Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging

Abstract

Macromolecular complexes are intrinsically flexible and often challenging to purify for structure determination by single-particle cryo-electron microscopy (cryo-EM). Such complexes can be studied by cryo-electron tomography (cryo-ET) combined with subtomogram alignment and classification, which in exceptional cases achieves subnanometer resolution, yielding insight into structure–function relationships. However, it remains challenging to apply this approach to specimens that exhibit conformational or compositional heterogeneity or are present in low abundance. To address this, we developed emClarity (https://github.com/bHimes/emClarity/wiki), a GPU-accelerated image-processing package featuring an iterative tomographic tilt-series refinement algorithm that uses subtomograms as fiducial markers and a 3D-sampling-function-compensated, multi-scale principal component analysis classification method. We demonstrate that our approach offers substantial improvement in the resolution of maps and in the separation of different functional states of macromolecular complexes compared with current state-of-the-art software.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The emClarity workflow for subtomogram averaging and classification.
Fig. 2: Improvement in resolution of subtomogram averaging with emClarity.
Fig. 3: Classification of yeast 80S ribosome (EMPIAR-10045) with 3D-CTF-compensated missing wedge and multi-scale PCA.
Fig. 4: Classification of translating mammalian 80S ribosome with 3D-CTF-compensated missing wedge and multi-scale PCA.

Similar content being viewed by others

Data availability

Cryo-EM structural data have been deposited in the Electron Microscopy Data Bank under accession codes EMD-8799 for the yeast 80S ribosome; EMD-8802, EMD-8803, EMD-8804, EMD-8805, and EMD-8806 for rabbit 80S ribosome classes I–V, respectively; and EMD-8986 for the HIV-1 Gag data.

References

  1. Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single- particle image processing. eLife 7, e35383 (2018).

    PubMed  PubMed Central  Google Scholar 

  2. Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Glaeser, R. M. & Hall, R. J. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys. J. 100, 2331–2337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. A primer to single-particle cryo-electron microscopy. Cell 161, 438–449 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Oikonomou, C. M. & Jensen, G. J. Cellular electron cryotomography: toward structural biology in situ. Annu. Rev. Biochem. 86, 873–896 (2017).

    CAS  PubMed  Google Scholar 

  6. Diebolder, C. A., Koster, A. J. & Koning, R. I. Pushing the resolution limits in cryo electron tomography of biological structures. J. Microsc. 248, 1–5 (2012).

    CAS  PubMed  Google Scholar 

  7. Lučič, V., Rigort, A. & Baumeister, W. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202, 407–419 (2013).

    PubMed  PubMed Central  Google Scholar 

  8. Frangakis, A. S. et al. Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl. Acad. Sci. USA 99, 14153–14158 (2002).

    CAS  PubMed  Google Scholar 

  9. Bartesaghi, A. et al. Classification and 3D averaging with missing wedge correction in biological electron tomography. J. Struct. Biol. 162, 436–450 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bharat, T. A. M., Russo, C. J., Löwe, J., Passmore, L. A. & Scheres, S. H. W. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23, 1743–1753 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cassidy, C. K. et al. CryoEM and computer simulations reveal a novel kinase conformational switch in bacterial chemotaxis signaling. eLife 4, e08419 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Zeev-Ben-Mordehai, T. et al. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proc. Natl. Acad. Sci. USA 113, 4176–4181 (2016).

    CAS  PubMed  Google Scholar 

  13. Penczek, P. A., Frank, J. & Spahn, C. M. T. A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. J. Struct. Biol. 154, 184–194 (2006).

    CAS  PubMed  Google Scholar 

  14. Liao, H. Y., Hashem, Y. & Frank, J. Efficient estimation of three-dimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy. Structure 23, 1129–1137 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Trabuco, L. G., Villa, E., Schreiner, E., Harrison, C. B. & Schulten, K. Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49, 174–180 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schur, F. K. M., Hagen, W. J. H., de Marco, A. & Briggs, J. A. Determination of protein structure at 8.5Å resolution using cryo-electron tomography and sub-tomogram averaging. J. Struct. Biol. 184, 394–400 (2013).

    CAS  PubMed  Google Scholar 

  17. Kudryashev, M., Castaño-Díez, D. & Stahlberg, H. Limiting factors in single particle cryo electron tomography. Comput. Struct. