Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Oblique-plane single-molecule localization microscopy for tissues and small intact animals

A Publisher Correction to this article was published on 09 September 2019

This article has been updated

Abstract

Single-molecule localization microscopy (SMLM), while well established for cultured cells, is not yet fully compatible with tissue-scale samples. We introduce single-molecule oblique-plane microscopy (obSTORM), which by directly imaging oblique sections of samples with oblique light-sheet illumination offers a deep and volumetric SMLM platform that is convenient for standard tissue samples and small intact animals. We demonstrate super-resolution imaging at depths of up to 66 µm for cells, Caenorhabditis elegans gonads, Drosophila melanogaster larval brain, mouse retina and brain sections, and whole stickleback fish.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Imaging principle and cell-scale demonstration of obSTORM.
Fig. 2: Tissue-scale super-resolution imaging enabled by 45° obSTORM.
Fig. 3: Volumetric super-resolution imaging of PKCα in 60-μm-thick mouse retina sections.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The custom MATLAB codes for the localization analysis used in this study are available as Supplementary Software.

Change history

  • 09 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Rust, M. J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  2. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  3. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  4. Thompson, R. E., Larson, D. R. & Webb, W. W. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  5. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. Nat. Methods 5, 159–161 (2008).

    Article  CAS  Google Scholar 

  6. Huang, B., Jones, S. A., Brandenburg, B. & Zhuang, X. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  Google Scholar 

  7. Mlodzianoski, M. J. et al. Nat. Methods 15, 583–586 (2018).

    Article  CAS  Google Scholar 

  8. Bon, P. et al. Nat. Methods 15, 449–454 (2018).

    Article  CAS  Google Scholar 

  9. Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Science 305, 1007–1009 (2004).

    Article  CAS  Google Scholar 

  10. Cella Zanacchi, F. et al. Nat. Methods 8, 1047–1049 (2011).

    Article  Google Scholar 

  11. Gebhardt, J. C. M. et al. Nat. Methods 10, 421–426 (2013).

    Article  CAS  Google Scholar 

  12. Meddens, M. B. M. et al. Biomed. Opt. Express 7, 2219–2236 (2016).

    Article  Google Scholar 

  13. Gustavsson, A.-K., Petrov, P. N., Lee, M. Y., Shechtman, Y. & Moerner, W. E. Nat. Commun. 9, 123 (2018).

    Article  Google Scholar 

  14. Galland, R. et al. Nat. Methods 12, 641–644 (2015).

    Article  CAS  Google Scholar 

  15. Greiss, F., Deligiannaki, M., Jung, C., Gaul, U. & Braun, D. Biophys. J. 110, 939–946 (2016).

    Article  CAS  Google Scholar 

  16. Dunsby, C. Opt. Express 16, 20306–20316 (2008).

    Article  CAS  Google Scholar 

  17. Kim, J., Li, T., Wang, Y. & Zhang, X. Opt. Express 22, 11140–11151 (2014).

    Article  Google Scholar 

  18. Li, T. et al. Sci. Rep. 4, 7253 (2014).

    Article  CAS  Google Scholar 

  19. Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Science 317, 1749–1753 (2007).

    Article  CAS  Google Scholar 

  20. Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Nat. Methods 6, 383–387 (2009).

    Article  CAS  Google Scholar 

  21. Kittel, R. J. et al. Science 312, 1051–1054 (2006).

    Article  CAS  Google Scholar 

  22. Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  23. Vaughan, J. C., Jia, S. & Zhuang, X. Nat. Methods 9, 1181–1184 (2012).

    Article  CAS  Google Scholar 

  24. Vettenburg, T. et al. Nat. Methods 11, 541–544 (2014).

    Article  CAS  Google Scholar 

  25. Bouchard, M. B. et al. Nat. Photonics 9, 113–119 (2015).

    Article  CAS  Google Scholar 

  26. Botcherby, E. J., Juškaitis, R., Booth, M. J. & Wilson, T. Opt. Lett. 32, 2007–2009 (2007).

    Article  Google Scholar 

  27. Phillips, C. M., McDonald, K. L. & Dernburg, A. F. Methods Mol. Biol. 558, 171–195 (2009).

    Article  CAS  Google Scholar 

  28. Köhler, S., Wojcik, M., Xu, K. & Dernburg, A. F. Proc. Natl Acad. Sci. USA 114, E4734–E4743 (2017).

    Article  Google Scholar 

  29. Mortensen, K. I., Churchman, L. S., Spudich, J. A. & Flyvbjerg, H. Nat. Methods 7, 377–381 (2010).

    Article  CAS  Google Scholar 

  30. Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Nat. Methods 7, 373–375 (2010).

    Article  CAS  Google Scholar 

  31. Pengo, T., Holden, S. J. & Manley, S. Bioinformatics 31, 797–798 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Li (X. Zhang Lab at the University of California, Berkeley) for providing gold-evaporated silicon wafer mirrors, S. Köhler (A.F. Dernburg Lab at the University of California, Berkeley) for help with C. elegans samples and A. Bormann and T. Square (C.T. Miller Lab at the University of California, Berkeley) for help with stickleback samples. We thank C.T. Miller, J.W. de Jong and H. Adesnik for discussions. X.Z. acknowledges support from the Gordon and Betty Moore Foundation and the Office of Naval Research Multidisciplinary University Research Initiative program (N00014-17-1-2588). K.X. is a Chan Zuckerberg Biohub investigator and acknowledges support from the Bakar Fellows Award, and STROBE, an NSF Science and Technology Center (DMR 1548924). M.W. acknowledges an NSF Graduate Research Fellowship (DGE-1106400).

Author information

Authors and Affiliations

Authors

Contributions

J.K. designed and built the microscopy system, calculated theoretical PSFs, prepared fluorescent bead samples, calibrated the optical system and wrote software code for localization analysis. M.W. and S.M. prepared cell samples. S.M. labeled mouse brain tissues. E.A.Z. and J.G.F. prepared retina samples and provided fixed brain sections. N.M. and Z.L.N. prepared Drosophila samples. J.K. and M.W. carried out imaging experiments. J.K. and Y.W. analyzed single-molecule data. X.Z. and K.X. guided the research. J.K., M.W., Y.W., K.X. and X.Z. contributed to writing the manuscript.

Corresponding authors

Correspondence to Ke Xu or Xiang Zhang.

Ethics declarations

Competing interests

J.K., Y.W. and X.Z. have filed a provisional patent application on the microscopy system and method.

Additional information

Peer review information: Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Supplementary Table 1 and Supplementary Note

Reporting Summary

Supplementary Video 1

Representative single-molecule raw images by obSTORM (α = 45°) for AF647-labeled microtubules in an A549 cell (Fig. 1d). The video shows 300 frames of n = 60,000 frames at 50 frames per second.

Supplementary Software

MATLAB codes used for single-molecule localization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Wojcik, M., Wang, Y. et al. Oblique-plane single-molecule localization microscopy for tissues and small intact animals. Nat Methods 16, 853–857 (2019). https://doi.org/10.1038/s41592-019-0510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0510-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing