Review Article | Published:

Acoustic tweezers for the life sciences

Nature Methodsvolume 15pages10211028 (2018) | Download Citation

Abstract

Acoustic tweezers are a versatile set of tools that use sound waves to manipulate bioparticles ranging from nanometer-sized extracellular vesicles to millimeter-sized multicellular organisms. Over the past several decades, the capabilities of acoustic tweezers have expanded from simplistic particle trapping to precise rotation and translation of cells and organisms in three dimensions. Recent advances have led to reconfigured acoustic tweezers that are capable of separating, enriching, and patterning bioparticles in complex solutions. Here, we review the history and fundamentals of acoustic-tweezer technology and summarize recent breakthroughs.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Hooke, R. Micrographia (Royal Society of London, London, 1665).

  2. 2.

    Ericsson, M., Hanstorp, D., Hagberg, P., Enger, J. & Nyström, T. Sorting out bacterial viability with optical tweezers. J. Bacteriol. 182, 5551–5555 (2000).

  3. 3.

    Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

  4. 4.

    Perkins, T. T. Optical traps for single molecule biophysics: a primer. Laser Photonics Rev. 3, 203–220 (2009).

  5. 5.

    Khandurina, J. & Guttman, A. Bioanalysis in microfluidic devices. J. Chromatogr. A 943, 159–183 (2002).

  6. 6.

    Wu, J. R. Acoustical tweezers. J. Acoust. Soc. Am. 89, 2140–2143 (1991).

  7. 7.

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).

  8. 8.

    Ashkin, A. & Dziedzic, J. M. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517–1521 (1987).

  9. 9.

    Zhang, H. & Liu, K.-K. Optical tweezers for single cells. J. R. Soc. Interface 5, 671–690 (2008).

  10. 10.

    Rasmussen, M. B., Oddershede, L. B. & Siegumfeldt, H. Optical tweezers cause physiological damage to Escherichia coli and Listeria bacteria. Appl. Environ. Microbiol. 74, 2441–2446 (2008).

  11. 11.

    Leitz, G., Fällman, E., Tuck, S. & Axner, O. Stress response in Caenorhabditis elegans caused by optical tweezers: wavelength, power, and time dependence. Biophys. J. 82, 2224–2231 (2002).

  12. 12.

    Bausch, A. R., Möller, W. & Sackmann, E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76, 573–579 (1999).

  13. 13.

    Wu, M. C. Optoelectronic tweezers. Nat. Photonics 5, 322–324 (2011).

  14. 14.

    Wang, K., Schonbrun, E., Steinvurzel, P. & Crozier, K. B. Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. Nat. Commun. 2, 469 (2011).

  15. 15.

    Probst, R. & Shapiro, B. Three-dimensional electrokinetic tweezing: device design, modeling, and control algorithms. J. Micromech. Microeng. 21, 027004 (2011).

  16. 16.

    Cohen, A. E. & Moerner, W. E. Method for trapping and manipulating nanoscale objects in solution. Appl. Phys. Lett. 86, 93109 (2005).

  17. 17.

    Lutz, B. R., Chen, J. & Schwartz, D. T. Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78, 5429–5435 (2006).

  18. 18.

    Chen, J. et al. Thermal gradient induced tweezers for the manipulation of particles and cells. Sci. Rep. 6, 35814 (2016).

  19. 19.

    Destgeer, G. & Sung, H. J. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves. Lab Chip 15, 2722–2738 (2015).

  20. 20.

    Baresch, D., Thomas, J.-L. & Marchiano, R. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers. Phys. Rev. Lett. 116, 024301 (2016).

  21. 21.

    Friend, J. & Yeo, L. Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011).

  22. 22.

    Carovac, A., Smajlovic, F. & Junuzovic, D. Application of ultrasound in medicine. Acta Inform. Med. 19, 168–171 (2011).

  23. 23.

    Ng, K. H. International guidelines and regulations for the safe use of diagnostic ultrasound in medicine. J. Med. Ultrasound 10, 5–9 (2002).

  24. 24.

    Wiklund, M. Acoustofluidics 12: biocompatibility and cell viability in microfluidic acoustic resonators. Lab Chip 12, 2018–2028 (2012).

  25. 25.

    Lam, K. H. et al. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging. Sci. Rep. 6, 37554 (2016).

  26. 26.

    Sundvik, M., Nieminen, H. J., Salmi, A., Panula, P. & Hæggström, E. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos. Sci. Rep. 5, 13596 (2015).

  27. 27.

    Shapira, I. et al. Circulating biomarkers for detection of ovarian cancer and predicting cancer outcomes. Br. J. Cancer 110, 976–983 (2014).

  28. 28.

    Joyce, D. P., Kerin, M. J. & Dwyer, R. M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer 139, 1443–1448 (2016).

  29. 29.

    Plaks, V., Koopman, C. D. & Werb, Z. Circulating tumor cells. Science 341, 1186–1188 (2013).

  30. 30.

    Wu, M. et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc. Natl. Acad. Sci. USA 114, 10584–10589 (2017).

  31. 31.

    Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA 112, 4970–4975 (2015).

  32. 32.

    Shi, J. et al. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9, 2890–2895 (2009).

  33. 33.

    Guo, F. et al. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA 113, 1522–1527 (2016).

  34. 34.

    Guo, F. et al. Controlling cell-cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA 112, 43–48 (2015).

  35. 35.

    Epstein, H. F. & Shakes, D. C. Caenorhabditis elegans: Modern Biological Analysis of an Organism Vol. 48. (Academic Press, Cambridge, MA, USA, 1995).

  36. 36.

    Ahmed, D. et al. Rotational manipulation of single cells and organisms using acoustic waves. Nat. Commun. 7, 11085 (2016).

  37. 37.

    Bruus, H. Acoustofluidics 2: perturbation theory and ultrasound resonance modes. Lab Chip 12, 20–28 (2012).

  38. 38.

    Lenshof, A., Evander, M., Laurell, T. & Nilsson, J. Acoustofluidics 5: building microfluidic acoustic resonators. Lab Chip 12, 684–695 (2012).

  39. 39.

    Luong, T.-D. & Nguyen, N.-T. Surface acoustic wave driven microfluidics: a review. Micro Nanosyst. 2, 217–225 (2010).

  40. 40.

    Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

  41. 41.

    Augustsson, P., Karlsen, J. T., Su, H.-W., Bruus, H. & Voldman, J. Iso-acoustic focusing of cells for size-insensitive acousto-mechanical phenotyping. Nat. Commun. 7, 11556 (2016).

  42. 42.

    Collins, D. J. et al. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun. 6, 8686 (2015).

  43. 43.

    Marzo, A. et al. Holographic acoustic elements for manipulation of levitated objects. Nat. Commun. 6, 8661 (2015).

  44. 44.

    Foresti, D. & Poulikakos, D. Acoustophoretic contactless elevation, orbital transport and spinning of matter in air. Phys. Rev. Lett. 112, 024301 (2014).

  45. 45.

    Démoré, C. E. M. et al. Acoustic tractor beam. Phys. Rev. Lett. 112, 174302 (2014).

  46. 46.

    Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522 (2016).

  47. 47.

    Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

  48. 48.

    Memoli, G. et al. Metamaterial bricks and quantization of meta-surfaces. Nat. Commun. 8, 14608 (2017).

  49. 49.

    Sadhal, S. S. Acoustofluidics 16: acoustics streaming near liquid-gas interfaces: drops and bubbles. Lab Chip 12, 2771–2781 (2012).

  50. 50.

    Sadhal, S. S. Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12, 2292–2300 (2012).

  51. 51.

    ter Haar, G. & Wyard, S. J. Blood cell banding in ultrasonic standing wave fields: a physical analysis. Ultrasound Med. Biol. 4, 111–123 (1978).

  52. 52.

    Hashmi, A., Yu, G., Reilly-Collette, M., Heiman, G. & Xu, J. Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip 12, 4216–4227 (2012).

  53. 53.

    Huang, P.-H. et al. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Lab Chip 14, 4319–4323 (2014).

  54. 54.

    Phan, H. V. et al. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Lab Chip 15, 4206–4216 (2015).

  55. 55.

    Huang, P.-H. et al. An acoustofluidic sputum liquefier. Lab Chip 15, 3125–3131 (2015).

  56. 56.

    Yeo, L. Y. & Friend, J. R. Ultrafast microfluidics using surface acoustic waves. Biomicrofluidics 3, 12002 (2009).

  57. 57.

    Yeo, L. Y. & Friend, J. R. Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46, 379–406 (2014).

  58. 58.

    Destgeer, G. et al. Travelling surface acoustic waves microfluidics. Phys. Procedia 70, 34–37 (2015).

  59. 59.

    Galanzha, E. I. et al. In vivo acoustic and photoacoustic focusing of circulating cells. Sci. Rep. 6, 21531 (2016).

  60. 60.

    Schmid, L., Weitz, D. A. & Franke, T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14, 3710–3718 (2014).

  61. 61.

    Ren, L. et al. A high-throughput acoustic cell sorter. Lab Chip 15, 3870–3879 (2015).

  62. 62.

    Li, S. et al. Standing surface acoustic wave based cell coculture. Anal. Chem. 86, 9853–9859 (2014).

  63. 63.

    Reboud, J. et al. Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies. Proc. Natl. Acad. Sci. USA 109, 15162–15167 (2012).

  64. 64.

    Bernard, I. et al. Controlled rotation and translation of spherical particles or living cells by surface acoustic waves. Lab Chip 17, 2470–2480 (2017).

  65. 65.

    Hahn, P., Lamprecht, A. & Dual, J. Numerical simulation of micro-particle rotation by the acoustic viscous torque. Lab Chip 16, 4581–4594 (2016).

  66. 66.

    Vasileiou, T., Foresti, D., Bayram, A., Poulikakos, D. & Ferrari, A. Toward contactless biology: acoustophoretic DNA transfection. Sci. Rep. 6, 20023 (2016).

  67. 67.

    Foresti, D., Nabavi, M., Klingauf, M., Ferrari, A. & Poulikakos, D. Acoustophoretic contactless transport and handling of matter in air. Proc. Natl. Acad. Sci. USA 110, 12549–12554 (2013).

  68. 68.

    Collins, D. J., Ma, Z., Han, J. & Ai, Y. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves. Lab Chip 17, 91–103 (2016).

  69. 69.

    Ding, X. et al. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA 109, 11105–11109 (2012).

  70. 70.

    Chen, Y. et al. High-throughput acoustic separation of platelets from whole blood. Lab Chip 16, 3466–3472 (2016).

  71. 71.

    Destgeer, G. et al. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration. Lab Chip 16, 660–667 (2016).

  72. 72.

    Marmottant, P. & Hilgenfeldt, S. A bubble-driven microfluidic transport element for bioengineering. Proc. Natl. Acad. Sci. USA 101, 9523–9527 (2004).

  73. 73.

    Tovar, A. R., Patel, M. V. & Lee, A. P. Lateral air cavities for microfluidic pumping with the use of acoustic energy. Microfluid. Nanofluidics 10, 1269–1278 (2011).

  74. 74.

    Rogers, P. R., Friend, J. R. & Yeo, L. Y. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. Lab Chip 10, 2979–2985 (2010).

  75. 75.

    Zhang, S. P. et al. Digital acoustofluidics enables contactless and programmable liquid handling. Nat. Commun. 9, 2928 (2018).

  76. 76.

    Tsujino, S. & Tomizaki, T. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature. Sci. Rep. 6, 25558 (2016).

  77. 77.

    Kaiser, J. ‘Liquid biopsy’ for cancer promises early detection. Science 359, 259–259 (2018).

  78. 78.

    Hao, T. B. et al. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer. Br. J. Cancer 111, 1482–1489 (2014).

  79. 79.

    Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

  80. 80.

    Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).

  81. 81.

    Kamsma, D., Creyghton, R., Sitters, G., Wuite, G. J. L. & Peterman, E. J. G. Tuning the music: acoustic force spectroscopy (AFS) 2.0. Methods 105, 26–33 (2016).

  82. 82.

    Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

Download references

Acknowledgements

This work was supported by the National Institutes of Health (R01 HD086325, R01 AI120560, and R33CA223908) and National Science Foundation (ECCS-1807601) to T.J.H.

Author information

Affiliations

  1. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA

    • Adem Ozcelik
    • , Joseph Rufo
    • , Yuyang Gu
    •  & Tony Jun Huang
  2. Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA

    • Feng Guo
    • , Peng Li
    • , James Lata
    •  & Tony Jun Huang

Authors

  1. Search for Adem Ozcelik in:

  2. Search for Joseph Rufo in:

  3. Search for Feng Guo in:

  4. Search for Yuyang Gu in:

  5. Search for Peng Li in:

  6. Search for James Lata in:

  7. Search for Tony Jun Huang in:

Competing interests

T.J.H. has four US patents (patent nos. 8,573,060; 9,608,547; 9,606,086; and 9,757,699) related to acoustic tweezers. He also cofounded a start-up company, Ascent Bio-Nano Technologies Inc., to commercialize technologies involving acoustic tweezers.

Corresponding author

Correspondence to Tony Jun Huang.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41592-018-0222-9