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Relevant information contained in publically available func-
tional genomics data is a potentially rich resource that can 
suggest follow-up experiments, complement the narrative 

of proposed biological models, and generate data-driven hypoth-
eses related to an individual functional genomics experiment1,2. 
Currently, however, a researcher interpreting a dataset generated in 
the laboratory (or any specific published dataset) cannot directly 
leverage the global public data compendium as a source of con-
text and insight. While these public data are far less accessible than 
knowledge contained in curated pathway databases or biological 
literature, the difficulty goes beyond accessing and analyzing the 
public data2. The information pertinent to an individual dataset of 
interest must be distilled from the massive collection of noisy and 
potentially irrelevant datasets, synthesized into a unified functional 
landscape, and used to provide biological insight.

Network-based methods provide a powerful means for mapping 
functional landscapes through the integration of multiple experi-
mental modalities and data sources. The most direct approach is to 
construct a coexpression network, with edges capturing the degree 
of correlation between genes across the experimental conditions in 
the dataset of interest3–6 (Supplementary Fig. 1). However, because 
these networks are derived from gene expression measurements 
in a single dataset, they are susceptible to spurious correlations7–9. 
Functional networks address this challenge by identifying biologi-
cally relevant functional associations through machine-learning-
based synthesis of the public data compendium9,10 (Supplementary 
Fig. 1). Such functional networks have been widely used to discover 
important new functional interactions in molecular networks, to 
predict the biological function of uncharacterized genes, and to 
recapitulate molecular response to treatments in different con-
texts9–13. A salient feature of this approach is its ability to robustly 
and accurately extract functional signals from very noisy and het-
erogeneous data collections. However, although modern functional 

networks can utilize the massive data compendium to identify 
interactions relevant to a specific tissue or biological process10,12,13, 
such approaches do not provide direct insight into any individual 
dataset. An individual experiment integrated in these collections is 
essentially ‘lost’ among the tens of thousands of experiments that 
are probabilistically integrated to generate the network.

Results
YETI networks provide an unbiased interpretation of the user 
dataset. What is needed is a method to utilize the power of mas-
sive data integration while also tailoring the resulting interaction 
network to a specific user dataset under consideration. We therefore 
developed the YETI framework to provide a data-driven interpreta-
tion of any individual functional genomics experiment. There are 
currently no other approaches for generating functional networks 
from public data compendia that are specific to a given expression 
dataset. Previous attempts to provide information relevant to a spe-
cific dataset of interest overlaid expression data on a generic/static 
network, thereby identifying specific nodes or subnetworks14,15. 
In contrast with such overlay methods, as well as with traditional 
functional integration methods, YETI generates an entirely new 
functional network that is relevant to the dataset of interest. YETI 
uses the dataset of interest to guide the probabilistic Bayesian inte-
gration of the large data compendium and to generate a dataset-
specific functional network (Fig. 1 and Supplementary Fig. 2). YETI 
relies on a library of 237 Bayesian functional networks (i.e., source 
networks), each capturing the biology of a particular pathway or 
process (Supplementary Data 2). We applied context-sensitive regu-
larized Bayesian integration of more than 35,000 publically acces-
sible experiments to generate specific gene–gene relationships for 
each source network (Methods)11,13. Together, these source networks  
map the entire human functional interaction landscape, although 
much of that landscape is not relevant to the user dataset. To 
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automatically zoom in on only the regions of this landscape most 
relevant to the user dataset, YETI applies regularized linear regres-
sion to select the source functional networks with the correlation 
structure most closely aligned to that of the user dataset (Methods). 
Specifically, the dependent variable is the correlation coefficient 
of known functional gene–gene interactions, and the indepen-
dent variables are the corresponding interaction weights of the 237 
source networks (Methods). The aggregation of the selected data-
set-relevant source networks results in a single, specialized YETI 
network of relevant functional interactions. Thus, YETI networks 
provide an unbiased data-driven interpretation of the user dataset 
and enable the generation of new hypotheses based on a combina-
tion of the researcher’s own experimental results and the relevant 
evidence available in public data.

YETI networks identify dataset-specific gene–gene interactions. 
In principle, the YETI framework is designed to capture both the 
accuracy of integrative functional network approaches and the single-
experiment specificity of dataset-derived coexpression network meth-
ods (Fig. 2a). Consider a user dataset generated from breast tumor 
samples: an ideal integration of the public data compendium guided 
by this dataset would result in a network that not only correctly cap-
tures the behavior of genes in breast-cancer-relevant pathways, but 
also upweighs these pathways compared with interactions from path-
ways with no relevance to breast cancer. These properties are captured 
by functional accuracy, which assesses how well a network separates 
real functional interactions from spurious, or random, interactions, 
and dataset specificity, which measures whether true interactions rel-
evant to the user dataset are upweighted by the network (Methods).

We systematically compared the functional accuracy and dataset 
specificity of three network types: YETI networks, generic integra-
tion networks, and coexpression networks. We first used the RNA-
seq datasets from The Cancer Genome Atlas (TCGA)16 (Methods). 
For TCGA data, just as in the hypothetical breast cancer dataset 
example, one can use genes that are known to be involved in the 
particular cancer studied in each dataset as the relevant gene set 
for the evaluation. We found that generic functional networks were 
indeed functionally accurate, but not dataset specific, whereas 
TCGA-dataset-derived coexpression networks were dataset specific 
but showed low functional accuracy (Fig. 2b). In contrast, YETI 
networks preserved both dataset specificity and high functional 
accuracy, thereby significantly outperforming both coexpression in 
accuracy (P =  2.4 ×  10−4) and generic functional networks in speci-
ficity (P =  6.9 ×  10−5) (Fig. 2b). We reached similar conclusions in a 
large systematic evaluation of 362 diverse disease-associated micro-
array datasets from Gene Expression Omnibus (GEO)17. These 
represent all datasets in GEO that were reported in a publication, 
contained more than four samples, and were associated with a  
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Fig. 1 | Overview of YETI. YETI leverages the available public data 
compendium and learns global data-compendium-validated functional 
interactions that provide insight and predictions relevant to the user 
dataset.

BRCA

COAD

KIRC
LUAD

OV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 1.5 3.0 4.5 6.0 7.5

Functional accuracy score

D
at

as
et

 s
pe

ci
fic

ity
 s

co
re

***

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Coexpression YETI

F
un

ct
io

na
l a

cc
ur

ac
y 

sc
or

e

**

0.0

0.8

1.6

2.4

3.2

4.0

Generic YETI

D
at

as
et

 s
pe

ci
fic

ity
 s

co
re

0.0
0.5
1.0
1.5
2.0
2.5

0.
0

1.
5 3.

0
4.

5 6.
0

Functional accuracy

a b

c d

D
at

as
et

 s
pe

ci
fic

ity

YETI network

Generic functional network

Coexpression network

Fig. 2 | Evaluation of network accuracy and relevance. a, Schematic of 
trade-offs in accuracy in recovering true functional relationships (functional 
accuracy) and the relevance of these relationships to a specific dataset 
(dataset specificity). b, Comparison of dataset specificity score (DSS) 
and functional accuracy score (FAS) of the three network approaches 
for tumor datasets from the Pan-Cancer Analysis project. The different 
network performance assessments for the same tumor type are connected. 
For clarity, a representative subset of the tumor types is shown. The inset 
compares the performance for all Pan-Cancer tumor types (mean ±  s.e.m., 
n =  13 Pan-Cancer tumor datasets; several s.e.m. indicators are smaller 
than the inset markers). c, Box plots of distributions of the DSS for generic 
functional networks and for YETI networks for 362 -omics datasets from 
GEO. In each box plot, the center line represents the median, the lower 
and upper hinges indicate the first and third quartiles, the upper whisker 
extends to the largest value less than 1.5×  the interquartile range (IQR), 
and the lower whisker extends to the smallest value at most 1.5×  the IQR. 
d, Box plots of distributions of the FAS for coexpression networks and for 
YETI networks for 362 omics datasets from GEO. Box plot elements are 
defined as in c. Significance was assessed by one-tailed paired t test.
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specific human disease MeSH term in the annotation of the publica-
tion in PubMed. This analysis again revealed that YETI significantly 
outperformed generic functional networks in terms of dataset spec-
ificity (P =  1.2 ×  10−8; Fig. 2c). YETI also significantly outperformed 
coexpression networks in accuracy (almost fivefold on average; 
P =  7.2 ×  10−12; Fig. 2d) and dataset specificity (P =  6.7 ×  10−5, one-
tailed paired t test). Notably, these evaluations demonstrate YETI’s 
high accuracy, high dataset specificity, and broad robustness when 
used with either RNA-seq (TCGA) or microarray (GEO) datasets.

YETI is efficient at extracting dataset-relevant information from 
the data compendium. Notably, merely including the input data-
set in the compendium for Bayesian integration, as opposed to 
YETI’s tailored approach, was not sufficient to achieve the mark-
edly improved dataset specificity of YETI networks (Fig. 2c and 
Supplementary Fig. 3). In fact, the generic network shown in Fig. 2c  
already includes every specific user dataset used for evaluation. 
Furthermore, we did not observe any change in dataset specificity 
of the integrated generic network when we included or excluded the 
‘user dataset’ from the integration process (Supplementary Fig. 4). 
Because each specific dataset was part of a large collection of data-
sets used for functional integration, the signals in the input dataset 
appeared to be swamped by the generic information in the mas-
sive compendium. Similarly, we found no correlation between YETI 
network’s performance and dataset coverage in the public compen-
dium, which indicates that YETI is robust to irrelevant information 
in the public compendium and is applicable to even understudied 
human diseases or biological contexts (Supplementary Fig. 5).  
In contrast, the improvement in functional accuracy of YETI net-
works relative to that of coexpression networks can be attributed 
to YETI’s ability to control false positives in the coexpression data 
through the integration of this massive public compendium (Fig. 
2d). Indeed, YETI eliminated the known dataset size bias of coex-
pression network methods (Supplementary Fig. 6) that results from 
erroneous but high correlations between random gene pairs, espe-
cially in small datasets7,8.

YETI leads to discoveries on the mechanism of pandemic virus 
infection. To illustrate the use of YETI, we applied YETI to inter-
pret experiments from human immune cells infected with the 

influenza virus. There is considerable interest in understanding the 
differences in host–virus interactions between the historically rare 
pandemic influenza virus strains and the more restricted annual 
seasonal influenza virus strains. We applied YETI to two time-
course microarray datasets from human dendritic cells, a key cell 
type in the immune response, after infection with either a seasonal 
or a pandemic wild-type influenza H1N1 virus strain. In both YETI 
analyses of the transcriptome response to infection, we noticed 
the clearly relevant “response to virus” source network (Fig. 3a,b). 
However, each YETI analysis also retrieved distinct source networks 
that were closely related to the “response to virus” network. A nota-
ble difference was the inclusion of the cell-death-related “activation 
of caspase activity” source network for the seasonal virus (Fig. 3a) 
and the essentially opposite “anti-apoptosis” source network for the 
pandemic virus (Fig. 3b). This difference is consistent with the find-
ing that infection with the pandemic virus, unlike with the seasonal 
virus, suppresses cell death induction in dendritic cells18. A portion 
of one of the YETI networks (Fig. 3c) contained several nodes that 
have recently been implicated in programmed cell death in influ-
enza virus infection of dendritic cells, connecting RIP–kinase path-
ways and apoptosis-related caspase pathway components19,20. This 
suggests that the YETI network can be useful for the generation of 
hypotheses about genes that are important in virus infection and 
antiviral processes.

Notably, another difference in source network composition 
between the two virus-infection YETI networks was that only 
the pandemic virus data identified “viral genome replication” 
as a relevant source network (Fig. 3a,b). This was surprising to 
us, as it is generally accepted that dendritic cells do not support 
virus replication after infection21. Motivated by the YETI detec-
tion of a virus replication signature in the pandemic infection 
dataset, we hypothesized that the pandemic virus, by suppress-
ing cell death, might enable the production of new infectious 
virus. We experimentally tested this prediction by comparing 
virus replication in dendritic cells infected with the seasonal 
or the pandemic virus. As expected, almost no infective virus 
was produced after seasonal virus infection. In contrast, infec-
tion with the pandemic virus led to substantial release of new 
infectious virus (Fig. 3d), thus supporting the usefulness of the 
YETI analysis for making novel and experimentally testable 
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inferences. These results provide an example of how researchers 
can use YETI to interpret and derive insights from the combina-
tion of specific datasets and public data collections that guide 
hypothesis generation and new experiments.

Discussion
The YETI approach leverages the biomedical knowledge embedded 
in the large public functional genomic data compendia to enable 
biomedical researchers to easily and effectively extract relevant bio-
logical signals from their omics datasets.

To facilitate broad community access to YETI, we created a 
user-friendly, interactive web interface at http://yeti.princeton.edu. 
Researchers can submit their dataset or a selected public dataset 
for YETI analysis to identify the biological processes reflected in 
the dataset-relevant source networks and interactively explore the 
YETI-generated network (Supplementary Fig. 3). Submitted datas-
ets and YETI analyses remain private to the user and can be stored 
for the user or deleted from the server, as desired. In addition to 
supporting analysis of any uploaded dataset, the interface helps the 
user find a public dataset and corresponding dataset-specific net-
work of interest via both text searching or relevant MeSH terms. 
Point-and-click access to these public YETI networks and analyses 
are provided for 5,300 microarray datasets from GEO17 and 1,070 
RNA-seq datasets processed by Recount222. We plan to regularly 
update YETI’s compendium as new microarray and RNA-seq data-
sets become publicly available.

Thus, YETI is a complement to researchers’ biomedical knowl-
edge and the published literature, expanding the research process 
with a data-driven perspective to enable new discoveries.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0218-5.
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Methods
For a user dataset, we evaluated each network type by comparing the connectivity 
of genes associated with the relevant disease to random genes in the network 
(functional accuracy) and genes associated with other diseases (dataset specificity). 
In a highly accurate network, genes of the relevant disease will be more connected 
than random genes, and in a highly specific network, genes of the relevant disease 
will be much more connected than genes of other diseases. We evaluated network 
connectivity with curated gene sets that were independent of but relevant to the 
experiment. If a network focused on a specific experiment, such as breast cancer 
tumor samples, is highly specific to that experiment, then genes annotated to 
that disease should be highly connected in the network. Thus, we can assess the 
specificity of any network for a specific dataset on the basis of the connectivity of an 
independent curated relevant geneset in the network being evaluated. One source 
of such independent gene sets is genes annotated to MESH terms for a particular 
specific disease, which can be presumed to be relevant to datasets derived from 
clinical samples related to that disease.

Collecting and processing the public data compendium. The data compendium 
was compiled from multiple public databases and included gene expression 
profiling data, physical or genetic interaction data, transcriptional regulatory 
interaction data, chemical or genetic perturbation data, and microRNA target data 
(Supplementary Data 1). Overall, 35,300 experiments from multiple databases  
were collected and processed in accordance to the type of functional assay for  
data integration and construction of genome-wide functional networks, as 
described below.

Public microarray datasets (n =  980; Supplementary Data 1) that included more 
than 22,000 experiments were downloaded from NCBI GEO17. For each dataset, 
missing values were imputed using KNNImpute (K =  10)23; microarray probe 
identifiers were summarized to their Entrez identifiers24; and non-log-transformed 
values were log-transformed. For each pair of genes, the Pearson correlation  
(i.e., coexpression) was first computed, Fisher z-transformed, and then 
standardized by subtracting the mean and dividing the s.d. of the Fisher 
z-transformed correlations. The coexpression scores were then discretized into the 
following bins according to their standardized scores (i.e., z scores): ((− infinity, 
− 1.5), [–1.5, − 0.5), [–0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 3.5), [3.5, infinity)). Bins 
were determined empirically according to the distribution of standardized scores.

Physical and genetic interaction data were downloaded from BioGRID25, 
IntAct26, MINT27, and MIPS28. Interactions from BioGRID were discretized into 
five bins according to the number of independent supporting experiments for 
each interaction. Interactions from other interaction databases were discretized 
according to the presence or absence of the interaction. To estimate transcriptional 
regulatory interactions, human transcription factor (TF) binding site motifs 
were downloaded from JASPAR29, and for each motif, FIMO was used to identify 
putative regulatory regions 1 kb upstream of the gene (P <  0.001)30. We then 
computed TF interaction scores by taking the Pearson correlation of the TF motif 
profiles between two genes. Pearson correlations of the TF motif profiles were then 
z-transformed, standardized, and discretized with the same bin boundaries as done 
with the gene expression datasets.

Chemical and genetic perturbation data (C2:CGP) and microRNA target data 
(C3:MIR) were downloaded from the Molecular Signatures Database31. These 
perturbations vary widely in terms of the number of affected genes. Perturbations 
that result in a more restricted effect (that is, fewer genes changed) are more 
likely to capture more biologically specific regulatory modules, as opposed to 
perturbations that affect many or even most genes in the genome. To normalize 
for this and give more ‘weight’ to coexpression resulting from perturbations with 
a more restricted effect, we normalized co-occurrences by the number of genes 
whose expression changed in the perturbation and then aggregated them to 
compute the perturbation interaction score for the pair of genes. These normalized 
co-occurrence scores were then again discretized into bins according to their 
standardized z-scores: ((− infinity, − 1.5), [− 1.5, − 0.5), [–0.5, 0.5), [0.5, 1.5),  
[1.5, 2.5), [2.5, 3.5), [3.5, 4.5), [4.5, infinity)). Bins were again determined 
empirically according to the distribution of standardized scores.

Extracting the functional training set for process-specific Bayesian network 
machine learning integration. Gene ontology (GO) contains experimental-
evidence-based functional relationships. Known functional interactions provide a 
standard for distinguishing signal from noise in functional genomics data.  
As a result, careful extraction of known functional interactions is needed to 
provide a training set for effective integration of the public data compendium.  
In order to extract known relationships reflecting the entire biological functional 
landscape, we use a curated compendium of a set of GO biological processes that 
are testable by specific molecular experiments11. Only gene annotations based on 
GO experimental evidence codes (EXP, IDA, IPI, IMP, IGI, and IEP) were used to 
exclude potential biases from computational annotations. The resulting set of 237 
GO biological process terms with at least ten gene annotations from experimental 
evidence codes was used to generate the training set of functional relationships 
(Supplementary Data 2).

To generate the training sets, we selected pairs of genes that were co-annotated 
to these 237 GO biological process terms after ontology propagation as highly 

confident, known functional interactions (positive gold-standard training set). Pairs 
of genes not co-annotated to any expert-curated GO term, KEGG pathway network32, 
PID molecular signaling or regulatory pathway33, or Biocyc metabolic pathway34 
were considered as the negative gold-standard training set, except in the following 
conditions: (1) if two genes were annotated to two different terms with significant 
gene set overlap (P <  0.05), and (2) if two genes were co-annotated to a set of ‘negative’ 
GO terms that represented minimal functional relatedness35. Gene pairs meeting the 
above conditions were excluded from both positive and negative training sets.

Generation of YETI source networks. We generated functional networks 
presenting gene–gene relationships in each of the 237 biological processes 
spanning the human functional landscape (curation of 237 processes described 
in the section “Extracting the functional training set for process-specific Bayesian 
network machine learning integration” above). We applied context-sensitive, 
regularized Bayesian integration of the public data compendium (see “Collecting 
and processing the public data compendium”) for each of the 237 GO terms10,36. 
The resulting set of context-specific networks represent the data-driven map of the 
entire functional interaction landscape and are used as source networks for YETI 
network generation.

In detail, one regularized naive Bayes classifier was trained for each of the 
237 GO term contexts. The classifier is trained based on the aforementioned 
positive and negative training sets (see “Extracting the functional training set for 
process-specific Bayesian network machine learning integration”) and using the 
processed public data compendium (see “Collecting and processing the public data 
compendium”)36. Briefly, each dataset in the compendium is modeled as a discrete 
probability distribution conditioned by the functional training set and the GO term 
context. A naive Bayes classifier without regularization assumes independence 
of all datasets in the compendium, and the posterior probabilities of functional 
gene–gene interactions are estimated with those learned parameters37. In the naive 
Bayes classifier, the posterior probability of functional interaction (that is, FR =  1) 
between genes gi and gj is

∏= ∣ ∝ = = ∣ =
=

P D P P D d g g(FR 1 ) (FR 1) ( ( , ) FR 1)ij N
k

N

k k i j1:
1

where N is the total number of datasets in the compendium, P(FR =  1) is the 
proportion of positives in the interaction training set, and dk(gi, gj) is the processed 
experimental score of gi and gj in dataset Dk.

To address the conditional-independence assumption of the naive Bayesian 
classifier, we used the mutual information-based regularization method that 
estimates the conditional dependency (that is, the amount of redundant 
information) and regularizes the data likelihood of the dataset10,11. Optimization of 
the scale parameter (that is, the strength of prior belief) in Bayesian regularization 
leads to greater predictive accuracy38. One can estimate this parameter by 
computing the amount of redundant information for each dataset10. Specifically, 
the estimated redundant information Uk of dataset Dk is

=
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where I is the conditional mutual information between Di and Dk among gene pairs 
in the negative interaction training set, and H is the information entropy of the 
dataset Dk. Intuitively, an exponentially decreasing ratio is used to down-weight 
the likelihood function of datasets with a high amount of redundant information. 
Specifically, the regularized likelihood function of dataset Dk is
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where P* is the regularized likelihood function for dataset Dk, dk(gi, gj) is the 
processed experimental score of gi and gj in dataset Dk, |Dk| is the number of 
discretized bins of the dataset Dk, and ns is the pseudocount hyperparameter. 
Pseudocount was set to 3 as described previously11. Finally, the posterior 
probability of any pair of genes gi and gj having a functional interaction is

∏= ∣ ∝ = = ∣ =
=

P D P P D d g g(FR 1 ) (FR 1) *( ( , ) FR 1)ij N
k

N

k k i j1:
1

where N is the total number of datasets in the compendium and P(FR =  1) is the 
proportion of positives in the interaction training set. This posterior probability 
is the interaction weight of gi and gj in the functional network. Of note, the 
interaction weights of the generic functional network are the average of posterior 
probabilities over all 237 GO term functional networks11. Software used for public 
data integration and distance correlation calculation has been implemented in the 
open source Sleipnir library available at http://libsleipnir.bitbucket.org39.
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YETI’s identification of source networks relevant to the user dataset. To generate 
a functional network specific to the user dataset, YETI first identifies the relevant 
source network that was derived from the public data compendium. Optimal 
selection of relevant source networks is equivalent to the classic knapsack problem 
in computer science and is thus NP-hard40. We approximate the optimal selection 
by formulating this as a Lasso regression problem41 where the dependent y variable 
is the correlation structure of the user dataset, and the independent x variables are 
the 237 source networks. Lasso performs regularization (and avoids overfitting) 
by selecting only a subset of these independent variables, and consequently selects 
an approximately optimal subset of most relevant source networks. Of note, 
not all gene pairs are used for regression analysis, as nonfunctional interactions 
may exhibit high (but spurious) correlation coefficients in the user dataset. Only 
gene pairs of known functional interactions are considered, and their correlation 
coefficients (that is, interaction weights) are used to capture the specificity of the 
user dataset. Source networks with similar interaction weights will be predictive 
and thus selected in the Lasso regression analysis.

In detail, we computed the distance correlation42 of the known functional 
interactions (that is, positive interaction training set) of gene gi and gene gj in the 
user dataset Du as

=

= …

= …

d g g d d g

d d d d g

d d d

Cor ( , ) Cor( ( )

( , , , ), ( )

( , , , ))

D i j u i
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1 2

1 2

u

where n is the total number of experiments in dataset Du, and dit is the experimental 
data point value of gene gi in experiment t. Distance correlation was used over 
other correlation statistics because of its robustness to false negatives43. Of note, 
the coexpression networks used as evaluation controls were also based on distance 
correlations.

We then used Lasso to compute a sparse solution (that is, select a 
relevant subset) of source networks. Consider a functional interaction m 
in positive interaction training set gi and gj that consists of 237 covariates 

= …x x x x( , , , )m m m m
T

1 2 237  and a single outcome ym. xmp is the logit-transformed 
posterior probability of gi and gj in the ρ  source network, and ym is the logit-
transformed distance correlation dCorDu(gi, gj) of the user dataset Du. Specially, we 
used Lasso to solve
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where λ ≥  0 is the free parameter that controls the level of sparsity. The covariance 
test for Lasso was used to tune this level of sparsity and select significant covariates 
from the Lasso solution path β λ(̂ ) (ref. 44). Specifically, the Lasso solution path of 
100 steps is computed by the least-angle regression (LARS) algorithm45. Note that 
each step has a different set of active covariates. The active covariate A at the latest 
significant LARS step (P < 0.01) is used to determine the optimal level of sparsity 
and is the dataset-relevant source networks of the YETI analysis

β λ= ̂A sup ( )

where λ gives the latest significant LARS step. If the active set A consists of fewer 
than 20 covariates, the most significant LARS step (that is, smallest P value)  
between the 20th and 80th steps is the optimal level of sparsity, and the 
corresponding active set constitutes the selection of source networks identified as 
relevant to the user dataset. Finally, for every gene pair (gi, gj), the third quartile of 
the posterior probabilities among the dataset-relevant source networks was used to 
generate the YETI network for the user dataset. That is,

ρ ρ ρ ρ= …i j Q i j i j i j( , ) 3( ( , ), ( , ), , ( , ))D 1 2 237u

where Du is the user dataset, and ρ i j( , )k  is the posterior probabilities for source 
network k of gene pair (gi, gj). Software used for distance correlation calculation has 
been implemented in the open source Sleipnir library available at http://libsleipnir.
bitbucket.org39. R packages lars and covTest were used for Lasso regression and 
covariance significance tests44,45.

Evaluating the functional accuracy and dataset specificity of interaction 
networks. Medical subject headings (MeSH) annotations of human genes. To 
evaluate knowledge-based functional networks, an independent set of gene 
annotations linked to the input datasets is needed. We took advantage of 
the Gene2MeSH (http://www.ncibi.org/gene2mesh.html) resource from the 
National Center for Integrative Biomedical Informatics (NCIBI), which identifies 
statistically significant co-occurrence of genes and MeSH terms in PubMed articles. 
As such, this database is independent from other databases that we used to extract 

known functional interactions, and also from any user dataset that we used for 
evaluation. Extracting this database resulted in 509 MeSH terms under the disease 
category with at least ten gene annotations that covered a total of 5,762 human 
genes. It is important to note that no disease annotations were used in any stage of 
YETI network construction.

Example user datasets. To emulate a typical user dataset, we downloaded all tumor-
specific RNA-seq datasets with a specific tumor MeSH term ID (n =  13) from The 
Cancer Genome Atlas (TCGA)16 and 362 expert-curated GEO datasets17. Level-3 
processed TCGA datasets of only tumors with a corresponding MeSH term were 
downloaded via the Cancer Genome Browser. The 362 GEO datasets represent all 
GEO datasets with at least one PubMed annotation, at least one MeSH term under 
the disease category (see below), and consist of at least four experiments.

Annotations of user datasets with MeSH terms. To evaluate the dataset specificity 
of interaction networks, we systematically identified MeSH terms relevant to 
the dataset of interest. We annotated each TCGA dataset to the MeSH ID of the 
corresponding cancer types. For the GEO datasets, we took advantage of the 
PubMed record annotated to these datasets. Each PubMed record contained 
associated MeSH terms, which we then assigned to the corresponding  
GEO dataset.

Scores for dataset specificity and functional accuracy. To assess both the dataset 
specificity and the functional accuracy of interaction networks, we measured the 
relative connectivity of genes co-annotated to MeSH terms relevant to the user 
dataset. The ideal interaction network useful for analyzing a single experiment 
must have two properties: it should be biologically accurate and specific to the 
user dataset. Assessment of functional accuracy entails evaluation of whether 
gene connections in the network represent ‘real’ interactions, for example, by 
being co-annotated to a particular disease. To measure this, we used MeSH-
term gene annotations for the evaluation, as this source was both independent 
of and relevant to our collection of example user datasets (i.e., test datasets). We 
determined functional accuracy by measuring the pairwise connectivity of genes 
that were co-annotated to the dataset-relevant MeSH terms (based on curation, as 
described above) normalized by the connectivity of randomly selected gene pairs. 
Specifically, consider a graph (or network) G =  (V, E), where V is the set of vertices 
(or genes) and E is the set of weighted edges (or interaction weights). That is, E(i, j) 
is the interaction weight between gene gi and gene gj in graph G. Let the gene set of 
the dataset-relevant MeSH term be the vertex set ⊂S V. The functional accuracy 
score (FAS) is

=
∑

∑
∈
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where MeSH term gene set S is the set of genes in the specific MeSH term 
associated with the user dataset. Note that the denominator of this score is 
equivalent to density in graph theory46, so intuitively the measurement normalizes 
the relevant connectivity by overall network density.

Although functional accuracy is important, one also needs to consider how 
well the network is enriched for biological relationships that are relevant to the 
user dataset. Intuitively, a network has higher dataset specificity if it focuses on 
gene relationships (biological modules) that are more relevant to that dataset. 
Accordingly, the dataset specificity score normalizes the pairwise connectivity 
of genes co-annotated to the dataset-relevant MeSH terms to the pairwise 
connectivity of genes co-annotated to randomly selected MeSH terms. Specifically, 
the dataset specificity score (DSS) is calculated as
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where S is the gene set for a relevant MeSH term (as above), Rw is the set of genes 
annotated to MeSH term w, and the median is across all 509 MeSH terms we 
collected from gene2mesh (see above).

Evaluating the effect of inclusion of the user dataset as part of the data 
compendium. Inclusion of the user dataset as part of the data compendium is an 
uncomplicated attempt to generate relevant functional networks. Although this 
method itself is straightforward, the sheer amount of data in the compendium is 
likely to overwhelm any relevant information coming from this single dataset. To 
test this hypothesis, we constructed generic functional networks with or without a 
user dataset and compared their DSS (as defined above). A dataset was repeatedly 
selected at random from the 362 GEO datasets. For each randomly selected GEO 
dataset (n =  10), we re-performed the entire regularized Bayesian integration 
process without that dataset, generating a corresponding ‘generic without dataset’ 
network. These were then each compared to the network generated with that 
dataset included (‘generic with dataset’, which is the complete network including all 
362 GEO datasets).
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Visualizing the dataset-relevant source networks. In addition to the interaction 
network, YETI also provides an interpretable list of dataset-relevant source 
networks, defining processes relevant to the dataset that are thus interesting for 
the user to explore. To facilitate visualization-based exploration of these lists, 
we grouped the corresponding selected GO terms on the basis of shared gene 
annotations. The statistical significance (or P value) of this overlap between two 
dataset-relevant GO terms was used as a measurement of closeness. The nearest-
neighbor chain algorithm was applied to group the terms into distinct groups. The 
resulting interactive visualization is available on the YETI website for any user 
dataset and the included public datasets.

Preparation of dendritic cells. All human subject research studies were reviewed 
and approved by the institutional review board (IRB) of the Icahn School of 
Medicine at Mount Sinai (ISMMS). Informed consent was obtained from non-
anonymous donors. Monocyte-derived DCs were obtained from buffy coats from 
human blood donors according to a standard protocol47. Briefly, peripheral blood 
mononuclear cells (PBMCs) were isolated from buffy coats by Ficoll density 
gradient centrifugation, and CD14+ monocytes were immunomagnetically 
purified and then differentiated into DCs during a 5-d incubation in DC medium 
containing 500 U/ml human granulocyte-macrophage colony-stimulating  
factor (hGM-CSF; Preprotech) and 1,000 U/ml human interleukin 4  
(hIL-4; Preprotech).

Virus preparation and titration. The human isolates of H1N1 influenza A 
viruses A/California/4/2009 (Cal/09) and A/New Caledonia/20/1999 (NC) were 
propagated in specific-pathogen‐free embryonated hen’s eggs (Charles River 
Laboratories). Infectious titers of influenza viruses were determined by standard 
plaque assay on Madin-Darby canine kidney (MDCK) epithelial cells. Briefly, 
MDCK cells were seed in six-well plates. MDCK cells were cultured in minimal 
essential medium (MEM; Gibco, Invitrogen) supplemented with 10% fetal 
bovine serum (FBS), 100 units/ml of penicillin, 100 μ g/ml streptomycin (Gibco, 
Invitrogen), and 2 mM l-glutamine (Gibco, Invitrogen). The next day, tenfold 
dilutions of the virus stocks were prepared in phosphate-buffered saline (PBS; 
Gibco, Invitrogen) containing 0.2% bovine albumin (BA; MP Biomedicals). 
MDCK cells were washed with PBS and virus dilutions were placed on the 
monolayer and incubated for 1 h at room temperature. Then, virus dilutions 
were removed and the overlay media was added to the cells. The overlay media 
contained MEM (Gibco, Invitrogen), 0.2% BA (MP Biomedicals), oxoid agar 
(Thermo Fisher Scientific), 2 mM l-glutamine (Invitrogen), 100 units/ml  
of penicillin, 100 μ g/ml streptomycin (Gibco, Invitrogen), 5% NaHCO3, and 
1 μ g/ml of trypsin N-tosyl-l-phenylalanine chloromethyl ketone (TPCK; 
Sigma-Aldrich). MDCK cells containing the overlay media were incubated 
for 48 h at 37 °C to allow for plaque formation. Cell cultures were fixed with 
4% formaldehyde (Fisher Scientific) for 10 min, overlay media was removed, 
and cells were stained with a 0.1% crystal violet solution for visualization and 
quantification of the plaques.

Infection of dendritic cells. Prior to each experiment, the infectivity of each virus 
preparation in DCs was measured by influenza virus nucleoprotein (NP) staining, 
and its titer was adjusted so that each strain infects approximately 60% of the 
DCs obtained from each of six anonymous donors. For infection of DCs, virus 
stocks were diluted in serum-free medium and added directly onto pelleted DCs 
at a multiplicity of infection (MOI) of 1. DCs were infected in triplicates. After 
infection in RPMI medium at 37 °C for 10 min, cells were centrifuged to remove 
the viral inoculation medium and resuspended in DC medium. At the specified 
time points, DCs were centrifuged and supernatants were collected and stored at 
–80 °C for later quantification of the infectious virus particles by plaque assay on 
MDCK cells as described above.

Virus infection microarray experiment and data processing. For 
the microarray analysis, cells were homogenized with QIAshredder 
microcentrifuge spin-columns (Qiagen) and RNA was isolated from cells 
with the Qiagen Micro RNeasy plus kit according to the manufacturer’s 
protocol (Qiagen). RNA quality was assayed by determination of the RNA 
integrity number using the 2100 Bioanalyzer (Agilent). For integrated fluidic 
circuit real-time PCR assays (Fluidigm), RNA was extracted with Agencourt 
RNAdvance Cell v2 (Beckman Coulter) and RNA quantity was measured 
with the Ribogreen system (Life Technologies) using a fluorimeter. RNA 
samples were processed and hybridized to HumanHT-12v4 Expression 
BeadChip (Illumina), NCBI RefSeq Release 38 (7 November 2009) and selected 
from GenBank, dbEST, and RefSeq. Arrays were processed at Yale’s Keck 
Biotechnology Resource Laboratory, and raw expression data were output by 
the Illumina GenomeStudio software. Microarray data are available through the 
GEO Database, accession number GSE55278. The data were log-transformed 
and median-normalized. We collapsed multiple probe IDs mapping to a single 
official gene symbol by keeping the probe ID with highest average expression. 
Differential expression was defined for each probe at each infection time point 
using two criteria: (1) an absolute fold change of at least 2 relative to time-
matched AlaF control, and (2) a significant change in expression by LIMMA 

after correction for multiple hypothesis testing (FDR <  0.05)48. All of this 
analysis was performed using BioConductor software packages in R. Further 
details of the sample preparation and microarray data analysis are provided 
elsewhere18.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Public data listed in Supplementary Data 1 were downloaded 
and processed using a custom script. Source networks listed in Supplementary Data 
2 were generated using the Sleipnir C+ +  library (http://libsleipnir.bitbucket.org/). 
A custom R script that uses the R packages lars and covTest was used to select 
dataset-relevant source networks. All custom code used in this study is available 
from the corresponding author on request.

Data availability
The virus infection microarray data are available in GEO under accession 
GSE55278. Researchers may submit their data of interest for YETI analysis 
at http://yeti.princeton.edu/. Visualization and exploration of their YETI 
network and precomputed YETI networks are also available at  
http://yeti.princeton.edu. All data used in this study are available from the 
corresponding author on request.
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The data that support the findings of this study are available from the corresponding author upon request.



2

nature research  |  reporting sum
m

ary
April 2018

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed because sufficient effect size and statistical significance were observed with a sample size of 3.

Data exclusions No data were excluded from the analyses.

Replication All attempts at replication were successful.

Randomization This is not relevant to this study because no samples were allocated into experimental groups.

Blinding This is not relevant to this study because no samples were allocated into experimental groups

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Interpretation of an individual functional genomics experiment guided by massive public data
	Results
	YETI networks provide an unbiased interpretation of the user dataset. 
	YETI networks identify dataset-specific gene–gene interactions. 
	YETI is efficient at extracting dataset-relevant information from the data compendium. 
	YETI leads to discoveries on the mechanism of pandemic virus infection. 

	Discussion
	Online content
	Acknowledgements
	Fig. 1 Overview of YETI.
	Fig. 2 Evaluation of network accuracy and relevance.
	Fig. 3 YETI maps the specific functional landscapes of human dendritic cells after seasonal or pandemic influenza virus infection.




