Abstract
Single-cell RNA-seq makes it possible to characterize the transcriptomes of cell types across different conditions and to identify their transcriptional signatures via differential analysis. Our method detects changes in transcript dynamics and in overall gene abundance in large numbers of cells to determine differential expression. When applied to transcript compatibility counts obtained via pseudoalignment, our approach provides a quantification-free analysis of 3′ single-cell RNA-seq that can identify previously undetectable marker genes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
VarID2 quantifies gene expression noise dynamics and unveils functional heterogeneity of ageing hematopoietic stem cells
Genome Biology Open Access 23 June 2023
-
Broad misappropriation of developmental splicing profile by cancer in multiple organs
Nature Communications Open Access 12 December 2022
-
Clonal expansion and epigenetic inheritance of long-lasting NK cell memory
Nature Immunology Open Access 26 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Code availability
The code required to conduct the simulations and reproduce the analyses is available at https://github.com/pachterlab/NYMP_2018. We also have provided the Github repository that was zipped at the time of manuscript acceptance as Supplementary Software.
References
Soneson, C. & Robinson, M. D. Nat. Methods 15, 255–261 (2018).
Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Nat. Methods 11, 740–742 (2014).
Finak, G. et al. Genome Biol. 16, 278 (2015).
Yamazaki, T. et al. Genes Dev. 32, 1161–1174 (2018).
Vitting-Seerup, K. & Sandelin, A. Mol. Cancer Res. 15, 1206–1220 (2017).
Arzalluz-Luque, Á. & Conesa, A. Genome Biol. 19, 110 (2018).
Gupta, I. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/07/08/364950 (2018).
Xing, E. P., Jordan, M. I. & Karp, R. M. in ICML ‘01 Proceedings of the Eighteenth International Conference on Machine Learning (eds Brodley, C. E. & Pohoreckyj Danyluk, A.) 601–608 (Morgan Kaufmann, San Francisco, 2001).
Shevade, S. K. & Keerthi, S. S. Bioinformatics 19, 2246–2253 (2003).
Trapnell, C. et al. Nat. Biotechnol. 32, 381–386 (2014).
Zheng, G. X. et al. Nat. Commun. 8, 14049 (2017).
Macosko, E. Z. et al. Cell 161, 1202–1214 (2015).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Nat. Biotechnol. 34, 525–527 (2016).
Nicolae, M., Mangul, S., Măndoiu, I. I. & Zelikovsky, A. Algorithms Mol. Biol. 6, 9 (2011).
Ntranos, V., Kamath, G. M., Zhang, J. M., Pachter, L. & Tse, D. N. Genome Biol. 17, 112 (2016).
Yi, L., Pimentel, H., Bray, N. L. & Pachter, L. Genome Biol. 19, 53 (2018).
Peterson, V. M. et al. Nat. Biotechnol. 35, 936–939 (2017).
Byrne, A. et al. Nat. Commun. 8, 16027 (2017).
10x Genomics. Single cell gene expression datasets. 10x Genomics Support https://support.10xgenomics.com/single-cell-gene-expression/datasets (2018).
Wolf, F. A., Angerer, P. & Theis, F. J. Genome Biol. 19, 15 (2018).
Bradley, R. K. et al. PLoS Comput. Biol. 5, e1000392 (2009).
Petropoulos, S. et al. Cell 165, 1012–1026 (2016).
Conway, J. R., Lex, A. & Gehlenborg, N. Bioinformatics 33, 2938–2940 (2017).
Love, M. I., Huber, W. & Anders, S. Genome Biol. 15, 550 (2014).
Li, B. & Dewey, C. N. BMC Bioinformatics 12, 323 (2011).
Zappia, L., Phipson, B. & Oshlack, A. Genome Biol. 18, 174 (2017).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Nat. Biotechnol. 33, 495–502 (2015).
Soneson, C., Love, M. I. & Robinson, M. D. F1000Res. 4, 1521 (2015).
Acknowledgements
We thank N. Bray, J. Gehring and V. Svensson for discussion and comments on the manuscript, and H. Pimentel for assisting with the simulations. We thank A. Butler and R. Satija for implementing this method in Seurat. V.N., L.Y. and L.P. are partially funded by NIH R012017-0569.
Author information
Authors and Affiliations
Contributions
V.N. developed the model during discussions with L.Y. and L.P, and analyzed the 10x PBMC dataset. L.Y. performed the simulations and analyzed the embryo SMART-Seq dataset. P.M. developed kallisto genomebam and assisted with analysis. All authors contributed extensively to the interpretation of the results and writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Ntranos, V., Yi, L., Melsted, P. et al. A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nat Methods 16, 163–166 (2019). https://doi.org/10.1038/s41592-018-0303-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41592-018-0303-9
This article is cited by
-
VarID2 quantifies gene expression noise dynamics and unveils functional heterogeneity of ageing hematopoietic stem cells
Genome Biology (2023)
-
Targeting TBK1 to overcome resistance to cancer immunotherapy
Nature (2023)
-
scDALI: modeling allelic heterogeneity in single cells reveals context-specific genetic regulation
Genome Biology (2022)
-
acorde unravels functionally interpretable networks of isoform co-usage from single cell data
Nature Communications (2022)
-
Clonal expansion and epigenetic inheritance of long-lasting NK cell memory
Nature Immunology (2022)