MACHINE LEARNING

Bayesian deep learning for single-cell analysis

A recent approach for single-cell RNA-sequencing data uses Bayesian deep learning to correct technical artifacts and enable accurate and multifaceted downstream analyses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: scVI is a multifaceted tool for scRNA-seq data processing and analysis.

Kim Caesar/Springer Nature

References

  1. 1.

    Regev, A. et al. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hicks, S. C., Townes, F. W., Teng, M. & Irizarry, R. A. Biostatistics 19, 562–578 (2018).

    Article  Google Scholar 

  3. 3.

    Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Nat. Methods https://doi.org/10.1038/s41592-018-0229-2 (2018).

    Article  Google Scholar 

  4. 4.

    Paszke, A. et al. Automatic differentiation in PyTorch. 31st Conference on Neural Information Processing Systems, Long Beach, CA, 4–9 December 2017.

  5. 5.

    Kingma, D. P. & Welling, M. arXiv Preprint at https://arxiv.org/abs/1312.6114 (2013).

  6. 6.

    van Dijk, D. et al. Cell 174, 716–729 (2018).

    Article  PubMed  Google Scholar 

  7. 7.

    Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/04/13/300681 (2018).

  8. 8.

    Marouf, M. et al. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/10/24/390153 (2018).

  9. 9.

    Ching, T. et al. J. R. Soc. Interface 15, 20170387 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Hu, Q. & Greene, C. S. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/09/20/385534 (2018).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Casey S. Greene.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Way, G.P., Greene, C.S. Bayesian deep learning for single-cell analysis. Nat Methods 15, 1009–1010 (2018). https://doi.org/10.1038/s41592-018-0230-9

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing