Abstract
Deep learning is becoming an increasingly important tool for image reconstruction in fluorescence microscopy. We review state-of-the-art applications such as image restoration and super-resolution imaging, and discuss how the latest deep learning research could be applied to other image reconstruction tasks. Despite its successes, deep learning also poses substantial challenges and has limits. We discuss key questions, including how to obtain training data, whether discovery of unknown structures is possible, and the danger of inferring unsubstantiated image details.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Gradient free stochastic training of ANNs, with local approximation in partitions
Stochastic Environmental Research and Risk Assessment Open Access 07 March 2023
-
Deep learning algorithm reveals two prognostic subtypes in patients with gliomas
BMC Bioinformatics Open Access 11 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
Source code for the experiment described in Box 5 can be found at http://github.com/royerlab/DLDiscovery.
References
Lichtman, J. W. & Conchello, J.-A. Fluorescence microscopy. Nat. Methods 2, 910–919 (2005).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat. Methods 3, 793–795 (2006).
Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-resnet and the impact of residual connections on learning. AAAI 4, (12 (2017).
Zhao, H., Zarar, S., Tashev, I. & Lee, C.-H. Convolutional-recurrent neural networks for speech enhancement. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (eds. Hayes, M. et al.) 2401–2405 (IEEE, 2018).
Lam, C. & Kipping, D. A machine learns to predict the stability of circumbinary planets. Mon. Not. R. Astron. Soc. 476, 5692–5697 (2018).
Ching, T. et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15, 20170387 (2018).
Radovic, A. et al. Machine learning at the energy and intensity frontiers of particle physics. Nature 560, 41–48 (2018).
Xu, Y. et al. Deep learning of feature representation with multiple instance learning for medical image analysis. In 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (eds. Gini, F. et al.) 1626–1630 (IEEE, 2014).
Jin, K. H., McCann, M. T., Froustey, E. & Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process 26, 4509–4522 (2017).
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).
Weigert, M., Royer, L., Jug, F. & Myers, G. Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017 (eds. Descoteaux, M. et al.) 126–134 (Springer, 2017).
Shajkofci, A. & Liebling, M. Semi-blind spatially-variant deconvolution in optical microscopy with local point spread function estimation by use of convolutional neural networks. In 2018 25th IEEE International Conference on Image Processing (ICIP) (eds. Nikou, C. et al.) 3818–3822 (IEEE, 2018).
Wang, H. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103–110 (2019).
Ouyang, W., Aristov, A., Lelek, M., Hao, X. & Zimmer, C. Deep learning massively accelerates super-resolution localization microscopy. Nat. Biotechnol. 36, 460–468 (2018).
Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458–464 (2018).
Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173, 792–803 (2018).
Ounkomol, C., Seshamani, S., Maleckar, M. M., Collman, F. & Johnson, G. R. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat. Methods 15, 917–920 (2018).
Rivenson, Y. et al. Deep learning-based virtual histology staining using auto-fluorescence of label-free tissue. Preprint at https://arxiv.org/abs/1803.11293 (2018).
Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods https://doi.org/10.1038/s41592-019-0403-1 (2019).
Richardson, W. H. Bayesian-based iterative method of image restoration. JOSA 62, 55–59 (1972).
Carlton, P. M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl Acad. Sci. USA 107, 16016–16022 (2010).
Marim, M. M., Angelini, E. D. & Olivo-Marin, J.-C. A compressed sensing approach for biological microscopy image denoising. In SPARS ‘09—Signal Processing with Adaptive Sparse Structured Representations (eds. Gribonval, R. et al.) inria-00369642 (IEEE, 2009).
Boulanger, J. et al. Patch-based nonlocal functional for denoising fluorescence microscopy image sequences. IEEE Trans. Med. Imaging 29, 442–454 (2010).
Luisier, F., Blu, T. & Unser, M. Image denoising in mixed Poisson–Gaussian noise. IEEE Trans. Image Process 20, 696–708 (2011).
Xu, J., Zhang, L. & Zhang, D. A trilateral weighted sparse coding scheme for real-world image denoising. In Computer Vision—ECCV 2018 (eds. Ferrari, V. et al.) 21–38 (Springer, 2018).
Yair, N. & Michaeli, T. Multi-scale weighted nuclear norm image restoration. In Proc. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds. Brown, M. S. et al.) 3165–3174 (IEEE, 2018).
Buades, A., Coll, B. & Morel, J.-M. A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ‘05) (eds. Schmid, C., Soatto, S. & Tomasi, C.) 60–65 (IEEE, 2005).
Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising with block-matching and 3D filtering. In Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning (eds. Nasrabadi, N. M. et al.) 606414 (International Society for Optics and Photonics, 2006).
Jain, V. & Seung, S. Natural image denoising with convolutional networks. In Advances in Neural Information Processing Systems 21 (eds. Koller, D. et al.) 769–776 (NIPS, 2009).
Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process 26, 3142–3155 (2017).
Lehtinen, J. et al. Noise2noise: learning image restoration without clean data. In Proc. 35th International Conference on Machine Learning, PMLR (eds. Dy, J. & Krause, A.) 2965–2974 (PMLR, 2018).
Buchholz, T.-O., Jordan, M., Pigino, G. & Jug, F. Cryo-care: content-aware image restoration for cryo-transmission electron microscopy data. Preprint at https://arxiv.org/abs/1810.05420 (2018).
Batson, J. & Royer, L. Noise2Self: blind denoising by self-supervision. Preprint at https://arxiv.org/abs/1901.11365 (2019).
Krull, A., Buchholz, T.-O. & Jug, F. Noise2Void—learning denoising from single noisy images. Preprint at https://arxiv.org/abs/1811.10980 (2018).
Laine, S., Lehtinen, J. & Aila, T. Self-supervised deep image denoising. Preprint at https://arxiv.org/abs/1901.10277v1 (2019).
Ulyanov, D., Vedaldi, A. & Lempitsky, V. S. Deep image prior. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds. Brown, M. S. et al.) 9446–9454 (IEEE, 2018).
Zhu, J., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision (ICCV) (eds. Ikeuchi, K. et al.) 2242–2251 (IEEE, 2017).
Hom, E. F. et al. AIDA: an adaptive image deconvolution algorithm with application to multiframe and three-dimensional data. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 24, 1580–1600 (2007).
Dey, N. et al. Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69, 260–266 (2006).
Preibisch, S. et al. Efficient Bayesian-based multiview deconvolution. Nat. Methods 11, 645–648 (2014).
Sage, D. et al. DeconvolutionLab2: an open-source software for deconvolution microscopy. Methods 115, 28–41 (2017).
Rivenson, Y. et al. Deep learning microscopy: enhancing resolution, field-of-view and depth-of-field of optical microscopy images using neural networks. In 2018 Conference on Lasers and Electro-Optics (eds. Andersen, P. et al.) 18024028 (IEEE, 2018).
Henriques, R. et al. Quickpalm: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 7, 339–340 (2010).
Sage, D. et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat. Methods 12, 717 (2015).
Boyd, N., Jonas, E., Babcock, H. P. & Recht, B. DeepLoco: fast 3D localization microscopy using neural networks. Preprint at https://www.biorxiv.org/content/10.1101/267096v1 (2018).
Goodfellow, I. et al. Generative adversarial nets. In Proc. 27th International Conference on Neural Information Processing Systems (eds. Ghahramani, Z. et al.) 2672–2680 (MIT Press, 2014).
Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Chellappa, R. et al.) 5967–5976 (IEEE, 2017).
Gustafsson, N. et al. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nat. Commun. 7, 12471 (2016).
Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).
Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).
Huang, X. et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat. Biotechnol. 36, 451 (2018).
Mudry, E. et al. Structured illumination microscopy using unknown speckle patterns. Nat. Photon. 6, 312 (2012).
Ayuk, R. et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm. Opt. Lett. 38, 4723–4726 (2013).
Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R. & Rosen, M. S. Image reconstruction by domain-transform manifold learning. Nature 555, 487–492 (2018).
Jahr, W., Schmid, B., Schmied, C., Fahrbach, F. O. & Huisken, J. Hyperspectral light sheet microscopy. Nat. Commun. 6, 7990 (2015).
Cutrale, F. et al. Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat. Methods 14, 149–152 (2017).
Hershko, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt. Express 27, 6158–6183 (2019).
Blasse, C. et al. Premosa: extracting 2D surfaces from 3D microscopy mosaics. Bioinformatics 33, 2563–2569 (2017).
Mayer, J., Robert-Moreno, A., Sharpe, J. & Swoger, J. Attenuation artifacts in light sheet fluorescence microscopy corrected by OPTiSPIM. Light Sci. Appl. 7, 70 (2018).
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. & Efros, A. A. Context encoders: feature learning by inpainting. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Tuytelaars, T. et al.) 2536–2544 (IEEE, 2016).
Liu, G. et al. Image inpainting for irregular holes using partial convolutions. In Computer Vision—ECCV 2018 (eds. Ferrari, V. et al.) 89–105 (Springer, 2018).
Amat, F. et al. Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10, 1679–1696 (2015).
Cai, B., Xu, X., Jia, K., Qing, C. & Tao, D. DehazeNet: an end-to-end system for single image haze removal. IEEE Trans., Image Process 25, 5187–5198 (2016).
Saalfeld, S., Fetter, R., Cardona, A. & Tomancak, P. Elastic volume reconstruction from series of ultra-thin microscopy sections. Nat. Methods 9, 717–720 (2012).
Zbontar, J. & LeCun, Y. Computing the stereo matching cost with a convolutional neural network. In Proc. 28th IEEE Conference on Computer Vision and Pattern Recognition (eds. Bischof, H. et al.) 1592–1599 (2015).
Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M. & Pennec, X. SVF-Net: learning deformable image registration using shape matching. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017 (eds. Descoteaux, M. et al.) 266–274 (Springer, 2017).
Nguyen, T., Chen, S. W., Skandan, S., Taylor, C. J. & Kumar, V. Unsupervised deep homography: a fast and robust homography estimation model. IEEE Robot. Autom. Lett. 3, 2346–2353 (2018).
Christensen, R. P. et al. Untwisting the Caenorhabditis elegans embryo. eLife 4, e10070 (2015).
Prevedel, R. et al. Simultaneous whole-animal 3D imaging of neuronal activity using light- field microscopy. Nat. Methods 11, 727–730 (2014).
Fei, P. et al. Deep learning light field microscopy for rapid four-dimensional imaging of behaving animals. Preprint at https://www.biorxiv.org/content/10.1101/432807v1 (2018).
Antipa, N. et al. Diffusercam: lensless single-exposure 3D imaging. Optica 5, 1–9 (2018).
Vinegoni, C., Pitsouli, C., Razansky, D., Perrimon, N. & Ntziachristos, V. In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nat. Methods 5, 45–47 (2008).
Xingjian, S. et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In Advances in Neural Information Processing Systems 28 (eds. Cortes, C. et al.) 802–810 (NIPS, 2015).
Naganathan, S. R., Frthauer, S., Nishikawa, M., Jlicher, F. & Grill, S. W. Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking. eLife 3, e04165 (2014).
Meister, S., Hur, J. & Roth, S. Unflow: unsupervised learning of optical flow with a bidirectional census loss. In Thirty-second AAAI Conference on Artificial Intelligence (eds. McIlraith, S. & Weinberger, K.) 7251–7259 (AAAI Press, 2018).
Haring, M. T. et al. Automated sub-5nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers. Sci. Rep. 7, 43621 (2017).
Royer, L. A. et al. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34, 1267–1278 (2016).
Liu, T.-L. et al. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018).
Turpin, A., Vishniakou, I. & Seelig, J. D. Light scattering control with neural networks in transmission and reflection. Preprint at https://arxiv.org/abs/1805.05602 (2018).
Horstmeyer, R., Chen, R. Y., Kappes, B. & Judkewitz, B. Convolutional neural networks that teach microscopes how to image. Preprint at https://arxiv.org/abs/1709.07223 (2017).
Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016).
Moosavi-Dezfooli, S.-M., Fawzi, A. & Frossard, P. DeepFool: a simple and accurate method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Tuytelaars, T. et al.) 2574–2582 (IEEE, 2016).
Sabour, S., Cao, Y., Faghri, F. & Fleet, D. J. Adversarial manipulation of deep representations. Preprint at https://arxiv.org/abs/1511.05122 (2015).
Su, J., Vargas, D. V. & Sakurai, K. One pixel attack for fooling deep neural networks. IEEE Trans. Evol. Comput. https://doi.org/10.1109/TEVC.2019.2890858 (2019).
Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. Towards deep learning models resistant to adversarial attacks. Preprint at https://arxiv.org/abs/1706.06083v1 (2017).
Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (eds. Pereira, F. et al.) 1097–1105 (Curran Associates, 2012).
Johnson, G. R., Donovan-Maiye, R. M. & Maleckar, M. M. Generative modeling with conditional autoencoders: building an integrated cell. Preprint at https://arxiv.org/abs/1705.00092 (2017).
Osokin, A., Chessel, A., Salas, R. E. C. & Vaggi, F. Gans for biological image synthesis. In 2017 IEEE International Conference on Computer Vision (ICCV) (eds. Ikeuchi, K. et al.) 2252–2261 (IEEE, 2017).
Goldsborough, P., Pawlowski, N., Caicedo, J. C., Singh, S. & Carpenter, A. CytoGAN: generative modeling of cell images. Preprint at https://www.biorxiv.org/content/10.1101/227645v1 (2017).
Yuan, H. et al. Computational modeling of cellular structures using conditional deep generative networks. Bioinformatics https://doi.org/10.1093/bioinformatics/bty923 (2018).
Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision—ECCV 2014 (eds. Fleet, D. et al.) 818–833 (Springer, 2014).
Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 27 (eds. Ghahramani, Z. et al.) 3320–3328 (Curran Associates, 2014).
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115 (2017).
Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).
Ljosa, V., Sokolnicki, K. L. & Carpenter, A. E. Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012).
Sullivan, D. P. et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 36, 820 (2018).
Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. Preprint at https://arxiv.org/abs/1312.6034 (2013).
Zhang, Q., Cao, R., Shi, F., Wu, Y. N. & Zhu, S.-C. Interpreting CNN knowledge via an explanatory graph. In Thirty-second AAAI Conference on Artificial Intelligence (eds. McIlraith, S. & Weinberger, K.) 4454–4463 (AAAI Press, 2018).
Zhang, Q., Wu, Y. N. & Zhu, S.-C. Interpretable convolutional neural networks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (eds. Brown, M. S. et al.) 8827–8836 (IEEE, 2018).
Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable predictive uncertainty estimation using deep ensembles. In Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 6402–6413 (NIPS, 2017).
Kendall, A. & Gal, Y. What uncertainties do we need in Bayesian deep learning for computer vision? In Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 5580–5590 (NIPS, 2017).
Hutson, M. Artificial intelligence faces reproducibility crisis. Science 359, 725–726 (2018).
Henderson, P. et al. Deep reinforcement learning that matters. In Thirty-Second AAAI Conference on Artificial Intelligence (eds. McIlraith, S. & Weinberger, K.) 3207–3214 (AAAI Press, 2018).
Gazagnes, S., Soubies, E. & Blanc-Féraud, L. High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation. In IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (eds. Egan, G. et al.) 28–31 (IEEE, 2017).
McCann, M. T., Jin, K. H. & Unser, M. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process. Mag. 34, 85–95 (2017).
Lucas, A., Iliadis, M., Molina, R. & Katsaggelos, A. K. Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process. Mag. 35, 20–36 (2018).
Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by backpropagating errors. Nature 323, 533–536 (1986).
Masci, J., Meier, U., Cireşan, D. & Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In Artificial Neural Networks and Machine Learning—ICANN 2011 (eds. Honkela, T. et al.) 52–59 (Springer, 2011).
Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-assisted Intervention—MICCAI 2015 (eds. Navab, N. et al.) 234–241 (Springer, 2015).
Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67 (2019).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (eds. Tuytelaars, T. et al.) 770–778 (IEEE, 2016).
Acknowledgements
We thank our colleagues at the Chan Zuckerberg Biohub: A. Krishnan, B. Chhun, M. Leonetti, S. Mehta, J. Batson, and R. Gomez Sjoberg for insightful discussions, feedback, and review of the manuscript. We thank J. Zou for advice; M. Weigert for reviewing the manuscript and for innumerable discussions on the topics of deep learning and microscopy; and W. Ouyang, R. Prevedel, F. Jug, and others for feedback on the first version of the preprint. We thank the Chan Zuckerberg Biohub and its donors for funding this work.
Author information
Authors and Affiliations
Contributions
L.A.R. conceived the piece. C.B. and L.A.R. wrote the manuscript and designed the figures.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information: Rita Strack was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
About this article
Cite this article
Belthangady, C., Royer, L.A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat Methods 16, 1215–1225 (2019). https://doi.org/10.1038/s41592-019-0458-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-019-0458-z
This article is cited by
-
Whole-mouse clearing and imaging at the cellular level with vDISCO
Nature Protocols (2023)
-
Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes
Nature Biotechnology (2023)
-
ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic reticulum topology
Nature Methods (2023)
-
Near-infrared luminescence high-contrast in vivo biomedical imaging
Nature Reviews Bioengineering (2023)
-
Gradient free stochastic training of ANNs, with local approximation in partitions
Stochastic Environmental Research and Risk Assessment (2023)