Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The cryo-EM method microcrystal electron diffraction (MicroED)

A Publisher Correction to this article was published on 28 March 2021

This article has been updated

Abstract

In 2013 we established a cryo-electron microscopy (cryo-EM) technique called microcrystal electron diffraction (MicroED). Since that time, data collection and analysis schemes have been fine-tuned, and structures for more than 40 different proteins, oligopeptides and organic molecules have been determined. Here we review the MicroED technique and place it in context with other structure-determination methods. We showcase example structures solved by MicroED and provide practical advice to prospective users.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Methods in the field of cryo-EM.
Fig. 2: MicroED overview.
Fig. 3: Improvements in MicroED data quality.
Fig. 4: Examples of novel structures determined by MicroED.
Fig. 5: Crystal identification and sample preparation for MicroED.
Fig. 6: Cryo-FIB milling of a thick crystal.
Fig. 7: Comparison of proteinase K data collected with and without an energy filter.
Fig. 8: Dynamics probed in response to radiation damage.

Similar content being viewed by others

Change history

References

  1. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016).

    PubMed  Google Scholar 

  3. Wisedchaisri, G., Reichow, S. L. & Gonen, T. Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19, 1381–1393 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Glaeser, R. M. Review: electron crystallography: present excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128, 3–14 (1999).

    CAS  PubMed  Google Scholar 

  5. Nannenga, B. L. & Gonen, T. MicroED opens a new era for biological structure determination. Curr. Opin. Struct. Biol. 40, 128–135 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodriguez, J. A., Eisenberg, D. S. & Gonen, T. Taking the measure of MicroED. Curr. Opin. Struct. Biol. 46, 79–86 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shi, D., Nannenga, B. L., Iadanza, M. G. & Gonen, T. Three-dimensional electron crystallography of protein microcrystals. eLife 2, e01345 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927–930 (2014). This work introduced the ‘continuous rotation’ method of MicroED data collection, which is currently the standard procedure for data collection.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonen, T., Sliz, P., Kistler, J., Cheng, Y. & Walz, T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429, 193–197 (2004).

    CAS  PubMed  Google Scholar 

  10. Gonen, T. et al. Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633–638 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Henderson, R. & Unwin, P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28–32 (1975).

    CAS  PubMed  Google Scholar 

  12. Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929 (1990).

    CAS  PubMed  Google Scholar 

  13. Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996).

    CAS  PubMed  Google Scholar 

  14. Subramaniam, S. & Henderson, R. Crystallographic analysis of protein conformational changes in the bacteriorhodopsin photocycle. Biochim. Biophys. Acta 1460, 157–165 (2000).

    CAS  PubMed  Google Scholar 

  15. Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994).

    PubMed  Google Scholar 

  16. Unwin, P. N. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975).

    CAS  PubMed  Google Scholar 

  17. Dorset, D. L. & Parsons, D. F. Electron-diffraction from single, fully-hydrated, ox liver catalase microcrystals. Acta Crystallogr. A 31, 210–215 (1975).

    Google Scholar 

  18. Dorset, D. L. & Parsons, D. F. Thickness measurements of wet protein crystals in electron-microscope. J. Appl. Crystallogr. 8, 12–14 (1975).

    Google Scholar 

  19. Taylor, K. A. & Glaeser, R. M. Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448–456 (1976).

    CAS  PubMed  Google Scholar 

  20. Jiang, L., Georgieva, D., Zandbergen, H. W. & Abrahams, J. P. Unit-cell determination from randomly oriented electron-diffraction patterns. Acta Crystallogr. D Biol. Crystallogr. 65, 625–632 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nederlof, I., van Genderen, E., Li, Y. W. & Abrahams, J. P. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. Acta Crystallogr. D Biol. Crystallogr. 69, 1223–1230 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Iadanza, M. G. & Gonen, T. A suite of software for processing MicroED data of extremely small protein crystals. J. Appl. Crystallogr. 47, 1140–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hattne, J., Shi, D., de la Cruz, M. J., Reyes, F. E. & Gonen, T. Modeling truncated pixel values of faint reflections in MicroED images. J. Appl. Crystallogr. 49, 1029–1034 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. de la Cruz, M. J. et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14, 399–402 (2017). Here several methods for the fragmentation of larger, and in some cases poorly ordered, crystals into microcrystals suitable for MicroED are described.

    PubMed  PubMed Central  Google Scholar 

  25. Luo, F. et al. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol. 25, 341–346 (2018).

    CAS  PubMed  Google Scholar 

  26. Duyvesteyn, H. M. E. et al. Machining protein microcrystals for structure determination by electron diffraction. Proc. Natl Acad. Sci. USA 115, 9569–9573 (2018).

    CAS  PubMed  Google Scholar 

  27. Kolb, U., Mugnaioli, E. & Gorelik, T. E. Automated electron diffraction tomography—a new tool for nano crystal structure analysis. Cryst. Res. Technol. 46, 542–554 (2011).

    CAS  Google Scholar 

  28. Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mugnaioli, E. et al. Ab initio structure determination of vaterite by automated electron diffraction. Angew. Chem. Int. Ed. Engl. 51, 7041–7045 (2012).

    CAS  PubMed  Google Scholar 

  30. Feyand, M. et al. Automated diffraction tomography for the structure elucidation of twinned, sub-micrometer crystals of a highly porous, catalytically active bismuth metal-organic framework. Angew. Chem. Int. Ed. Engl. 51, 10373–10376 (2012).

    CAS  PubMed  Google Scholar 

  31. Jiang, J. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333, 1131–1134 (2011).

    CAS  PubMed  Google Scholar 

  32. Gorelik, T. E., Stewart, A. A. & Kolb, U. Structure solution with automated electron diffraction tomography data: different instrumental approaches. J. Microsc. 244, 325–331 (2011).

    CAS  PubMed  Google Scholar 

  33. Mugnaioli, E., Gorelik, T. & Kolb, U. “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109, 758–765 (2009).

    CAS  PubMed  Google Scholar 

  34. Simancas, J. et al. Ultrafast electron diffraction tomography for structure determination of the new zeolite ITQ-58. J. Am. Chem. Soc. 138, 10116–10119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, C. et al. An extra-large-pore zeolite with 24×8×8-ring channels using a structure-directing agent derived from traditional Chinese medicine. Angew. Chem. Int. Ed. Engl. 57, 6486–6490 (2018).

    CAS  PubMed  Google Scholar 

  36. Zhang, Y. B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    CAS  PubMed  Google Scholar 

  37. Shi, D. et al. The collection of MicroED data for macromolecular crystallography. Nat. Protoc. 11, 895–904 (2016). Detailed protocols for the collection of MicroED data. New users are encouraged to read these protocols prior to using MicroED.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hattne, J. et al. MicroED data collection and processing. Acta Crystallogr. A Found. Adv. 71, 353–360 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gallagher-Jones, M. et al. Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nat. Struct. Mol. Biol. 25, 131–134 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones, C. G. et al. The cryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Cent. Sci. 4, 1587–1592 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vergara, S. et al. MicroED structure of Au146(p-MBA)57 at subatomic resolution reveals a twinned FCC cluster. J. Phys. Chem. Lett. 8, 5523–5530 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fromme, P. & Spence, J. C. Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination. Curr. Opin. Struct. Biol. 21, 509–516 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, J. L., Fischetti, R. F. & Yamamoto, M. Micro-crystallography comes of age. Curr. Opin. Struct. Biol. 22, 602–612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamamoto, M. et al. Protein microcrystallography using synchrotron radiation. IUCrJ 4, 529–539 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Martin-Garcia, J. M., Conrad, C. E., Coe, J., Roy-Chowdhury, S. & Fromme, P. Serial femtosecond crystallography: a revolution in structural biology. Arch. Biochem. Biophys. 602, 32–47 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Spence, J. C. H. X-ray lasers for structure and dynamics in biology. IUCrJ 5, 236–237 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    CAS  PubMed  Google Scholar 

  48. Nannenga, B. L., Shi, D., Hattne, J., Reyes, F. E. & Gonen, T. Structure of catalase determined by MicroED. eLife 3, e03600 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Sawaya, M. R. et al. Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proc. Natl Acad. Sci. USA 113, 11232–11236 (2016). The first structure determined by MicroED that was phased experimentally. In this study, the high-resolution and MicroED data quality allowed structure solution by direct methods.

    CAS  PubMed  Google Scholar 

  50. Krotee, P. et al. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. eLife 6, e19273 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Seidler, P. M. et al. Structure-based inhibitors of tau aggregation. Nat. Chem. 10, 170–176 (2018).

    CAS  PubMed  Google Scholar 

  52. Hughes, M. P. et al. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science 359, 698–701 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kissick, D. J., Wanapun, D. & Simpson, G. J. Second-order nonlinear optical imaging of chiral crystals. Annu. Rev. Anal. Chem. (Palo Alto Calif.) 4, 419–437 (2011).

    CAS  Google Scholar 

  54. Stevenson, H. P. et al. Use of transmission electron microscopy to identify nanocrystals of challenging protein targets. Proc. Natl Acad. Sci. USA 111, 8470–8475 (2014).

    CAS  PubMed  Google Scholar 

  55. Barnes, C. O. et al. Assessment of microcrystal quality by transmission electron microscopy for efficient serial femtosecond crystallography. Arch. Biochem. Biophys. 602, 61–68 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stevenson, H. P. et al. Transmission electron microscopy for the evaluation and optimization of crystal growth. Acta Crystallogr. D Struct. Biol. 72, 603–615 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Martynowycz, M. W., Zhao, W., Hattne, J., Jensen, G. J. & Gonen, T. Collection of continuous rotation MicroED data from ion beam-milled crystals of any size. Structure 27, 545–548 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gonen, T. The collection of high-resolution electron diffraction data. Methods Mol. Biol. 955, 153–169 (2013).

    CAS  PubMed  Google Scholar 

  59. Leslie, A. G. W. & Powell, H. R. Processing diffraction data with mosflm. In Evolving Methods for Macromolecular Crystallography (eds. Read, R. J. & Sussman, J. L.) 41–51 (Springer, 2007).

  60. Battye, T. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  63. Waterman, D. G. et al. The DIALS framework for integration software. CCP4 Newsl. Protein Crystallogr. 49, 16–19 (2013).

    Google Scholar 

  64. Clabbers, M. T. B., Gruene, T., Parkhurst, J. M., Abrahams, J. P. & Waterman, D. G. Electron diffraction data processing with DIALS. Acta Crystallogr. D Struct. Biol. 74, 506–518 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  68. Balbirnie, M., Grothe, R. & Eisenberg, D. S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl Acad. Sci. USA 98, 2375–2380 (2001).

    CAS  PubMed  Google Scholar 

  69. Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sawaya, M. R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).

    CAS  PubMed  Google Scholar 

  71. Rodriguez, J. A. et al. Structure of the toxic core of α-synuclein from invisible crystals. Nature 525, 486–490 (2015). First novel structure determined by MicroED. This work paved the way for the many new peptide structures from amyloidogenic proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Guenther, E. L. et al. Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nat. Struct. Mol. Biol. 25, 463–471 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Krotee, P. et al. Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. J. Biol. Chem. 293, 2888–2902 (2018).

    CAS  PubMed  Google Scholar 

  74. Purdy, M. D. et al. MicroED structures of HIV-1 Gag CTD-SP1 reveal binding interactions with the maturation inhibitor bevirimat. Proc. Natl Acad. Sci. USA 115, 13258–13263 (2018).

    CAS  PubMed  Google Scholar 

  75. Wagner, J. M. et al. Crystal structure of an HIV assembly and maturation switch. eLife 5, e17063 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Schmidt, M. Mix and inject: reaction initiation by diffusion for time-resolved macromolecular crystallography. Adv. Condens. Matter Phys. 2013, 167276 (2013).

    Google Scholar 

  77. Unwin, N. & Fujiyoshi, Y. Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol. 422, 617–634 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Berriman, J. & Unwin, N. Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy 56, 241–252 (1994).

    CAS  PubMed  Google Scholar 

  79. Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    CAS  PubMed  Google Scholar 

  80. Nogly, P. et al. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 361, eaat0094 (2018).

    PubMed  Google Scholar 

  81. Pande, K. et al. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science 352, 725–729 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, J. S. & Spence, J. C. Structure and bonding in alpha-copper phthalocyanine by electron diffraction. Acta Crystallogr. A 59, 495–505 (2003).

    CAS  PubMed  Google Scholar 

  83. Hattne, J. et al. Analysis of global and site-specific radiation damage in cryo-EM. Structure 26, 759–766 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Garman, E. F. Radiation damage in macromolecular crystallography: what is it and why should we care? Acta Crystallogr. D Biol. Crystallogr. 66, 339–351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nannenga, B. L., Iadanza, M. G., Vollmar, B. S. & Gonen, T. Overview of electron crystallography of membrane proteins: crystallization and screening strategies using negative stain electron microscopy. Curr. Protoc. Protein Sci. 72, 17.15.1–17.15.11 (2013).

    Google Scholar 

  86. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    CAS  PubMed  Google Scholar 

  87. Nederlof, I., Li, Y. W., van Heel, M. & Abrahams, J. P. Imaging protein three-dimensional nanocrystals with cryo-EM.Acta Crystallogr. D Biol. Crystallogr. 69, 852–859 (2013).

    CAS  PubMed  Google Scholar 

  88. van Genderen, E., Li, Y. W., Nederlof, I. & Abrahams, J. P. Lattice filter for processing image data of three-dimensional protein nanocrystals. Acta Crystallogr. D Struct. Biol. 72, 34–39 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Gorelik, T. E., van de Streek, J., Kilbinger, A. F., Brunklaus, G. & Kolb, U. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data. Acta Crystallogr. B 68, 171–181 (2012).

    CAS  PubMed  Google Scholar 

  90. Gruene, T. et al. Rapid structure determination of microcrystalline molecular compounds using electron diffraction. Angew. Chem. Int. Ed. Engl. 57, 16313–16317 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. van Genderen, E. et al. Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. Acta Crystallogr. A Found. Adv. 72, 236–242 (2016).

    PubMed  PubMed Central  Google Scholar 

  92. Clabbers, M. T. B. et al. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal. Acta Crystallogr. D Struct. Biol. 73, 738–748 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. de la Cruz, M. J., Martynowycz, M. W., Hattne, J. & Gonen, T. MicroED data collection with SerialEM. Ultramicroscopy 201, 77–80 (2019).

  94. Fernández-Busnadiego, R. et al. Insights into the molecular organization of the neuron by cryo-electron tomography. J. Electron Microsc. (Tokyo) 60, S137–S148 (2011).

    Google Scholar 

  95. Bartesaghi, A. et al. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348, 1147–1151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, S. & Gonen, T. MicroED structure of the NaK ion channel reveals a Na+ partition process into the selectivity filter. Commun. Biol. 1, 38 (2018). The first membrane protein determined by continuous rotation MicroED.

    PubMed  PubMed Central  Google Scholar 

  97. Subramanian, G., Basu, S., Liu, H., Zuo, J. M. & Spence, J. C. H. Solving protein nanocrystals by cryo-EM diffraction: multiple scattering artifacts. Ultramicroscopy 148, 87–93 (2015).

    CAS  PubMed  Google Scholar 

  98. Vincent, R. & Midgley, P. A. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271–282 (1994).

    CAS  Google Scholar 

  99. Midgley, P. A. & Eggeman, A. S. Precession electron diffraction—a topical review. IUCrJ 2, 126–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gjonnes, J. et al. Structure model for the phase AlmFe derived from three-dimensional electron diffraction intensity data collected by a precession technique. Comparison with convergent-beam diffraction. Acta Crystallogr. A 54, 306–319 (1998).

    Google Scholar 

Download references

Acknowledgements

We thank all of our collaborators and trainees who have contributed either directly or indirectly to the development of MicroED. We thank G. Calero (University of Pittsburgh) for providing Figs. 4c and 5b. The Gonen laboratory is supported by funding from the Howard Hughes Medical Institute (HHMI). The Nannenga laboratory is supported by the US National Institutes of Health (R01GM124152). MicroED was developed at the Janelia Research Campus of HHMI using HHMI funds and Janelia Visitor Program funds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brent L. Nannenga or Tamir Gonen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nannenga, B.L., Gonen, T. The cryo-EM method microcrystal electron diffraction (MicroED). Nat Methods 16, 369–379 (2019). https://doi.org/10.1038/s41592-019-0395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0395-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing