Computer-aided imaging

Deep learning to predict microscope images

A type of neural network first described in 2015 can be trained to translate between images of the same field of view acquired by different modalities. Trained networks can use information inherent in grayscale images of cells to predict fluorescent signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Translation, classification, and prediction.

References

  1. 1.

    Christiansen, E. M. et al. Cell 173, 792–803.e19 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Ounkomol, C., Seshamani, S., Maleckar, M.M., Collman, F. & Johnson, G.R. Nat. Methods https://doi.org/10.1038/s41592-018-0111-2 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Rosenblatt, F. Psychol. Rev. 65, 386–408 (1958).

    CAS  Article  Google Scholar 

  4. 4.

    McCulloch, W. S. & Pitts, W. H. Bull. Math. Biophys. 5, 115–133 (1943).

    Article  Google Scholar 

  5. 5.

    Minsky, M. & Papert, S. Perceptrons: an Introduction to Computational Geometry (MIT Press, Cambridge, 1969).

  6. 6.

    Olazaran, M. Soc. Stud. Sci. 26, 611–659 (1996).

    Article  Google Scholar 

  7. 7.

    Markoff, J. Machines of Loving Grace (Harper Collins, New York, 2015).

  8. 8.

    Krizhevsky, A., Sutskever, I. & Hinton, G.E. in NIPS’12 Proc. 25th Int. Conf. Neural Inf. Process. Syst. Vol. 1, 1097–1105 (Curran Associates, Red Hook, NY, USA, 2012).

  9. 9.

    Long, J., Shelhamer, E. & Darrel, T. in Proc. 2015 IEEE Conf. Comput. Vis. Pattern Recognit. (IEEE, Hoboken, New Jersey, USA, 2015).

  10. 10.

    Ronneberger, O., Fischer, P. & Brox, T. in Int. Conf. Med. Image Comput. Comput.-Assist. Interv. 234–241 (Springer, New York, 2015).

Download references

Acknowledgements

We are grateful to J. Markoff, J. Yosinski, J. Clune, G. Johnson, M. Maleckar, W. Peria, and other colleagues for useful communications and insight, and for support from R21 CA223901 to R.B. and U54 CA132831 (NMSU/FHCRC Partnership for the Advancement of Cancer Research) to R.B. and L.B.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roger Brent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brent, R., Boucheron, L. Deep learning to predict microscope images. Nat Methods 15, 868–870 (2018). https://doi.org/10.1038/s41592-018-0194-9

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing