lett. 32, 2007–2009 (2007).
Phillips, C. M., McDonald, K. L. & Dernburg, A. F. Methods Mol. Biol. 558, 171–195 (2009).
Köhler, S., Wojcik, M., Xu, K. & Dernburg, A. F. Proc. Natl Acad. Sci. USA 114, E4734–E4743 (2017).
Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Nat. Methods 7, 377–381 (2010).
Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Nat. Methods 7, 373–375 (2010).
Pengo, T., Holden, S. J. & Manley, S. Bioinformatics 31, 797–798 (2015).
Acknowledgements
The authors thank L. Li (X. Zhang Lab at the University of California, Berkeley) for providing gold-evaporated silicon wafer mirrors, S. Köhler (A.F. Dernburg Lab at the University of California, Berkeley) for help with C. elegans samples and A. Bormann and T. Square (C.T. Miller Lab at the University of California, Berkeley) for help with stickleback samples. We thank C.T. Miller, J.W. de Jong and H. Adesnik for discussions. X.Z. acknowledges support from the Gordon and Betty Moore Foundation and the Office of Naval Research Multidisciplinary University Research Initiative program (N00014-17-1-2588). K.X. is a Chan Zuckerberg Biohub investigator and acknowledges support from the Bakar Fellows Award, and STROBE, an NSF Science and Technology Center (DMR 1548924). M.W. acknowledges an NSF Graduate Research Fellowship (DGE-1106400).
Author information
Authors and Affiliations
Contributions
J.K. designed and built the microscopy system, calculated theoretical PSFs, prepared fluorescent bead samples, calibrated the optical system and wrote software code for localization analysis. M.W. and S.M. prepared cell samples. S.M. labeled mouse brain tissues. E.A.Z. and J.G.F. prepared retina samples and provided fixed brain sections. N.M. and Z.L.N. prepared Drosophila samples. J.K. and M.W. carried out imaging experiments. J.K. and Y.W. analyzed single-molecule data. X.Z. and K.X. guided the research. J.K., M.W., Y.W., K.X. and X.Z. contributed to writing the manuscript.
Corresponding authors
Ethics declarations
Competing interests
J.K., Y.W. and X.Z. have filed a provisional patent application on the microscopy system and method.
Additional information
Peer review information: Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–31, Supplementary Table 1 and Supplementary Note
Supplementary Video 1
Representative single-molecule raw images by obSTORM (α = 45°) for AF647-labeled microtubules in an A549 cell (Fig. 1d). The video shows 300 frames of n = 60,000 frames at 50 frames per second.
Supplementary Software
MATLAB codes used for single-molecule localization.
Rights and permissions
About this article
Cite this article
Kim, J., Wojcik, M., Wang, Y. et al. Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nat Methods 16, 853–857 (2019). https://doi.org/10.1038/s41592-019-0510-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-019-0510-z
This article is cited by
-
Label-free adaptive optics single-molecule localization microscopy for whole zebrafish
Nature Communications (2023)
-
DaXi—high-resolution, large imaging volume and multi-view single-objective light-sheet microscopy
Nature Methods (2022)
-
Resolution doubling in light-sheet microscopy via oblique plane structured illumination
Nature Methods (2022)
-
Extending resolution within a single imaging frame
Nature Communications (2022)
-
A hybrid open-top light-sheet microscope for versatile multi-scale imaging of cleared tissues
Nature Methods (2022)