Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All the light that we can see: a new era in miniaturized microscopy

One major challenge in neuroscience is to uncover how defined neural circuits in the brain encode, store, modify, and retrieve information. Meeting this challenge comprehensively requires tools capable of recording and manipulating the activity of intact neural networks in naturally behaving animals. Head-mounted miniature microscopes are emerging as a key tool to address this challenge. Here we discuss recent work leading to the miniaturization of neural imaging tools, the current state of the art in this field, and the importance and necessity of open-source options. We finish with a discussion on what the future may hold for miniature microscopy.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Open-source UCLA Miniscope.


  1. Morris, R. J. Neurosci. Methods 11, 47–60 (1984).

    Article  CAS  Google Scholar 

  2. Pellow, S., Chopin, P., File, S. E. & Briley, M. J. Neurosci. Methods 14, 149–167 (1985).

    Article  CAS  Google Scholar 

  3. Denk, W., Strickler, J. H. & Webb, W. W. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  4. Denk, W. & Svoboda, K. Neuron 18, 351–357 (1997).

    Article  CAS  Google Scholar 

  5. Csicsvari, J., Jamieson, B., Wise, K. D. & Buzsáki, G. Neuron 37, 311–322 (2003).

    Article  CAS  Google Scholar 

  6. Jun, J. J. et al. Nature 551, 232–236 (2017).

    Article  CAS  Google Scholar 

  7. Rector, D. & Harper, R. Behav. Brain Res. 42, 143–149 (1991).

    Article  CAS  Google Scholar 

  8. Rector, D. M., Poe, G. R., Redgrave, P. & Harper, R. M. J. Neurosci. Methods 78, 85–91 (1997).

    Article  CAS  Google Scholar 

  9. Ferezou, I., Bolea, S. & Petersen, C. C. H. Neuron 50, 617–629 (2006).

    Article  CAS  Google Scholar 

  10. Engelbrecht, C. J., Johnston, R. S., Seibel, E. J. & Helmchen, F. Opt. Express 16, 5556–5564 (2008).

    Article  CAS  Google Scholar 

  11. Piyawattanametha, W. et al. Opt. Lett. 34, 2309–2311 (2009).

    Article  Google Scholar 

  12. Helmchen, F., Fee, M. S., Tank, D. W. & Denk, W. Neuron 31, 903–912 (2001).

    Article  CAS  Google Scholar 

  13. Sawinski, J. et al. Proc. Natl Acad. Sci. USA 106, 19557–19562 (2009).

    Article  CAS  Google Scholar 

  14. Tian, L. et al. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  15. Ghosh, K. K. et al. Nat. Methods 8, 871–878 (2011).

    Article  CAS  Google Scholar 

  16. Park, J. H. et al. J. Neurosci. Methods 201, 290–295 (2011).

    Article  Google Scholar 

  17. Cai, D. J. et al. Nature 534, 115–118 (2016).

    Article  CAS  Google Scholar 

  18. Liberti, W. A., Perkins, L. N., Leman, D. P. & Gardner, T. J. J. Neural Eng. 14, 045001 (2017).

    Article  Google Scholar 

  19. Jacob, A. D. et al. Curr. Protoc. Neurosci. 84, e51 (2018).

    Article  Google Scholar 

  20. Zhang, L. et al. Curr. Protoc. Neurosci. (2018).

    Article  Google Scholar 

  21. Szabo, V., Ventalon, C., De Sars, V., Bradley, J. & Emiliani, V. Neuron 84, 1157–1169 (2014).

    Article  CAS  Google Scholar 

  22. Zong, W. et al. Nat. Methods 14, 713–719 (2017).

    Article  CAS  Google Scholar 

  23. Ozbay, B. N. et al. Sci. Rep. 8, 8108 (2018).

    Article  Google Scholar 

  24. Wang, X. et al. Cell 171, 440–455 (2017).

    Article  CAS  Google Scholar 

  25. Murugan, M. et al. Cell 171, 1663–1677 (2017).

    Article  CAS  Google Scholar 

  26. Yu, X. et al. Neuron 99, 1170–1187 (2018).

    Article  CAS  Google Scholar 

  27. Siegle, J. H. et al. J. Neural Eng. 14, 045003 (2017).

    Article  Google Scholar 

  28. Shuman, T. et al. bioRxiv Preprint at (2018).

  29. Skocek, O. et al. Nat. Methods 15, 429–432 (2018).

    Article  CAS  Google Scholar 

  30. Scott, B. B. et al. Neuron 100, 1045–1058 (2018).

    Article  CAS  Google Scholar 

  31. Abdelfattah, A. S. et al. bioRxiv Preprint at (2018).

  32. Hochbaum, D. R. et al. Nat. Methods 11, 825–833 (2014).

    Article  CAS  Google Scholar 

  33. Giovannucci, A. et al. In Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 2381–2391 (Curran Associates, Red Hook, NY, 2017).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel Aharoni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharoni, D., Khakh, B.S., Silva, A.J. et al. All the light that we can see: a new era in miniaturized microscopy. Nat Methods 16, 11–13 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing