Review Article | Published:

Methods to study RNA–protein interactions

Nature Methodsvolume 16pages225234 (2019) | Download Citation


Noncoding RNA sequences, including long noncoding RNAs, small nucleolar RNAs, and untranslated mRNA regions, accomplish many of their diverse functions through direct interactions with RNA-binding proteins (RBPs). Recent efforts have identified hundreds of new RBPs that lack known RNA-binding domains, thus underscoring the complexity and diversity of RNA–protein complexes. Recent progress has expanded the number of methods for studying RNA–protein interactions in two general categories: approaches that characterize proteins bound to an RNA of interest (RNA-centric), and those that examine RNAs bound to a protein of interest (protein-centric). Each method has unique strengths and limitations, which makes it important to select optimal approaches for the biological question being addressed. Here we review methods for the study of RNA–protein interactions, with a focus on their suitability for specific applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 08 March 2019

    In the version of this paper originally published, three references were accidentally omitted: Schwartz, J. C. et al. Cell Rep. 5, 918–925 (2013); Tundup, S. et al. FEBS Lett. 580, 1285–1293 (2006); and Itri, F. et al. Biochem. Biophys. Res. Commun. 492, 67–73 (2017). The PDF and HTML versions of the paper now include these as references 58, 59, and 60, respectively, and subsequent references have been renumbered accordingly.


  1. 1.

    Zhu, X. Seeing the yin and yang in cell biology. Mol. Biol. Cell 21, 3827–3828 (2010).

  2. 2.

    Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet. 51, 171–194 (2017).

  3. 3.

    Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

  4. 4.

    Allerson, C. R., Cazzola, M. & Rouault, T. A. Clinical severity and thermodynamic effects of iron-responsive element mutations in hereditary hyperferritinemia-cataract syndrome. J. Biol. Chem. 274, 26439–26447 (1999).

  5. 5.

    Batista, P. J. & Chang, H. Y. Long noncoding RNAs: cellular address codes in development and disease. Cell 152, 1298–1307 (2013).

  6. 6.

    Urdaneta, E. C. et al. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. bioRxiv Preprint at (2018).

  7. 7.

    Trendel, J. et al. The human RNA-binding proteome and its dynamics during translational arrest. Cell 176, 391–403 (2019).

  8. 8.

    Re, A., Joshi, T., Kulberkyte, E., Morris, Q. & Workman, C. T. RNA–protein interactions: an overview. In RNA Sequence, Structure and Function: Computational and Bioinformatic Methods (eds. Gorodkin, J. & Ruzzo, W. L.) 491–521 (Humana Press, Totowa, NJ, 2014).

  9. 9.

    Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

  10. 10.

    Castello, A. et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393–1406 (2012). Comprehensive poly(A) RNA–protein interactome capture performed in HeLa cells.

  11. 11.

    Huang, R., Han, M., Meng, L. & Chen, X. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Proc. Natl Acad. Sci. USA 115, E3879–E3887 (2018). Utilization of RNA metabolic labeling to comprehensively capture the RNA–protein interactome independent of RNA polyadenylation.

  12. 12.

    Matia-González, A. M., Laing, E. E. & Gerber, A. P. Conserved mRNA-binding proteomes in eukaryotic organisms. Nat. Struct. Mol. Biol. 22, 1027–1033 (2015).

  13. 13.

    Castello, A. et al. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63, 696–710 (2016).

  14. 14.

    Castello, A., Hentze, M. W. & Preiss, T. Metabolic enzymes enjoying new partnerships as RNA-binding proteins. Trends Endocrinol. Metab. 26, 746–757 (2015).

  15. 15.

    Faoro, C. & Ataide, S. F. Ribonomic approaches to study the RNA-binding proteome. FEBS Lett. 588, 3649–3664 (2014).

  16. 16.

    Zheng, X. et al. Detecting RNA–protein interaction using end-labeled biotinylated RNA oligonucleotides and immunoblotting. In RNA–Protein Complexes and Interactions (ed. Lin, R.-J.) 35–44 (Humana Press, New York, 2016).

  17. 17.

    Hartmuth, K., Vornlocher, H.-P. & Lührmann, R. Tobramycin affinity tag purification of spliceosomes. In mRNA Processing and Metabolism (ed. Schoenberg, D. R.) 47–64 (Humana Press, Totowa, NJ, 2004).

