Microbiomes play critical roles in ecosystems and human health, yet in most cases scientists lack standardized and reproducible model microbial communities. The development of fabricated microbial ecosystems, which we term EcoFABs, will provide such model systems for microbiome studies.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Protist impacts on marine cyanovirocell metabolism
ISME Communications Open Access 01 October 2022
-
Root-TRAPR: a modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa
Plant Methods Open Access 09 April 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Thompson, L. R. et al. Nature 551, 457–463 (2017).
Zengler, K. & Zaramela, L. S. Nat. Rev. Microbiol. 16, 383–390 (2018).
Muller, B. & Grossniklaus, U. J. Proteomics 73, 2054–2063 (2010).
Wimpenny, J. W. T. CRC Handbook of Laboratory Model Systems for Microbial Ecosystems (CRC Press, 1988).
Winogradsky, S. Arch. Sci. Biol. 3, 297–352 (1895).
Dallinger, W. D. J. R. Microsc. Soc. 7, 184–199 (1887).
Gause, G. F. The Struggle for Existence (The Williams & Wilkins Company, 1934).
Kolenbrander, P. E. et al. Microbiol. Mol. Biol. R 66, 486–505 (2002).
Jessup, C. M. et al. Trends Ecol. Evol. 19, 189–197 (2004).
Wolfe, B. E. Msystems 3, 00161-17 (2018).
Welch, J. L. M., Hasegawa, Y., McNulty, N. P., Gordon, J. I. & Borisy, G. G. Proc. Natl Acad. Sci. USA 114, E9105–E9114 (2017).
Yano, J. M. et al. Cell 161, 264–276 (2015).
Turnbaugh, P. J. et al. Nature 444, 1027–1031 (2006).
Zhalnina, K., Zengler, K., Newman, D. & Northen, T. R. MBio 9, e01175-18 (2018).
Koornneef, M. & Meinke, D. Plant J. 61, 909–921 (2010).
Busby, P. E. et al. PLoS Biol. 15, e2001793 (2017).
McDonald, J. A. et al. J. Microbiol. Methods 95, 167–174 (2013).
Agostinho, A. M. et al. J. Appl. Microbiol. 111, 1275–1282 (2011).
Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Proc. Natl Acad. Sci. USA 113, E7–E15 (2016).
Cremer, J. et al. Proc. Natl Acad. Sci. USA 113, 11414–11419 (2016).
Blaser, M. J. et al. MBio 7, e00714–e00716 (2016).
Gao, J. et al. J. Vis. Exp. 134, e57170 (2018).
Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O. H. & Aharoni, A. Proc. Natl Acad. Sci. USA 114, 4549–4554 (2017).
Toju, H. et al. Nat. Plants 4, 247–257 (2018).
Herrera Paredes, S. et al. PLoS Biol. 16, e2003962 (2018).
Grossmann, G. et al. Plant Cell 23, 4234–4240 (2011).
Lambert, B. S. et al. Nat. Microbiol. 2, 1344–1349 (2017).
Handelsman, J. Microb. Biotechnol. 2, 138–139 (2009).
Green, J. L., Bohannan, B. J. & Whitaker, R. J. Science 320, 1039–1043 (2008).
Little, A. E. F., Robinson, C. J., Peterson, S. B., Raffa, K. E. & Handelsman, J. Annu. Rev. Microbiol. 62, 375–401 (2008).
Ruby, E. G. Nat. Rev. Microbiol. 6, 752–762 (2008).
Prosser, J. I. et al. Nat. Rev. Microbiol. 5, 384–392 (2007).
Sinha, R., Abnet, C. C., White, O., Knight, R. & Huttenhower, C. Genome Biol. 16, 276 (2015).
Sasse, J. et al. New Phytol. 222, 1149–1160 (2019).
Acknowledgements
Material is based on work supported by the National Science Foundation under grants 1332344 and 1804187 (to K.Z.), the Trial Ecosystem Advancement for Microbiome Science and the Microbial Community Analysis and Functional Evaluation in Soils Programs at Lawrence Berkeley National Laboratory by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research Awards DE-AC02-05CH11231 (to T.R.N.), DE‐SC0018277 (to J.R.D.) and DE-SC0012658, DE-SC0012586, DE-SC00138344 (to K.Z.), DE-SC0013887 (to E.A.S.), the Center for Bioenergy Innovation (CBI), DE-AC05-000R22725 (to C.M.), by the U.S. Department of Energy Office of Science, Office of Biological and Environmental Research under contract DE-AC05-76RL01830 with Pacific Northwest National Laboratory through the iPASS and PREMIS Initiatives (to C.J.), and the Strategic Planning Support Activities Program of Lawrence Berkeley National Laboratory (to T.R.N.). Work at Lawrence Livermore National Laboratory (J.P.R.) was conducted under the auspices of Contract DE-AC52-07NA27344 and SCW1039. We thank P. Kim and Z. Rostomian for assistance in figure preparation, and D. Gilbert and J. Tanamachi for helpful comments.
Author information
Authors and Affiliations
Contributions
T.R.N. and K.Z. created the draft manuscript. All authors contributed substantially to the draft manuscript, including editing to incorporate diverse expertise and research perspectives. K.Z. and T.R.N. prepared the final text and figures.
Corresponding author
Ethics declarations
Competing interests
T.R.N. is an inventor on a related patent application (US 15/963,887). M.D.W. is a founder and shareholder of Growcentia, Inc.
Rights and permissions
About this article
Cite this article
Zengler, K., Hofmockel, K., Baliga, N.S. et al. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat Methods 16, 567–571 (2019). https://doi.org/10.1038/s41592-019-0465-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-019-0465-0
This article is cited by
-
Microbiome engineering for bioremediation of emerging pollutants
Bioprocess and Biosystems Engineering (2023)
-
Root-TRAPR: a modular plant growth device to visualize root development and monitor growth parameters, as applied to an elicitor response of Cannabis sativa
Plant Methods (2022)
-
Protist impacts on marine cyanovirocell metabolism
ISME Communications (2022)
-
Emerging strategies for precision microbiome management in diverse agroecosystems
Nature Plants (2021)
-
Engineers embrace microbiome messiness
Nature Methods (2019)