Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control

Abstract

Although messenger RNAs are key molecules for understanding life, until now, no method has existed to determine the full-length sequence of endogenous mRNAs including their poly(A) tails. Moreover, although non-A nucleotides can be incorporated in poly(A) tails, there also exists no method to accurately sequence them. Here, we present full-length poly(A) and mRNA sequencing (FLAM-seq), a rapid and simple method for high-quality sequencing of entire mRNAs. We report a complementary DNA library preparation method coupled to single-molecule sequencing to perform FLAM-seq. Using human cell lines, brain organoids and Caenorhabditis elegans we show that FLAM-seq delivers high-quality full-length mRNA sequences for thousands of different genes per sample. We find that 3′ untranslated region length is correlated with poly(A) tail length, that alternative polyadenylation sites and alternative promoters for the same gene are linked to different tail lengths, and that tails contain a substantial number of cytosines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Full-length poly(A) mRNA sequencing (FLAM-seq).
Fig. 2: Validation of poly(A) length estimation by FLAM-seq.
Fig. 3: Poly(A) length profiles in human and C. elegans samples.
Fig. 4: Widespread tail length dependency on mRNA isoform.
Fig. 5: Nucleotide composition of poly(A) tails.

Data availability

All sequencing data have been deposited on NCBI GEO under the accession number GSE126465. Raw data used for each graphical representation in the main figures are available in the Supplementary Information and Datasets 1–5.

Code availability

The software used for data analysis is available at https://github.com/rajewsky-lab/FLAMAnalysis.

References

  1. Nicholson, A. L. & Pasquinelli, A. E. Tales of detailed poly(A) tails. Trends Cell Biol. 29, 191–200 (2019).

    Article  CAS  Google Scholar 

  2. Jalkanen, A. L., Coleman, S. J. & Wilusz, J. Determinants and implications of mRNA poly(A) tail size–does this protein make my tail look big? Semin. Cell Dev. Biol. 34, 24–32 (2014).

    Article  CAS  Google Scholar 

  3. Eckmann, C. R., Rammelt, C. & Wahle, E. Control of poly(A) tail length. Wiley Inter. Rev. RNA 2, 348–361 (2011).

    Article  CAS  Google Scholar 

  4. Brown, C. E. & Sachs, A. B. Poly(A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol. Cell Biol. 18, 6548–6559 (1998).

    Article  CAS  Google Scholar 

  5. Yamashita, A. et al. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12, 1054–1063 (2005).

    Article  CAS  Google Scholar 

  6. Meyer, S., Temme, C. & Wahle, E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem Mol. Biol. 39, 197–216 (2004).

    Article  CAS  Google Scholar 

  7. Chen, C. Y. & Shyu, A. B. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev. RNA 2, 167–183 (2011).

    Article  CAS  Google Scholar 

  8. Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

    Article  CAS  Google Scholar 

  9. Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell. 53, 1044–1052 (2014).

    Article  CAS  Google Scholar 

  10. Lim, J. et al. Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365–1376 (2014).

    Article  CAS  Google Scholar 

  11. Morgan, M. et al. mRNA 3′ uridylation and poly(A) tail length sculpt the mammalian maternal transcriptome. Nature 548, 347–351 (2017).

    Article  CAS  Google Scholar 

  12. Lim, J. et al. Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361, 701–704 (2018).

    Article  CAS  Google Scholar 

  13. Chang, H. et al. Terminal uridylyltransferases execute programmed clearance of maternal transcriptome in vertebrate embryos. Mol. Cell. 70, 72–82 (2018).

    Article  CAS  Google Scholar 

  14. Lima, S. A. et al. Short poly(A) tails are a conserved feature of highly expressed genes. Nat. Struct. Mol. Biol. 24, 1057–1063 (2017).

    Article  CAS  Google Scholar 

  15. Lim, J., Lee, M., Son, A., Chang, H. & Kim, V. N. mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev. 30, 1671–1682 (2016).

    Article  CAS  Google Scholar 

  16. Eichhorn, S. W. et al. mRNA poly(A)-tail changes specified by deadenylation broadly reshape translation in Drosophila oocytes and early embryos. eLife 5, e16955 (2016).

    Article  Google Scholar 

  17. Cramer, P., Pesce, C. G., Baralle, F. E. & Kornblihtt, A. R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl Acad. Sci. USA 94, 11456–11460 (1997).

    Article  CAS  Google Scholar 

  18. Fededa, J. P. et al. A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol. Cell 19, 393–404 (2005).

    Article  CAS  Google Scholar 

  19. Tilgner, H. et al. Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. Genome Res. 28, 231–242 (2018).

    Article  CAS  Google Scholar 

  20. Kapteyn, J., He, R., McDowell, E. T. & Gang, D. R. Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples. BMC Genom. 2, 413 (2010).

    Article  Google Scholar 

  21. Lizio, M. et al. FANTOM consortium. gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 5, 16–22 (2015).

    Google Scholar 

  22. Saito, T. L. et al. The transcription start site landscape of C. elegans. Genome Res. 23, 1348–1361 (2013).

    Article  CAS  Google Scholar 

  23. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).

    Article  CAS  Google Scholar 

  24. Au, K. F. et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl Acad. Sci. USA 110, E4821–E4830 (2013).

    Article  CAS  Google Scholar 

  25. Temperley, R. J., Wydro, M., Lightowlers, R. N. & Chrzanowska-Lightowlers, Z. M. Human mitochondrial mRNAs–like members of all families, similar but different. Biochim Biophys. Acta 1797, 1081–1085 (2010).

    Article  CAS  Google Scholar 

  26. Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  Google Scholar 

  27. Liu, Y. et al. Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat. Biotechnol. 37, 314–322 (2019).

    Article  CAS  Google Scholar 

  28. Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res. 22, 947–956 (2012).

    Article  CAS  Google Scholar 

  29. Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 22, 341–348 (2015).

    Article  Google Scholar 

  30. Wahle, E. Purification and characterization of a mammalian polyadenylate polymerase involved in the 3′ end processing of messenger RNA precursors. J. Biol. Chem. 266, 3131–3139 (1991).

    CAS  PubMed  Google Scholar 

  31. Workman R., et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Preprint available at bioRxiv https://doi.org/10.1101/459529 (2010).

  32. Lancaster, M. A. & Knoblich, J. A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 9, 2329–2340 (2014).

    Article  CAS  Google Scholar 

  33. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2012).

    Article  Google Scholar 

  34. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–9230 (2014).

    Article  CAS  Google Scholar 

  35. Dodt, M., Roehr, J. T., Ahmed, R. & Dieterich, C. FLEXBAR-Flexible barcode and adapter processing for next-generation sequencing platforms. Biology 14, 895–905 (2012).

    Article  Google Scholar 

  36. Allen, M. A., Hillier, L. W., Waterston, R. H. & Blumenthal, T. A global analysis of C. elegans trans-splicing. Genome Res. 21, 255–264 (2011).

    Article  CAS  Google Scholar 

  37. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  Google Scholar 

  38. Hahne, F. & Ivanek, R. in Statistical Genomics: Methods and Protocols (eds Mathé, E. & Davis, S.) 335–351 (Springer, 2016).

Download references

Acknowledgements

We thank A. Rybak-Wolf for providing iPS cells and cerebral organoids samples, J. Froehlich for providing C. elegans samples, A. Boltengagen for cell culture, C. Quedenau, D. Yumi Sunaga-Franze and S. Sauer of the BIMSB Genomics platform for adapter ligation, sequencing runs and preprocessing of sequencing data, H. Lickert for providing the XMO01 iPS cell line and S. Formichetti from the laboratory of G. Macino for providing HeLa S3 cells. We also thank all the members of the N. Rajewsky laboratory for critical and useful discussions. I.L. is recipient of an EMBO Long Term Fellowship (no. ALTF 1235-2016). J.A. is member of the MDC–NYU exchange PhD program. N.K. was supported by the DFG Leibniz prize (N.R.) and grants DFG RA 838/8-2, HGF ExNet-0036 and DFG KA 5006/1-1.

Author information

Authors and Affiliations

Authors

Contributions

I.L., S.A. and J.A. conceived and optimized FLAM-seq. I.L., S.A. and J.A. performed all the experiments. J.A. and N.K. conceived and implemented the FLAM-seq analysis pipeline. J.A., N.K. and I.L. performed the computational analyses. N.R. contributed to both experimental and analyses design and supervised the whole project.

Corresponding author

Correspondence to Nikolaus Rajewsky.

Ethics declarations

Competing interests

I.L., J.A., N.K., S.A. and N.R. are named inventors on a patent application directed to genome-wide full-length mRNA and poly(A) tail sequencing. European Patent application EP18198248 has been filed with priority of October 2018.

Additional information

Peer review information: Lei Tang was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Supplementary Figs. 1–5.

Reporting Summary

Supplementary Protocol

Supplementary protocol for Full-length poly(A) and mRNA sequencing (FLAM-seq).

Source data

Dataset 1

Source data for Fig. 1.

Dataset 2

Source data for Fig. 2.

Dataset 3

Source data for Fig. 3.

Dataset 4

Source data for Fig. 4.

Dataset 5

Source data for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legnini, I., Alles, J., Karaiskos, N. et al. FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control. Nat Methods 16, 879–886 (2019). https://doi.org/10.1038/s41592-019-0503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0503-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing