News & Views | Published:


Bayesian deep learning for single-cell analysis

Nature Methodsvolume 15pages10091010 (2018) | Download Citation

A recent approach for single-cell RNA-sequencing data uses Bayesian deep learning to correct technical artifacts and enable accurate and multifaceted downstream analyses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Regev, A. et al. eLife 6, e27041 (2017).

  2. 2.

    Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Biostatistics 19, 562–578 (2018).

  3. 3.

    Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Nat. Methods (2018).

  4. 4.

    Paszke, A. et al. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems, Long Beach, CA, 4–9 December 2017.

  5. 5.

    Kingma, D. P. & Welling, M. arXiv Preprint at (2013).

  6. 6.

    van Dijk, D. et al. Cell 174, 716–729 (2018).

  7. 7.

    Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. bioRxiv Preprint at (2018).

  8. 8.

    Marouf, M. et al. bioRxiv Preprint at (2018).

  9. 9.

    Ching, T. et al. J. R. Soc. Interface 15, 20170387 (2018).

  10. 10.

    Hu, Q. & Greene, C. S. bioRxiv Preprint at (2018).

Download references

Author information


  1. Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

    • Gregory P. Way
    •  & Casey S. Greene


  1. Search for Gregory P. Way in:

  2. Search for Casey S. Greene in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Casey S. Greene.

About this article

Publication history



Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing