Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Promoting transparency and reproducibility in enhanced molecular simulations

Subjects

The PLUMED consortium unifies developers and contributors to PLUMED, an open-source library for enhanced-sampling, free-energy calculations and the analysis of molecular dynamics simulations. Here, we outline our efforts to promote transparency and reproducibility by disseminating protocols for enhanced-sampling molecular simulations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Camilloni, C. & Pietrucci, F. Adv. Phys. X 3, 1477531 (2018).

    Google Scholar 

  2. Mittal, S. & Shukla, D. Mol. Simul. 44, 891–904 (2018).

    Article  CAS  Google Scholar 

  3. Bottaro, S. & Lindorff-Larsen, K. Science 361, 355–360 (2018).

    Article  CAS  Google Scholar 

  4. Grossfield, A. et al. Living J. Comput. Mol. Sci. 1, 5067 (2018).

    PubMed  PubMed Central  Google Scholar 

  5. Recommended data repositories. Scientific Data https://www.nature.com/sdata/policies/repositories (2019).

  6. Ollila, S. et al. Presentation slides from the workshop on “Sharing Data from Molecular Simulations”, Stockholm, 2018-11-27. Zenodo https://zenodo.org/record/2652703 (2018).

  7. Bonomi, M. et al. Comput. Phys. Commun. 180, 1961–1972 (2009).

    Article  CAS  Google Scholar 

  8. Fiorin, G., Klein, M. L. & Hénin, J. Mol. Phys. 111, 3345–3362 (2013).

    Article  CAS  Google Scholar 

  9. Sidky, H. et al. J. Chem. Phys. 148, 044104 (2018).

    Article  Google Scholar 

  10. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi, G. Comput. Phys. Commun. 185, 604–613 (2014).

    Article  CAS  Google Scholar 

  11. Harvey, M. J., Giupponi, G. & Fabritiis, G. D. J. Chem. Theory Comput. 5, 1632–1639 (2009).

    Article  CAS  Google Scholar 

  12. Case, D. A. et al. J. Comput. Chem. 26, 1668–1688 (2005).

    Article  CAS  Google Scholar 

  13. Todorov, I. T., Smith, W., Trachenko, K. & Dove, M. T. J. Mater. Chem. 16, 1911–1918 (2006).

    Article  CAS  Google Scholar 

  14. Abraham, M. J. et al. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  15. Plimpton, S. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  16. Phillips, J. C. et al. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  17. Eastman, P. et al. PLoS Comput. Biol. 13, e1005659 (2017).

    Article  Google Scholar 

  18. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2013).

    Article  Google Scholar 

  19. Ceriotti, M., More, J. & Manolopoulos, D. E. Comput. Phys. Commun. 185, 1019–1026 (2014).

    Article  CAS  Google Scholar 

  20. Tuckerman, M. E., Yarne, D. A., Samuelson, S. O., Hughes, A. L. & Martyna, G. J. Comput. Phys. Commun. 128, 333–376 (2000).

    Article  CAS  Google Scholar 

  21. Giannozzi, P. et al. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  22. Giorgino, T. Comput. Phys. Commun. 185, 1109–1114 (2014).

    Article  CAS  Google Scholar 

  23. Doerr, S., Harvey, M. J., Noé, F. & De Fabritiis, G. J. Chem. Theory Comput. 12, 1845–1852 (2016).

    Article  CAS  Google Scholar 

  24. Swenson, D. W. H., Prinz, J.-H., Noé, F., Chodera, J. D. & Bolhuis, P. G. J. Chem. Theory Comput. 15, 813–836 (2019).

    Article  Google Scholar 

  25. Anonymous Nat. Methods 16, 207 (2019).

    Article  Google Scholar 

  26. Valsson, O. & Parrinello, M. Phys. Rev. Lett. 113, 090601 (2014).

    Article  Google Scholar 

  27. Chen, H., Fu, H., Shao, X., Chipot, C. & Cai, W. J. Chem. Inf. Model. 58, 1315–1318 (2018).

    Article  CAS  Google Scholar 

  28. White, A. D. & Voth, G. A. J. Chem. Theory Comput. 10, 3023–3030 (2014).

    Article  CAS  Google Scholar 

  29. Morishita, T., Yonezawa, Y. & Ito, A. M. J. Chem. Theory Comput. 13, 3106–3119 (2017).

    Article  CAS  Google Scholar 

  30. Pipolo, S. et al. Phys. Rev. Lett. 119, 245701 (2017).

    Article  CAS  Google Scholar 

  31. Rydzewski, J. Preprint at https://arxiv.org/abs/1904.03929 (2019).

  32. Bonomi, M. & Camilloni, C. Bioinformatics 33, 3999–4000 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Contributions

All members of the PLUMED consortium contributed to writing of the manuscript.

Corresponding authors

Correspondence to Massimiliano Bonomi, Giovanni Bussi, Carlo Camilloni or Gareth A. Tribello.

Ethics declarations

Competing interests

G.M.H. is currently consulting on a US Department of Energy grant to Parallel Works, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods 16, 670–673 (2019). https://doi.org/10.1038/s41592-019-0506-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0506-8

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics