Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads

Abstract

Replication of eukaryotic genomes is highly stochastic, making it difficult to determine the replication dynamics of individual molecules with existing methods. We report a sequencing method for the measurement of replication fork movement on single molecules by detecting nucleotide analog signal currents on extremely long nanopore traces (D-NAscent). Using this method, we detect 5-bromodeoxyuridine (BrdU) incorporated by Saccharomyces cerevisiae to reveal, at a genomic scale and on single molecules, the DNA sequences replicated during a pulse-labeling period. Under conditions of limiting BrdU concentration, D-NAscent detects the differences in BrdU incorporation frequency across individual molecules to reveal the location of active replication origins, fork direction, termination sites, and fork pausing/stalling events. We used sequencing reads of 20–160 kilobases to generate a whole-genome single-molecule map of DNA replication dynamics and discover a class of low-frequency stochastic origins in budding yeast. The D-NAscent software is available at https://github.com/MBoemo/DNAscent.git.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanopore sequencing can distinguish thymidine from analogs.
Fig. 2: BrdU can be distinguished from thymidine in genomic DNA.
Fig. 3: Single-molecule detection of BrdU on nascent DNA.
Fig. 4: Single-molecule detection of replication dynamics.

Similar content being viewed by others

Data availability

Raw and processed Illumina and MinION data are available from NCBI GEO under accession number GSE121941.

Code availability

The D-NAscent software can be accessed at https://github.com/MBoemo/DNAscent.git.

References

  1. Gilbert, D. M. Evaluating genome-scale approaches to eukaryotic DNA replication. Nat. Rev. Genet. 11, 673–684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mechali, M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11, 728–738 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hawkins, M. et al. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep. 5, 1132–1141 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tuduri, S., Tourriere, H. & Pasero, P. Defining replication origin efficiency using DNA fiber assays. Chromosome Res. 18, 91–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lacroix, J. et al. Analysis of DNA replication by optical mapping in nanochannels. Small. 12, 5963–5970 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. De Carli, F. et al. High‐throughput optical mapping of replicating DNA. Small Methods 2, 1800146 (2018).

    Article  Google Scholar 

  8. Simpson, J. T. et al. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 14, 407–410 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Rand, A. C. et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14, 411–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hagenkort, A. et al. dUTPase inhibition augments replication defects of 5-Fluorouracil. Oncotarget 8, 23713–23726 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hua, H. & Kearsey, S. E. Monitoring DNA replication in fission yeast by incorporation of 5-ethynyl-2´-deoxyuridine. Nucl. Acids Res. 39, e60 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diermeier-Daucher, S. et al. Cell type specific applicability of 5-ethynyl-2´-deoxyuridine (EdU) for dynamic proliferation assessment in flow cytometry. Cytometry. A. 75, 535–546 (2009).

    Article  PubMed  Google Scholar 

  13. Talarek, N., Petit, J., Gueydon, E. & Schwob, E. EdU incorporation for FACS and microscopy analysis of DNA replication in budding yeast. Methods Mol. Biol. 1300, 105–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Vernis, L., Piskur, J. & Diffley, J. F. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae. Nucl. Acids Res. 31, e120 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Peace, J. M., Villwock, S. K., Zeytounian, J. L., Gan, Y. & Aparicio, O. M. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase. Genome Res. 26, 365–375 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 12, 733–735 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Magiera, M. M., Gueydon, E. & Schwob, E. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity. J. Cell. Biol. 204, 165–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alvino, G. M. et al. Replication in hydroxyurea: it’s a matter of time. Mol. Cell. Biol. 27, 6396–6406 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat. Cell Biol. 8, 148–155 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poli, J. et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 31, 883–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siow, C. C., Nieduszynska, S. R., Muller, C. A. & Nieduszynski, C. A. OriDB, the DNA replication origin database updated and extended. Nucl. Acids Res. 40, D682–D686 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Müller, C. A. et al. The dynamics of genome replication using deep sequencing. Nucl. Acids Res. 42, e3 (2014).

    Article  PubMed  Google Scholar 

  23. Koc, A., Wheeler, L. J., Mathews, C. K. & Merrill, G. F. Hydroxyurea arrests DNA replication by a mechanism that preserves basal dNTP pools. J. Biol. Chem. 279, 223–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479–2484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cavanagh, B. L., Walker, T., Norazit, A. & Meedeniya, A. C. Thymidine analogues for tracking DNA synthesis. Molecules 16, 7980–7993 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kee, N., Sivalingam, S., Boonstra, R. & Wojtowicz, J. M. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. J. Neurosci. Methods 115, 97–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Dolken, L. et al. High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA 14, 1959–1972 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome. Biol. 17, 239 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sekedat, M. D. et al. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol. Syst. Biol. 6, 353 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. On, K. F. et al. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication. EMBO J. 33, 605–620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gros, J., Devbhandari, S. & Remus, D. Origin plasticity during budding yeast DNA replication in vitro. EMBO J. 33, 621–636 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Payne, A., Holmes, N., Rakyan, V. & Loose, M. BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics https://doi.org/10.1093/bioinformatics/bty841 (2018).

  33. Chen, C. et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science 356, 189–194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dileep, V. & Gilbert, D. M. Single-cell replication profiling to measure stochastic variation in mammalian replication timing. Nat. Commun. 9, 427 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Natsume, T. et al. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment. Mol. Cell 50, 661–674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fang, D. et al. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes Dev. 31, 2405–2415 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hiraga, S. I. et al. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep. 18, 403–419 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Foti, R. et al. Nuclear architecture organized by Rif1 underpins the replication-timing program. Mol. Cell 61, 260–273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Donnianni, R. A. & Symington, L. S. Break-induced replication occurs by conservative DNA synthesis. Proc. Natl Acad. Sci. USA 110, 13475–13480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saini, N. et al. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502, 389–392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Suzuki, H. & Kasahara, M. Acceleration of nucleotide semi-global alignment with adaptive banded dynamic programming. Preprint at https://www.biorxiv.org/content/10.1101/130633v2 (2017).

  43. Moreno, A. et al. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells. Proc. Natl Acad. Sci. USA 113, E5757–E5764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ge, X. Q., Jackson, D. A. & Blow, J. J. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev. 21, 3331–3341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA 105, 8956–8961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ge, X. Q. & Blow, J. J. Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories. J. Cell. Biol. 191, 1285–1297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Besnard, E. et al. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19, 837–844 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Conti, C. et al. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell. 18, 3059–3067 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jackson, D. A. & Pombo, A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J. Cell. Biol. 140, 1285–1295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Müller, C. A. & Nieduszynski, C. A. DNA replication timing influences gene expression level. J. Cell. Biol. 216, 1907–1914 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Demczuk, A. et al. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol. 10, e1001360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gabrieli, T. et al. Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucl. Acids Res. 46, e87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jiang, W. et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat. Commun. 6, 8101 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Diffley (Francis Crick Institute, UK) and E. Schwob (Institut de Génétique Moléculaire de Montpellier, France) for kindly providing strains; A. Williams and R. Busby for Illumina NextSeq support; M. Maj for assistance with flow cytometry; J. Caesar for IT infrastructure support; and Microsoft and NVIDIA for computing resources. We thank Nieduszynski group members for helpful discussion and advice, and A. Carr, A. Donaldson, S. Hiraga and D. Sherratt for critical reading of the manuscript. This work was supported by Biotechnology and Biological Sciences Research Council grant BB/N016858/1 (to C.A.M. and C.A.N.) and Wellcome Trust Investigator Award 110064/Z/15/Z (to C.A.N.). J.T.S. is supported by the Ontario Institute for Cancer Research through funds provided by the Government of Ontario and the Government of Canada through Genome Canada and Ontario Genomics (OGI-136). P.S. is funded by a Medical Research Council studentship. P.S. and S.K. are funded by Ludwig Cancer Research. C.A.M is a Queen’s College Extraordinary Junior Research Fellow in Physiology. M.A.B. is a St. Cross College Emanoel Lee Junior Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

C.A.N., C.A.M. and M.A.B. designed the study. C.A.M. designed and performed the experiments. M.A.B. designed and implemented the analoge training and detection software. C.A.M. and M.A.B. undertook data analysis. P.S. undertook mass spectrometry, supervised by B.M.K. and S.K. C.A.N. and J.T.S. supervised the study. C.A.N., C.A.M. and M.A.B. wrote the paper.

Corresponding authors

Correspondence to Carolin A. Müller or Conrad A. Nieduszynski.

Ethics declarations

Competing interests

J.T.S. receives research funding from ONT and has received travel support to attend and speak at meetings organized by ONT.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Supplementary Tables 2 and 3

Reporting Summary

Supplementary Table 1

Information relating to D-NAscent, mass spectrometry and BrdU-seq samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, C.A., Boemo, M.A., Spingardi, P. et al. Capturing the dynamics of genome replication on individual ultra-long nanopore sequence reads. Nat Methods 16, 429–436 (2019). https://doi.org/10.1038/s41592-019-0394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0394-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing