De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes

Abstract

Increasingly, cryo-electron microscopy (cryo-EM) is used to determine the structures of RNA–protein assemblies, but nearly all maps determined with this method have biologically important regions where the local resolution does not permit RNA coordinate tracing. To address these omissions, we present de novo ribonucleoprotein modeling in real space through assembly of fragments together with experimental density in Rosetta (DRRAFTER). We show that DRRAFTER recovers near-native models for a diverse benchmark set of RNA–protein complexes including the spliceosome, mitochondrial ribosome, and CRISPR–Cas9–sgRNA complexes; rigorous blind tests include yeast U1 snRNP and spliceosomal P complex maps. Additionally, to aid in model interpretation, we present a method for reliable in situ estimation of DRRAFTER model accuracy. Finally, we apply DRRAFTER to recently determined maps of telomerase, the HIV-1 reverse transcriptase initiation complex, and the packaged MS2 genome, demonstrating the acceleration of accurate model building in challenging cases.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The DRRAFTER framework.
Fig. 2: DRRAFTER recovers near-native models over a diverse benchmark set and two blind test cases.
Fig. 3: Estimating DRRAFTER model accuracy.
Fig. 4: DRRAFTER can accelerate manual model building into low-resolution density maps.
Fig. 5: Typical mistakes that may occur during DRRAFTER modeling and possible solutions.

Data availability

The accession codes used in this study are as follows: E. coli L25-5S rRNA (PDB 1DFU and 1B75), sex-lethal RRM (PDB 1B7F and 3SXL), ribotoxin restrictocin sarcin-ricin loop analog (PDB 1JBS and 1AQZ), the SmpB–tmRNA complex (PDB 1P6V and 1K8H), the HutP antitermination complex (PDB 1WPU and 1WPV), the mRNA-binding domain of the SelB elongation factor (PDB 1WSU and 1LVA), the NusA transcriptional regulator (PDB 2ASB and 1K0R), the methyltransferase RumA in complex with rRNA (PDB 2BH2 and 1UWV), the PP7 coat protein and viral RNA (PDB 2QUX and 2QUD), Puf4 bound to the 3′ UTR of the target transcript (PDB 3BX2 and 3BWT), tri-snRNP (EMD-2966 and EMD-8012; PDB 4YHU and 5GAN, in addition to all PDB codes listed in Extended Data Table 1 of ref. 9), the mitochondrial ribosome (EMD-2490 and EMD-2787; PDB 4CE4, 4V19, and 4V1A), CRISPR–Cas9–sgRNA complex (EMD-3276; PDB 5F9R and 4ZT0), U1 snRNP (EMD-8622; PDB 3CW1, 3PGW, 5GMK and 5UZ5), the spliceosomal P complex (PDB 5MQ0, 5WSG, 5I8Q and 6BK8), HIV-1 RTIC (described in ref. 44), and Tetrahymena telomerase (EMD-6443; PDB 5KMZ, 2VOP, 5C9H, 2M21 and 4ERD), MS2 packaged genome (EMD-8397 and EMD-3403; PDB 5TC1). The DRRAFTER models of the U1 snRNP (from the 3.6 Å map) and the packaged MS2 genome (from the 3.6 Å map) are available in Supplementary Data 1 and 2. DRRAFTER models for all other systems are available at https://purl.stanford.edu/jj049gk5411.

References

  1. 1.

    Fica, S. M. & Nagai, K. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat. Struct. Mol. Biol. 24, 791–799 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Feigon, J., Chan, H. & Jiang, J. S. Integrative structural biology of Tetrahymena telomerase – insights into catalytic mechanism and interaction at telomeres. FEBS J. 283, 2044–2050 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Jiang, F. G. & Doudna, J. A. The structural biology of CRISPR-Cas systems. Curr. Opin. Struct. Biol. 30, 100–111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    von Loeffelholz, O. et al. Focused classification and refinement in high-resolution cryo-EM structural analysis of ribosome complexes. Curr. Opin. Struct. Biol. 46, 140–148 (2017).

    Google Scholar 

  5. 5.

    Zhou, Z. H. Atomic resolution cryo electron microscopy of macromolecular complexes. Adv. Protein Chem. Struct. Biol. 82, 1–35 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Leschziner, A. E. & Nogales, E. Visualizing flexibility at molecular resolution: analysis of heterogeneity in single-particle electron microscopy reconstructions. Annu. Rev. Biophys. Biomol. Struct. 36, 43–62 (2007).

    CAS  PubMed  Google Scholar 

  7. 7.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EMEM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  PubMed  Google Scholar 

  8. 8.

    Frank, J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31, 303–319 (2002).

    CAS  PubMed  Google Scholar 

  9. 9.

    Nguyen, T. H. D. et al. The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature 523, 47–52 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Greber, B. J. et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 505, 515–519 (2014).

    CAS  PubMed  Google Scholar 

  11. 11.

    Chaker-Margot, M. et al. Architecture of the yeast small subunit processome. Science 355, eaal1880 (2017).

    PubMed  Google Scholar 

  12. 12.

    Li, X. J. et al. Structure of ribosomal silencing factor bound to Mycobacterium tuberculosis ribosome. Structure 23, 1858–1865 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    DiMaio, F. & Chiu, W. Tools for model building and optimization into near-atomic resolution electron cryo-microscopy density maps. Methods Enzymol. 579, 255–276 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Frenz, B. et al. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nat. Methods 14, 797–800 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kim, D. N. and K. Y. Sanbonmatsu, Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Biosci Rep. 37, BSR20170072 (2017).

  17. 17.

    Wang, R. Y. R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. Elife 5, e17219 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dawson, W. K. & Bujnicki, J. M. Computational modeling of RNA 3D structures and interactions. Curr. Opin. Struct. Biol. 37, 22–28 (2016).

    CAS  PubMed  Google Scholar 

  19. 19.

    Cowtan, K. Automated nucleic acid chain tracing in real time. IUCrJ 1, 387–392 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chou, F. C. et al. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Keating, K. S. & Pyle, A. M. Semiautomated model building for RNA crystallography using a directed rotameric approach. Proc. Natl Acad. Sci. USA 107, 8177–8182 (2010).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wang, X. Y. et al. RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone. J. Math. Biol. 56, 253–278 (2008).

    PubMed  Google Scholar 

  24. 24.

    Trabuco, L. G. et al. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lu, M. & Steitz, T. A. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-angstrom resolution. Proc. Natl Acad. Sci. USA 97, 2023–2028 (2000).

    CAS  PubMed  Google Scholar 

  26. 26.

    Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the sex-lethal protein. Nature 398, 579–585 (1999).

    CAS  PubMed  Google Scholar 

  27. 27.

    Yang, X. J. et al. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nat. Struct. Biol. 8, 968–973 (2001).

    CAS  PubMed  Google Scholar 

  28. 28.

    Gutmann, S. et al. Crystal structure of the transfer-RNA domain of transfer-messenger RNA in complex with SmpB. Nature 424, 699–703 (2003).

    CAS  PubMed  Google Scholar 

  29. 29.

    Kumarevel, T., Mizuno, H. & Kumar, P. K. Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand. Nature 434, 183–191 (2005).

    CAS  PubMed  Google Scholar 

  30. 30.

    Yoshizawa, S. et al. Structural basis for mRNA recognition by elongation factor SelB. Nat. Struct. Mol. Biol. 12, 198–203 (2005).

    CAS  PubMed  Google Scholar 

  31. 31.

    Beuth, B. et al. Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J. 24, 3576–3587 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lee, T. T., Agarwalla, S. & Stroud, R. M. A unique RNA fold in the RumA-RNA-Cofactor ternary complex contributes to substrate selectivity and enzymatic function. Cell 120, 599–611 (2005).

    CAS  PubMed  Google Scholar 

  33. 33.

    Chao, J. A. et al. Structural basis for the coevolution of a viral RNA-protein complex. Nat. Struct. Mol. Biol. 15, 103–105 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Miller, M. T., Higgin, J. J. & Hall, T. M. T. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p. Nat. Struct. Mol. Biol. 15, 397–402 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nguyen, T. H. D. et al. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 angstrom resolution. Nature 530, 298–302 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Jiang, F. G. et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351, 867–871 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Jiang, F. G. et al. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348, 1477–1481 (2015).

    CAS  PubMed  Google Scholar 

  38. 38.

    Greber, B. J. et al. The complete structure of the large subunit of the mammalian mitochondrial ribosome. Nature 515, 283–286 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Li, X. N. et al. CryoEM structure of Saccharomyces cerevisiae U1 snRNP offers insight into alternative splicing. Nat. Commun. 8, 1035 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Liu, S. et al. Structure of the yeast spliceosomal postcatalytic P complex. Science 358, 1278–1283 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Yan, C. Y. et al. Structure of a yeast step II catalytically activated spliceosome. Science 355, 149–155 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Fica, S. M. et al. Structure of a spliceosome remodelled for exon ligation. Nature 542, 377–380 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Jiang, J. S. et al. Structure of Tetrahymena telomerase reveals previously unknown subunits, functions, and interactions. Science 350, aab4070 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Larsen, K. P. et al. Architecture of an HIV-1 reverse transcriptase initiation complex. Nature 557, 118–122 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Jiang, J. et al. Structure of Telomerase with telomeric DNA. Cell 173, 1179–1190 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Dai, X. H. et al. In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541, 112–116 (2017).

    CAS  PubMed  Google Scholar 

  47. 47.

    Koning, R. I. et al. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat. Commun. 7, 12524 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Cheng, C. Y. et al. RNA structure inference through chemical mapping after accidental or intentional mutations. Proc. Natl Acad. Sci. USA 114, 9876–9881 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Chou, F. C. et al. RNA structure refinement using the ERRASER-Phenix pipeline. Methods Mol. Biol. 1320, 269–282 (2016).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kapral, G. J. et al. New tools provide a second look at HDV ribozyme structure, dynamics and cleavage. Nucleic Acids Res. 42, 12833–12846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Pettersen, E. F. et al. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  52. 52.

    Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Das, R., Karanicolas, J. & Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 7, 291–294 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kappel, K. & Das, R. Sampling native-like structures of RNA-protein complexes through Rosetta folding and docking. bioRxiv, Preprint at https://www.biorxiv.org/content/early/2018/06/05/339374 (2018).

  55. 55.

    DiMaio, F. et al. Refinement of protein structures into low-resolution density maps using Rosetta. J. Mol. Biol. 392, 181–190 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Alford, R. F., et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Perez-Cano, L. & Fernandez-Recio, J. Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins. Proteins 78, 25–35 (2010).

    CAS  PubMed  Google Scholar 

  58. 58.

    Wriggers, W., Milligan, R. A. & McCammon, J. A. Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999).

    CAS  PubMed  Google Scholar 

  59. 59.

    Liu, S. et al. A composite double-/single-stranded RNA-binding region in protein Prp3 supports tri-snRNP stability and splicing. eLife 4, e07320 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Noeske, J. et al. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 22, 336–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Weber, G. et al. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 29, 4172–4184 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Krummel, D. A. P. et al. Crystal structure of a ten-subunit human spliceosomal U1 snRNP at 5.5 angstrom resolution. Biophys. J. 100, 198–198 (2011).

    Google Scholar 

  63. 63.

    Wan, R. X. et al. Structure of a yeast catalytic step I spliceosome at 3.4 angstrom resolution. Science 353, 895–904 (2016).

    CAS  PubMed  Google Scholar 

  64. 64.

    Eswar, N. et al. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics 15, 5.6.1–5.6.30 (2006).

    Google Scholar 

  65. 65.

    Kretzner, L., Krol, A. & Rosbash, M. Saccharomyces cerevisiae U1 small nuclear-RNA secondary structure contains both universal and yeast-specific domains. Proc. Natl Acad. Sci. USA 87, 851–855 (1990).

    CAS  PubMed  Google Scholar 

  66. 66.

    He, Y. Z. et al. Structure of the DEAH/RHA ATPase Prp43p bound to RNA implicates a pair of hairpins and motif Va in translocation along RNA. RNA 23, 1110–1124 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Kotik-Kogan, O. et al. Structural analysis reveals conformational plasticity in the recognition of RNA 3´ ends by the human La protein. Structure 16, 852–862 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Jansson, L. I. et al. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat. Struct. Mol. Biol. 22, 883–888 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Richards, R. J. et al. Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. RNA 12, 1475–1485 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Singh, M. et al. Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol. Cell 47, 16–26 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Das lab for useful discussions and members of the Rosetta community for discussions and code sharing. We thank J. Feigon and her lab for sharing their coordinates for the 8.9 Å Tetrahymena telomerase cryo-EM structure. Calculations were performed on the Stanford Sherlock cluster and Stanford BioX3 cluster, supported by NIH Shared Instrumentation Grant 1S10RR02664701. This work was supported by a Gabilan Stanford Graduate Fellowship (K.K.), the National Science Foundation (GRFP to K.K.), and the National Institutes of Health through awards T32 GM008294 (K.P.L. and K.K.), NIGMS R35 GM122579 (R.D.), R21 CA121487 (R.D.), R01 GM121487 (R.D. and P. Bradley), R01 GM114178 (R.Z.), R01 GM126157 (R.Z.), and R01 GM071940 (Z.H.Z.).

Author information

Affiliations

Authors

Contributions

K.K. and R.D. designed the computational approach. K.K. implemented the method and performed the tests and analysis. S.L., Z.H.Z., and R.Z. provided the U1 snRNP and P complex blind test cases. K.P.L., G.S., E.V.P., and J.D.P. provided the HIV-1 RTIC test case and provided initial feedback on the method. K.K. and R.D. wrote the manuscript with input from S.L., K.P.L., G.S., E.V.P., J.D.P., Z.H.Z., and R.Z.

Corresponding author

Correspondence to Rhiju Das.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 DRRAFTER models for ten small RNA–protein systems.

aj, The best RMSD DRRAFTER models of the top ten scoring (RNA colored red, protein colored gray) overlaid with the deposited crystallographic coordinates (RNA colored cyan, protein colored gray) shown for a, 3 Å (left), 5 Å (middle), and 7 Å (right) simulated density maps for E. coli L25-5S rRNA (1dfu), b, sex-lethal RRM (1b7f), c, ribotoxin restrictocin sarcin-ricin loop analog (1jbs), d, SmpB–tmRNA complex (1p6v), e, HutP antitermination complex (1wpu), f, the mRNA-binding domain of the SelB elongation factor (1wsu), g, the NusA transcriptional regulator (2asb), h, the methyltransferase RumA in complex with rRNA (2bh2), i, the PP7 coat protein and viral RNA (2qux), and j, Puf4 bound to the 3′ UTR of target transcript (3bx2).

Supplementary Figure 2 Convergence of DRRAFTER models.

al, High-resolution RNA coordinates (cyan, left) and the top ten scoring DRRAFTER models (red, right) for the a, spliceosomal tri-snRNP U4/U6 three-way junction, b, U5 three-way junction, and c, U5 internal loop II; d, the CRISPR–Cas9–sgRNA complex sgRNA residues 11–30 and 57–68 and e, sgRNA residues 69–99; f, mitoribosome loop 1 and g, loop 2; h, yeast U1 snRNP (blind) core four-way junction, i, yeast three-way junction, j, SL2-2, and k, yeast four-way junction (DRRAFTER models of SL3-2, SL3-3, and SL3–5 colored red; DRRAFTER models of SL3–4 colored white); and l, yeast spliceosomal P complex (blind) ligated exon.

Supplementary Figure 3 Assessing the agreement between DRRAFTER models and the lower-resolution density maps versus the agreement of high-resolution coordinates to the same lower-resolution density maps.

Real-space correlation coefficients for the best RMSD DRRAFTER models out of the top ten scoring for all systems described in Supplementary Table 1 to lower-resolution density maps are plotted against correlation coefficient values for the corresponding high-resolution coordinates to the same lower-resolution density maps (see Methods for details).

Supplementary Figure 4 Comparing the accuracy of DRRAFTER models to manual models built into the lower-resolution mitoribosome map.

DRRAFTER models were built for all regions in the mitoribosome for which manual models were previously deposited. The accuracy of the manual (previously deposited) and DRRAFTER models was determined by comparing to the higher-resolution mitoribosome coordinates.

Supplementary Figure 5 Differences between the 3.6 Å and 10.5 Å maps of the packaged MS2 genome.

a, The model of region S9 (S9-1 and S9-2) (blue) built into the 3.6 Å map (blue, transparent). b, The model of region S9 (gray) built into the 10.5 Å map (gray, transparent). Each of the models fits well in the map in which it was built. There are, however, differences between the two models. c, Models built into the 3.6 Å and 10.5 Å maps overlaid. These differences are largely due to the underlying differences in the maps. d, The 3.6 Å (blue) and 10.5 Å (gray) maps overlaid.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–4

Reporting Summary

Supplementary Data 1

U1 snRNP model

Supplementary Data 2

MS2 packaged genome model

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kappel, K., Liu, S., Larsen, K.P. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat Methods 15, 947–954 (2018). https://doi.org/10.1038/s41592-018-0172-2

Download citation

Further reading

  • Integrative Structural Biology of Protein-RNA Complexes

    • Lyudmila Dimitrova-Paternoga
    • , Pravin Kumar Ankush Jagtap
    • , Po-Chia Chen
    •  & Janosch Hennig

    Structure (2020)

  • What Could Go Wrong? A Practical Guide to Single-Particle Cryo-EM: From Biochemistry to Atomic Models

    • Michael A. Cianfrocco
    •  & Elizabeth H. Kellogg

    Journal of Chemical Information and Modeling (2020)

  • Macromolecular modeling and design in Rosetta: recent methods and frameworks

    • Julia Koehler Leman
    • , Brian D. Weitzner
    • , Steven M. Lewis
    • , Jared Adolf-Bryfogle
    • , Nawsad Alam
    • , Rebecca F. Alford
    • , Melanie Aprahamian
    • , David Baker
    • , Kyle A. Barlow
    • , Patrick Barth
    • , Benjamin Basanta
    • , Brian J. Bender
    • , Kristin Blacklock
    • , Jaume Bonet
    • , Scott E. Boyken
    • , Phil Bradley
    • , Chris Bystroff
    • , Patrick Conway
    • , Seth Cooper
    • , Bruno E. Correia
    • , Brian Coventry
    • , Rhiju Das
    • , René M. De Jong
    • , Frank DiMaio
    • , Lorna Dsilva
    • , Roland Dunbrack
    • , Alexander S. Ford
    • , Brandon Frenz
    • , Darwin Y. Fu
    • , Caleb Geniesse
    • , Lukasz Goldschmidt
    • , Ragul Gowthaman
    • , Jeffrey J. Gray
    • , Dominik Gront
    • , Sharon Guffy
    • , Scott Horowitz
    • , Po-Ssu Huang
    • , Thomas Huber
    • , Tim M. Jacobs
    • , Jeliazko R. Jeliazkov
    • , David K. Johnson
    • , Kalli Kappel
    • , John Karanicolas
    • , Hamed Khakzad
    • , Karen R. Khar
    • , Sagar D. Khare
    • , Firas Khatib
    • , Alisa Khramushin
    • , Indigo C. King
    • , Robert Kleffner
    • , Brian Koepnick
    • , Tanja Kortemme
    • , Georg Kuenze
    • , Brian Kuhlman
    • , Daisuke Kuroda
    • , Jason W. Labonte
    • , Jason K. Lai
    • , Gideon Lapidoth
    • , Andrew Leaver-Fay
    • , Steffen Lindert
    • , Thomas Linsky
    • , Nir London
    • , Joseph H. Lubin
    • , Sergey Lyskov
    • , Jack Maguire
    • , Lars Malmström
    • , Enrique Marcos
    • , Orly Marcu
    • , Nicholas A. Marze
    • , Jens Meiler
    • , Rocco Moretti
    • , Vikram Khipple Mulligan
    • , Santrupti Nerli
    • , Christoffer Norn
    • , Shane Ó’Conchúir
    • , Noah Ollikainen
    • , Sergey Ovchinnikov
    • , Michael S. Pacella
    • , Xingjie Pan
    • , Hahnbeom Park
    • , Ryan E. Pavlovicz
    • , Manasi Pethe
    • , Brian G. Pierce
    • , Kala Bharath Pilla
    • , Barak Raveh
    • , P. Douglas Renfrew
    • , Shourya S. Roy Burman
    • , Aliza Rubenstein
    • , Marion F. Sauer
    • , Andreas Scheck
    • , William Schief
    • , Ora Schueler-Furman
    • , Yuval Sedan
    • , Alexander M. Sevy
    • , Nikolaos G. Sgourakis
    • , Lei Shi
    • , Justin B. Siegel
    • , Daniel-Adriano Silva
    • , Shannon Smith
    • , Yifan Song
    • , Amelie Stein
    • , Maria Szegedy
    • , Frank D. Teets
    • , Summer B. Thyme
    • , Ray Yu-Ruei Wang
    • , Andrew Watkins
    • , Lior Zimmerman
    •  & Richard Bonneau

    Nature Methods (2020)

  • Refining RNA solution structures with the integrative use of label-free paramagnetic relaxation enhancement NMR

    • Zhou Gong
    • , Shuai Yang
    • , Qing-Fen Yang
    • , Yue-Ling Zhu
    • , Jing Jiang
    •  & Chun Tang

    Biophysics Reports (2019)

  • Computational modeling of RNA 3D structure based on experimental data

    • Almudena Ponce-Salvatierra
    • , Astha
    • , Katarzyna Merdas
    • , Chandran Nithin
    • , Pritha Ghosh
    • , Sunandan Mukherjee
    •  & Janusz M. Bujnicki

    Bioscience Reports (2019)