BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples

Abstract

Light-sheet imaging of cleared and expanded samples creates terabyte-sized datasets that consist of many unaligned three-dimensional image tiles, which must be reconstructed before analysis. We developed the BigStitcher software to address this challenge. BigStitcher enables interactive visualization, fast and precise alignment, spatially resolved quality estimation, real-time fusion and deconvolution of dual-illumination, multitile, multiview datasets. The software also compensates for optical effects, thereby improving accuracy and enabling subsequent biological analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: BigStitcher principles.
Fig. 2: Optical aberrations, light simulations and alignment quantification.
Fig. 3: Reconstructed samples.

Data availability

Small example datasets are available for download from the Open Science Foundation at https://osf.io/bufza/. Larger datasets are available on request. Additional datasets uploaded at a later stage will be linked from the documentation page which can be found at https://imagej.net/BigStitcher#Example_Datasets. Example datasets are explained in detail in Supplementary Note 18.

Code availability

All source code used in this publication (BigStitcher, phase correlation simulation and benchmarks, and the simulation of light propagation in tissue using ray tracing) is open-source and published under the GNU General Public License version 2. The latest stable releases used in this publication are provided as Supplementary Software; current versions that include bugfixes and updates can be downloaded from GitHub (at https://github.com/PreibischLab/BigStitcher; https://github.com/PreibischLab/multiview-reconstruction; and https://github.com/PreibischLab/multiview-simulation; see Supplementary Notes 19 and 20 for further explanations). Details on how to use the software are described in Supplementary Note 21.

References

  1. 1.

    Chung, K. et al. Nature 497, 332–337 (2013).

    CAS  Article  Google Scholar 

  2. 2.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Science 347, 543–548 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J. & Stelzer, E. H. K. Science 305, 1007–1009 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    Chhetri, R. K. et al. Nat. Methods 12, 1171–1178 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Huisken, J. & Stainier, D. Y. R. Opt. Lett. 32, 2608–2610 (2007).

    Article  Google Scholar 

  6. 6.

    Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Nat. Protoc. 9, 1682–1697 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Richardson, D. S. & Lichtman, J. W. Cell 162, 246–257 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. Nat. Methods 12, 481–483 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Linkert, M. et al. J. Cell Biol. 189, 777–782 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Pietzsch, T., Preibisch, S., Tomancák, P. & Saalfeld, S. Bioinformatics 28, 3009–3011 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Kuglin, C. D. & Hines, D. C. in Proc. IEEE International Conference on Cybernetics and Society 163–165 (IEEE, 1975)

  12. 12.

    Preibisch, S., Saalfeld, S. & Tomancák, P. Bioinformatics 25, 1463–1465 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Emmenlauer, M. et al. J. Microsc. 233, 42–60 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Chalfoun, J. et al. Sci. Rep. 7, 4988 (2017).

    Article  Google Scholar 

  15. 15.

    Saalfeld, S., Fetter, R., Cardona, A. & Tomancák, P. Nat. Methods 9, 717–720 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Bria, A. & Ianello, G. BMC Bioinformatics 13, 316 (2012).

    Article  Google Scholar 

  17. 17.

    Besl, P. J. & McKay, N. D. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).

    Article  Google Scholar 

  18. 18.

    Migliori, B. et al. BMC Biol. 16, 57 (2018).

    Article  Google Scholar 

  19. 19.

    Schaefer, S., McPhail, T. & Warren, J. ACM Trans. Graph. 25, 533–540 (2006).

    Article  Google Scholar 

  20. 20.

    Ryan, D. P. et al. Nat. Commun. 8, 612 (2017).

    Article  Google Scholar 

  21. 21.

    Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34, 1267–1278 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Nieuwenhuizen, R. P. J. et al. Nat. Methods 10, 557–562 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Preibisch, S. et al. Nat. Methods 11, 645–648 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Gao, R. et al. Science 363, eaau8302 (2019).

    Article  Google Scholar 

  25. 25.

    Schindelin, J. et al. Nat. Methods 9, 676–682 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Sakkou, M. et al. Cell Metab. 5, 450–463 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Nguyen, J. P., Linder, A. N., Plummer, G. S., Shaevitz, J. W. & Leifer, A. M. PLoS Comput. Biol. 13, e1005517 (2017).

    Article  Google Scholar 

  28. 28.

    Karp, X. in WormBook (ed. The C. elegans Research Community, 2016); https://doi.org/10.1895/wormbook.1.180.1

  29. 29.