  18. 18.

    Hogg, J. R. & Collins, K. RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13, 868–880 (2007).

  19. 19.

    Leppek, K. & Stoecklin, G. An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res. 42, e13 (2014).

  20. 20.

    Lee, H. Y. et al. RNA-protein analysis using a conditional CRISPR nuclease. Proc. Natl Acad. Sci. USA 110, 5416–5421 (2013).

  21. 21.

    Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

  22. 22.

    Siprashvili, Z. et al. The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat. Genet. 48, 53–58 (2016).

  23. 23.

    Sutherland, B. W., Toews, J. & Kast, J. Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J. Mass Spectrom. 43, 699–715 (2008).

  24. 24.

    Li, X., Song, J. & Yi, C. Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics Proteomics Bioinformatics 12, 72–78 (2014).

  25. 25.

    Beckmann, B. M. RNA interactome capture in yeast. Methods 118-119, 82–92 (2017).

  26. 26.

    Sugimoto, Y. et al. Analysis of CLIP and iCLIP methods for nucleotide-resolution studies of protein-RNA interactions. Genome Biol. 13, R67 (2012).

  27. 27.

    Kim, B. & Kim, V. N. fCLIP-seq for transcriptomic footprinting of dsRNA-binding proteins: lessons from DROSHA. Methods 152, 3–11 (2019).

  28. 28.

    Meisenheimer, K. M. & Koch, T. H. Photocross-linking of nucleic acids to associated proteins. Crit. Rev. Biochem. Mol. Biol. 32, 101–140 (1997).

  29. 29.

    Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde crosslinking: a tool for the study of chromatin complexes. J. Biol. Chem. 290, 26404–26411 (2015).

  30. 30.

    Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44, 667–678 (2011).

  31. 31.

    Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA 108, 20497–20502 (2011).

  32. 32.

    McHugh, C. A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015).

  33. 33.

    McHugh, C. A. & Guttman, M. RAP-MS: a method to identify proteins that interact directly with a specific RNA molecule in cells. Methods Mol. Biol. 1649, 473–488 (2018).

  34. 34.

    Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21, 198–206 (2014).

  35. 35.

    Zeng, F. et al. A protocol for PAIR: PNA-assisted identification of RNA binding proteins in living cells. Nat. Protoc. 1, 920–927 (2006).

  36. 36.

    Tsai, B. P., Wang, X., Huang, L. & Waterman, M. L. Quantitative profiling of in vivo–assembled RNA-protein complexes using a novel integrated proteomic approach. Mol. Cell. Proteomics 10, M110.007385 (2011).

  37. 37.

    Matia-González, A. M., Iadevaia, V. & Gerber, A. P. A versatile tandem RNA isolation procedure to capture in vivo formed mRNA-protein complexes. Methods 118–119, 93–100 (2017).

  38. 38.

    Parrott, A. M. et al. RNA aptamers for the MS2 bacteriophage coat protein and the wild-type RNA operator have similar solution behaviour. Nucleic Acids Res. 28, 489–497 (2000).

  39. 39.

    Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

  40. 40.

    Simon, M. D. Capture hybridization analysis of RNA targets (CHART). Curr. Protoc. Mol. Biol. 101, 21.25.1–21.25.16 (2013).

  41. 41.

    Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, E2453–E2461 (2014).

  42. 42.

    Kim, D. I. et al. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27, 1188–1196 (2016).

  43. 43.

    Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

  44. 44.

    Ramanathan, M. et al. RNA–protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).

  45. 45.

    Ramanathan, M. & Khavari, P. RNA-protein interaction detection (RaPID). Protocol Exchange (2018).

  46. 46.

    Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007). Comprehensive analysis of mass spectrometry methods used in proteomics.

  47. 47.

    Butter, F., Scheibe, M., Mörl, M. & Mann, M. Unbiased RNA-protein interaction screen by quantitative proteomics. Proc. Natl Acad. Sci. USA 106, 10626–10631 (2009).

  48. 48.

    Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 10, 730–736 (2013).

  49. 49.

    Tsai, T.-H., Wang, M. & Ressom, H. W. Preprocessing and analysis of LC-MS-based proteomic data. Methods Mol. Biol. 1362, 63–76 (2016).

  50. 50.

    Röst, H. L. et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 13, 741–748 (2016). This paper presents a common platform with ready-made workflows allowing users to perform reproducible mass spectrometry analysis with ease.

  51. 51.

    Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).

  52. 52.

    West, J. A. et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol. Cell 55, 791–802 (2014).

  53. 53.

    Yang, X., Li, H., Huang, Y. & Liu, S. The dataset for protein-RNA binding affinity. Protein Sci. 22, 1808–1811 (2013).

  54. 54.

    Smith, K. C. & Aplin, R. T. A mixed photoproduct of uracil and cysteine (5-S-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light. Biochemistry 5, 2125–2130 (1966).

  55. 55.

    Goddard, J., Streeter, D., Weber, C. & Gordon, M. P. Studies on the inactivation of tobacco mosaic virus by ultraviolet light. Photochem. Photobiol. 5, 213–222 (1966).

  56. 56.

    Choi, Y. D. & Dreyfuss, G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc. Natl Acad. Sci. USA 81, 7471–7475 (1984).

  57. 57.

    Kramer, K. et al. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat. Methods 11, 1064–1070 (2014).

  58. 58.

    Schwartz, J. C., Wang, X., Podell, E. R. & Cech, T. R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 5, 918–925 (2013).

  59. 59.

    Tundup, S., Akhter, Y., Thiagarajan, D. & Hasnain, S. E. Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett. 580, 1285–1293 (2006).

  60. 60.

    Itri, F. et al. Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses. Biochem. Biophys. Res. Commun. 492, 67–73 (2017).

  61. 61.

    Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science 302, 1212–1215 (2003).

  62. 62.

    Licatalosi, D. D. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008). First paper to apply high-throughput sequencing to a CLIP method.

  63. 63.

    Nicholson, C. O., Friedersdorf, M. & Keene, J. D. Quantifying RNA binding sites transcriptome-wide using DO-RIP-seq. RNA 23, 32–46 (2017).

  64. 64.

    Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl Acad. Sci. USA 97, 14085–14090 (2000).

  65. 65.

    Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

  66. 66.

    Kishore, S. et al. A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods 8, 559–564 (2011).

  67. 67.

    Porter, D. F., Koh, Y. Y., VanVeller, B., Raines, R. T. & Wickens, M. Target selection by natural and redesigned PUF proteins. Proc. Natl Acad. Sci. USA 112, 15868–15873 (2015).

  68. 68.

    Liu, Z. R., Wilkie, A. M., Clemens, M. J. & Smith, C. W. Detection of double-stranded RNA-protein interactions by methylene blue-mediated photo-crosslinking. RNA 2, 611–621 (1996).

  69. 69.

    Bäumert, H. G., Sköld, S. E. & Kurland, C. G. RNA-protein neighbourhoods of the ribosome obtained by crosslinking. Eur. J. Biochem. 89, 353–359 (1978).

  70. 70.

    Wower, I., Wower, J., Meinke, M. & Brimacombe, R. The use of 2-iminothiolane as an RNA-protein cross-linking agent in Escherichia coli ribosomes, and the localisation on 23S RNA of sites cross-linked to proteins L4, L6, L21, L23, L27 and L29. Nucleic Acids Res. 9, 4285–4302 (1981).

  71. 71.

    Zaman, U. et al. Dithiothreitol (DTT) acts as a specific, UV-inducible cross-linker in elucidation of protein-RNA interactions. Mol. Cell. Proteomics 14, 3196–3210 (2015).

  72. 72.

    Hocq, R., Paternina, J., Alasseur, Q., Genovesio, A. & Le Hir, H. Monitored eCLIP: high accuracy mapping of RNA-protein interactions. Nucleic Acids Res. 46, 11553–11565 (2018).

  73. 73.

    Van Nostrand, E. L., Shishkin, A. A., Pratt, G. A., Nguyen, T. B. & Yeo, G. W. Variation in single-nucleotide sensitivity of eCLIP derived from reverse transcription conditions. Methods 126, 29–37 (2017).

  74. 74.

    Creamer, T. J. et al. Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet. 7, e1002329 (2011).

  75. 75.

    Benhalevy, D., McFarland, H. L., Sarshad, A. A. & Hafner, M. PAR-CLIP and streamlined small RNA cDNA library preparation protocol for the identification of RNA binding protein target sites. Methods 118–119, 41–49 (2017).

  76. 76.

    Granneman, S., Kudla, G., Petfalski, E. & Tollervey, D. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc. Natl Acad. Sci. USA 106, 9613–9618 (2009).

  77. 77.

    Konig, J. et al. iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp. 2011, 2638 (2011).

  78. 78.

    Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13, 508–514 (2016). This paper introduced the eCLIP method, which has produced the largest number of CLIP datasets so far.

  79. 79.

    Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).

  80. 80.

    Weyn-Vanhentenryck, S. M. et al. HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Rep. 6, 1139–1152 (2014).

  81. 81.

    Gu, J. et al. GoldCLIP: gel-omitted ligation-dependent CLIP. Genomics Proteomics Bioinformatics 16, 136–143 (2018).

  82. 82.

    Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods 15, 201–206 (2018).

  83. 83.

    Yip, S. H., Wang, P., Kocher, J. A., Sham, P. C. & Wang, J. Linnorm: improved statistical analysis for single cell RNA-seq expression data. Nucleic Acids Res. 45, e179 (2017).

  84. 84.

    Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).

  85. 85.

    van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

  86. 86.

    Oliphant, T. E. Python for scientific computing. Comput. Sci. Eng. 9, 10–20 (2007).

  87. 87.

    Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (SciPy 2010) (eds. van der Walt, S. & Millman, J.) 57–61 (LuLu Press, Morrisville, NC, 2010).

  88. 88.

    McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference (SciPy 2010) (eds. van der Walt, S. & Millman, J.) 57–61 (LuLu Press, Morrisville, NC, 2010).

  89. 89.

    Perez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

  90. 90.

    McMahon, A. C. et al. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165, 742–753 (2016).

  91. 91.

    Lapointe, C. P., Wilinski, D., Saunders, H. A. J. & Wickens, M. Protein-RNA networks revealed through covalent RNA marks. Nat. Methods 12, 1163–1170 (2015). First paper to identify RNAs bound to a protein of interest by selective enzymatic modification of bound RNAs followed by high-throughput sequencing.

  92. 92.

    Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. eLife 6, e29224 (2017).

  93. 93.

    Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

  94. 94.

    Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479–486 (2009).

  95. 95.

    Yeo, G. W. et al. An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat. Struct. Mol. Biol. 16, 130–137 (2009).

  96. 96.

    Zhang, C. & Darnell, R. B. Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol. 29, 607–614 (2011).

  97. 97.

    Prasad, A. et al. The PUF binding landscape in metazoan germ cells. RNA 22, 1026–1043 (2016).

  98. 98.

    König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

  99. 99.

    Wang, Z. et al. iCLIP predicts the dual splicing effects of TIA-RNA interactions. PLoS Biol. 8, e1000530 (2010).

  100. 100.

    De, S. & Gorospe, M. Bioinformatic tools for analysis of CLIP ribonucleoprotein data. Wiley Interdiscip. Rev. RNA 8, e1404 (2017).

  101. 101.

    Corcoran, D. L. et al. PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol. 12, R79 (2011).

  102. 102.

    Sievers, C., Schlumpf, T., Sawarkar, R., Comoglio, F. & Paro, R. Mixture models and wavelet transforms reveal high confidence RNA-protein interaction sites in MOV10 PAR-CLIP data. Nucleic Acids Res. 40, e160 (2012).

Download references


We thank members of the Khavari lab for helpful discussions and apologize to colleagues whose work was not cited because of the space limitations of this review. This work was supported by grant 1F32AR072504 to D.F.P., by a USVA Merit Review grant, and by NIAMS/NIH grants AR45192 and AR49737 to P.A.K.

Author information

Author notes

  1. These authors contributed equally: Muthukumar Ramanathan, Douglas F. Porter.


  1. Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA

    • Muthukumar Ramanathan
    • , Douglas F. Porter
    •  & Paul A. Khavari
  2. Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA

    • Paul A. Khavari


  1. Search for Muthukumar Ramanathan in:

  2. Search for Douglas F. Porter in:

  3. Search for Paul A. Khavari in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Paul A. Khavari.

Supplementary Information

  1. Supplementary Table 1

    RNA library preparation steps.

About this article

Publication history




Issue Date