Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

SNAC-tag for sequence-specific chemical protein cleavage

Abstract

Site-specific protein cleavage is essential for many protein-production protocols and typically requires proteases. We report the development of a chemical protein-cleavage method that is achieved through the use of a sequence-specific nickel-assisted cleavage (SNAC)-tag. We demonstrate that the SNAC-tag can be inserted before both water-soluble and membrane proteins to achieve fusion protein cleavage under biocompatible conditions with efficiency comparable to that of enzymes, and that the method works even when enzymatic cleavages fail.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phage selection and optimization of best Ni2+ cleavage sequence.
Fig. 2: SNAC-tag cleavage in fusion proteins.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Young, C. L., Britton, Z. T. & Robinson, A. S. Biotechnol. J. 7, 620–634 (2012).

    Article  CAS  Google Scholar 

  2. Kimple, M. E., Brill, A. L. & Pasker, R. L. Curr. Protoc. Protein Sci. 73, 9.9.1–9.9.23 (2013).

    Google Scholar 

  3. Waugh, D. S. Protein Expr. Purif. 80, 283–293 (2011).

    Article  CAS  Google Scholar 

  4. Gross, E. & Witkop, B. J. Am. Chem. Soc. 83, 1510–1511 (1961).

    Article  CAS  Google Scholar 

  5. Parac, T. N. & Kostic, N. M. J. Am. Chem. Soc. 118, 51–58 (1996).

    Article  CAS  Google Scholar 

  6. Dutca, L. M., Ko, K. S., Pohl, N. L. & Kostić, N. M. Inorg. Chem. 44, 5141–5146 (2005).

    Article  CAS  Google Scholar 

  7. Krezel, A. et al. J. Am. Chem. Soc. 132, 3355–3366 (2010).

    Article  CAS  Google Scholar 

  8. Allen, G. & Campbell, R. O. Int. J. Pept. Protein Res. 48, 265–273 (1996).

    Article  CAS  Google Scholar 

  9. Kopera, E., Belczyk-Ciesielska, A. & Bal, W. PLoS ONE 7, e36350 (2012).

    Article  CAS  Google Scholar 

  10. Kopera, E. et al. PLoS ONE 9, e106936 (2014).

    Article  Google Scholar 

  11. Matthews, D. J. & Wells, J. A. Science 260, 1113–1117 (1993).

    Article  CAS  Google Scholar 

  12. Fairhead, M. & Howarth, M. Methods Mol. Biol. 1266, 171–184 (2015).

    Article  CAS  Google Scholar 

  13. Krezel, A., Mylonas, M., Kopera, E. & Bal, W. Acta Biochim. Pol. 53, 721–727 (2006).

    CAS  PubMed  Google Scholar 

  14. Kopera, E. et al. Inorg. Chem. 49, 6636–6645 (2010).

    Article  CAS  Google Scholar 

  15. Hackeng, T. M., Griffin, J. H. & Dawson, P. E. Proc. Natl Acad. Sci. USA 96, 10068–10073 (1999).

    Article  CAS  Google Scholar 

  16. Hay, R. W., Porter, L. J. & Morris, P. J. Aust. J. Chem. 19, 1197–1205 (1966).

    Article  CAS  Google Scholar 

  17. Wezynfeld, N. E., Fraczyk, T. & Bal, W. Coord. Chem. Rev. 327, 166–187 (2016).

    Article  Google Scholar 

  18. Dang, B. & DeGrado, W. F. Protocol Exchange https://doi.org/10.1038/protex.2019.013 (2019).

  19. Chen, G. & Sidhu, S. S. Methods Mol. Biol. 1131, 113–131 (2014).

    Article  CAS  Google Scholar 

  20. Sidhu, S. S., Lowman, H. B., Cunningham, B. C. & Wells, J. A. Methods Enzymol. 328, 333–363 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Wells lab at UCSF for generously providing BirA enzymes, and A. Martinko and S. Pollock for helping us carry out phage biotinylation reactions. We thank the Craik lab at UCSF for providing the pCES1 phagemid vector, N. Sevillano for helping us build phage libraries, and M. Ravalin for help operating the multichannel peptide synthesizer. This work was supported in part by the National Institutes of Health (grant 5R35GM122603-02 to W.F.D.).

Author information

Authors and Affiliations

Authors

Contributions

B.D. and W.F.D. designed the project. B.D. carried out most of the experiments. M.M. helped with data analysis and some protein expression. H.H. helped with data analysis. N.S. helped with one protein expression. B.M. helped with phage library construction and selection of experiment design.

Corresponding authors

Correspondence to Bobo Dang or William F. DeGrado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Phage selection of metal cleavage.

Selection procedure (left) and proposed Ni2+ cleavage mechanism.

Supplementary Figure 2 Peptide YFLGASRHWG cleavage.

Cleavage conditions: peptide 0.2 mM, 0.1 M CHES, pH 8.2, 22 °C, 1 mM NiCl2 (black arrow indicates uncleaved peptide; ~55% cleavage yield).

Supplementary Figure 3 SPI-2 cleavage comparison.

SPI-2 cleavage comparison without glycine at the P1 position (left; 15% cleaved; * indicates uncleaved peptide) or with glycine at the P1 position (right; 90% cleaved; • indicates uncleaved peptide). Cleavage at pH 8.2, 0.1 M CHES, 1 mM NiCl2, 22 °C for 16 h. SPI-2 sequence without glycine at P1 position: EAAVCTTEWD PVCGKDGKTY SNLCWLNEAG VGLDHEGECL SRHWAPHHHH HH. SPI-2 sequence with glycine at P1 position: EAAVCTTEWD PVCGKDGKTY SNLCWLNEAG VGLDHEGECL GGSRHWGAPHHHH HH.

Supplementary Figure 4 Buffer and additive screening for cleaving peptide YFLGSRHWGGSRRLFY (0.2 mM).

Cleavage performed at pH 8.2, 1 mM NiCl2, 22 °C, for 18 h (left; buffer) or 6 h (right; additive). Other buffers screened—glycine, lysine, bicine, tricine—performed a lot worse. For additives, N-methyl hydroxylamine can speed up the cleavage, but the cleavage was not clean and N-methyl hydroxylamine was not adopted. N-hydroxyl piperidine, N,N-dimethyl hydroxylamine, diethanolamine, Boc-NHNH2, methoxylamine, hydroxylamine, and ethanolamine did not perform better than acetone oxime.

Supplementary Figure 5 MALDI-TOF mass measurement of the peptide cleavages in Fig. 1c–e.

a1: YFLGGSHHTDLPGGSRRLFY-CONH2 Calc. 2,278.1 Da, obsd. 2,278.2 ± 0.2 Da. a2: YFLGG-COOH Calc. 555.3 Da, obsd. 555.3 ± 0.2 Da. a3: SHHTDLPGGSRRLFY-CONH2 Calc. 1,740.9 Da, obsd. 1,741.1 ± 0.2 Da. b1: YFLPGSRHWG-CONH2 Calc. 1,217.6 Da, obsd. 1,217.8 ± 0.2 Da. b2: YFLPG-COOH Calc. 595.3 Da, obsd. 595.3 ± 0.2 Da. b3: SRHWG-CONH2 Calc. 640.3 Da, obsd. 640.4 ± 0.2 Da. c1: YFLPGSHHWG-CONH2 Calc. 1,198.6 Da, obsd. 1,198.7 ± 0.2 Da. c2: YFLPG-COOH Calc. 595.3 Da, obsd. 595.3 ± 0.2 Da. c3: SHHWG-CONH2 Calc. 621.3 Da, obsd. 621.3 ± 0.2 Da.

Supplementary Figure 6 Original uncut gels of the cropped gels in Fig. 2.

Top, cleavage of His-tag-XXXXX-HB2225 constructs. Bottom, cleavage of His-tag-T4L-XXXXX-3hbtmV2 constructs. Lane 1 of each gel is prestained plus protein ladder.

Supplementary Figure 7 Cleavage of other water-soluble and membrane proteins.

His-tag-GSHHW-T4L (water-soluble protein; left) lane 1, t = 0; lane 2, cleavage at 18 h. His-tag-GSHHW-MBP (water-soluble protein; middle) lane 1, t = 0; lane 2, cleavage at 18 h. His-tag-T4L-GSHHW-NCHAMP1 (membrane protein; right) lane 1, t = 0; lane 2, cleavage at 4 h; lane 3, cleavage at 18 h. Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, pH 8.2, protein 1 mg/mL, 22 °C (5 mM DPC added for His-tag-T4L-GSHHW-NCHAMP1). Full sequence of His-tag-GSHHW-T4L: MGSSHHHHHHSSGPGSHHWNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYISRHWA. Full sequence of His-tag-GSHHW-MBP: MGSSHHHHHHSSGENLYFQGGNIGPGSHHWKIEEGKLVIWINGDKGYNGLAEVGKKFEKDTGIKVTVEHPDKLEEKFPQVAATGDGPDIIFWAHDRFGGYAQSGLLAEITPDKAFQDKLYPFTWDAVRYNGKLIAYPIAVEALSLIYNKDLLPNPPKTWEEIPALDKELKAKGKSALMFNLQEPYFTWPLIAADGGYAFKYAAGKYDIKDVGVDNAGAKAGLTFLVDLIKNKHMNADTDYSIAEAAFNKGETAMTINGPWAWSNIDTSKVNYGVTVLPTFKGQPSKPFVGVLSAGINAASPNKELAKEFLENYLLTDEGLEAVNKDKPLGAVALKSYEEELAKDPRIAATMENAQKGEIMPNIPQMSAFWYAVRTAVINAASGRQTVDAALAAAQTNAAAISLHAA. Full sequence of His-tag-T4L-GSHHW-NCHAMP1: MGSSHHHHHHSSGLVPRGSHMGNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYAAGGSGSTENLVPRGSKGNDYKDDDDKGGPGSHHWGGSGGSGGASDLDPLILTLXXXXXXXXXXXTVLALLSHRRTLQQK (de novo designed membrane protein, full sequence to be released in a separate paper).

Supplementary Figure 8 Cleavage comparison of T4L-PL5 protein.

Left, thrombin cleavage of T4L-LVPRGS-PL5. Cleavage conditions: protein 1 mg/mL, 50 mM Tris, pH 8.4, 200 mM NaCl, 0.5 mM CaCl2, 5 mM DPC, 22 °C, 16 h, thrombin: lane 2, 2 U/mL, lane 3, 6 U/mL, lane 4, 12 U/mL. One thrombin unit is defined as that amount of enzyme required to cleave 1 mg of a test protein when incubated in standard digest buffer at 20 °C for 16 h. Right, Ni2+ cleavage of T4L-GSHHW-PL5. Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, 0.2 M NaCl, pH 8.2, 5 mM DPC, protein 1 mg/mL, 22 °C, 16 h. Full sequence of T4L-LVPRGS-PL5: MGSSHHHHHHSSGLHLRDAHMGNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYAAGGSGSLVPRGSDPEQLKWISFCXXXXXXXXXXXXFMLYRGRR (de novo designed membrane protein, full sequence to be released in a separate paper). Full sequence of T4L-GSHHW-PL5: MGSSHHHHHHSSGLHLRDAHMGNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNTNGVITKDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRAALINMVFQMGETGVAGFTNSLRMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYAAGGSGSGSHHWGSDPEQLKWISFCXXXXXXXXXXXXFMLYRGRR (de novo designed membrane protein, full sequence to be released in a separate paper).

Supplementary Figure 9 Cleavage in the presence of GuHCl or urea.

His-tag-T4L-GSHHW-3hbtmV2 (left) and His-tag-GSHHW-HB2225 (right). Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, pH 8.2, protein 1 mg/mL, 22 °C, 18 h, GuHCl or urea concentrations are as indicated in the figure, 5 mM DPC for His-tag-T4L-GSHHW-3hbtmV2.

Supplementary Figure 10 Peptide WCRLGSRHW cleavage.

Peptide 0.2 mM, 1 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, pH 8.2, 22 °C. a. Cleavage reaction monitored at different time points. b. Mass measured by MALDI-TOF of uncleaved WCRLGSRHW-CONH2 (calc. 1,198.6 Da, obsd. 1,198.7 ± 0.2 Da) after 18 h, no obvious cysteine oxidation was observed. c. Mass measured by MALDI-TOF of cleaved peptide WCRL (calc. 633.3 Da, obsd. 633.3 ± 0.2 Da) after 18 h, no obvious cysteine oxidation was observed.

Supplementary Figure 11 On-resin cleavage of His-tag-T4L-GSHHW-3hbtmV2 in different detergents.

Cleavage at pH 8.2, 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, 1 mM NiCl2, 5 mM DPC, 22 °C for 18 h. Left, supernatant after on-resin cleavage; right, eluted protein remained on Ni-NTA beads after cleavage.

Supplementary Figure 12 Cleavage of optimized peptide sequences in short peptide constructs and in protein constructs.

Left: HPLC trace is the cleavage of peptides YFLPGSHHWG and YFLHNSHHWG. Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, pH 8.2, 22 °C, peptide 0.2 mM. Middle: lane 2, t = 0; cleavage of His-tag-PGSHHW-HB2225 (lane 3) and His-tag-HNSHHW-HB2225 (lane 4). Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, pH 8.2, protein 1 mg/mL, 22 °C, 18 h. Right: lane 2, t = 0; cleavage of His-tag-T4L-PGSHHW-3hbtmV2 (lane 3), His-tag-T4L-HNSHHW-3hbtmV2 (lane 4). Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, pH 8.2, protein 1 mg/mL, 22 °C, 18 h, 5 mM DPC.

Supplementary Figure 13 Cleavage time course for His-tag-T4L-GSHHW-3hbtmV2 (left) and His-tag-GSHHW-HB2225 (right).

Cleavage conditions: 1 mM NiCl2, 0.1 M CHES, 0.1 M acetone oxime, 0.1 M NaCl, pH 8.2, protein 1 mg/mL, 22 °C, 5 mM DPC for His-tag-T4L-GSHHW-3hbtmV2.

Supplementary Figure 14 Positive control of TEV protease cleavage on His-tag-ENLYFQS-CPXR.

Cleavage conditions: 50 mM Tris, pH 8.0, 0.2 M NaCl, 1 mM DTT, 0.5 mM EDTA, 22 °C, 16 h, protein 2 mg/mL, TEV 0.02 mg/mL. Lane 1, before cleavage; lane 2, after cleavage.

Supplementary Figure 15 Peptide YFLGSRHWGGSRRLFY (0.2 mM) cleavage at different pH, 1 mM NiCl2, 22 °C, 0.1 M CHES.

pH 8.2, t = 2 h (13% cleavage); 5 h (40% cleavage). pH 8.6, t = 2 h (34% cleavage); 5 h (78% cleavage). pH 9.0, t = 2 h (71% cleavage); 5 h (97% cleavage).

Supplementary information

Supplementary Information

Supplementary Figures 1–15 and Supplementary Tables 1–5

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, B., Mravic, M., Hu, H. et al. SNAC-tag for sequence-specific chemical protein cleavage. Nat Methods 16, 319–322 (2019). https://doi.org/10.1038/s41592-019-0357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0357-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research