    Pfeiffer, D. B. et al. Proc. Natl Acad. Sci. USA 105, 9715–9720 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Tillberg, P. W. et al. Nat. Biotechnol. 34, 987–992 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Preibisch, S., Saalfeld, S., Schindelin, J. & Tomancák, P. Nat. Methods 7, 418–419 (2010).

    CAS  Article  Google Scholar 

  32. 32.

    Smith, C. S. et al. J. Cell Biol. 209, 609–619 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Lowe, D. G. Int. J. Comput. Vis. 60, 91–110 (2004).

    Article  Google Scholar 

  34. 34.

    Matsuda, A., Schermelleh, L., Hirano, Y., Haraguchi, T. & Hiraoka, Y. Sci. Rep. 8, 7583 (2018).

    Article  Google Scholar 

  35. 35.

    Weigert, M., Subramanian, K., Bundschuh, S. T., Myers, E. W. & Kreysing, M. PLoS Comput. Biol. 14, e1006079 (2018).

    Article  Google Scholar 

  36. 36.

    Fischler, M. A. & Bolles, R. C. Commun. ACM 24, 381–395 (1981).

    Article  Google Scholar 

  37. 37.

    Cleveland, W. S. J. Am. Stat. Assoc. 74, 829–836 (1979).

    Article  Google Scholar 

  38. 38.

    Preibisch, S., Rohlfing, T., Hasak, M. P. & Tomancák, P. in Proc. of the International Society for Optics and Photonics, Medical Imaging (eds. Reinhardt, J. M. & Pluim, J. P. W.) (SPIE, 2008).

  39. 39.

    Blasse, C. et al. Bioinformatics 33, 2563–2569 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Schmied, C., Steinbach, P., Pietzsch, T., Preibisch, S. & Tomancák, P. Bioinformatics 32, 1112–1114 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank T. Pietzsch and S. Saalfeld for insightful discussions and BigDataViewer and ImgLib2 support; N. Vladimirov for very helpful microscopy discussions; C. Rueden for Fiji support and maintenance; N. Gompel for early-stage project discussions; and the Caenorhabditis Genetics Center at the University of Minnesota for providing C. elegans strains. S.P., F.P. and M.T. were funded by MDC Berlin; S.P. was supported by HFSP grant RGP0021/2018-102; F.P. was funded by a PhD fellowship from Studienstiftung des deutschen Volkes; F.R.R. and M.T. were funded by the Helmholtz Alliances ICEMED and AMPro; D.H., H.H. and H.L. were funded by the Deutsche Forschungsgemeinschaft (DFG, Nanosystems Initiative Munich), the NHGRI/NIH Center for Photogenomics (grant RM1 HG007743) and LMU Munich; and P.T., N.R., R.K.C., A.C. and P.J.K. were funded by HHMI Janelia.

Author information

Affiliations

Authors

Contributions

S.P. conceived the idea in discussions with H.H., H.L. and M.T.; D.H. and S.P. developed the algorithms and implemented the software; F.R.R. performed all clearing experiments, reconstructions and benchmarks; F.P. imaged and reconstructed C. elegans; P.T. and N.R. performed ExM sample preparation; R.K.C. and P.J.K. developed the ExM-optimized IsoView microscope and imaged the sample; S.P. reconstructed the ExM sample; S.P., M.T., H.L., H.H., P.J.K. and A.C. supported and supervised the project; and S.P., D.H. and F.R.R. wrote the manuscript with input from the co-authors.

Corresponding author

Correspondence to Stephan Preibisch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Supplementary Tables 1 and 2 and Supplementary Notes 1–21.

Reporting Summary

Supplementary Video 1

Interactive link verification.

Supplementary Video 2

Simulations of light propagation in tissue.

Supplementary Video 3

Interactive walk through a cleared sample.

Supplementary Video 4

Quality of multiview registration on the expanded sample.

Supplementary Video 5

3D maximum-intensity projection of the expanded sample.

Supplementary Video 6

Low-resolution overview of reconstructed mouse brain.

Supplementary Video 7

3D maximum-intensity projection of the reconstructed C. elegans dauer.

Supplementary Video 8

Quality measurement by rFRC (single image tile).

Supplementary Video 9

Quality measurement by rFRC (large sample).

Supplementary Software

Source code for BigStitcher, phase correlation simulation and benchmark, and the simulation of light propagation in tissue using ray tracing, all licensed under the GNU General Public License version 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hörl, D., Rojas Rusak, F., Preusser, F. et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat Methods 16, 870–874 (2019). https://doi.org/10.1038/s41592-019-0501-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing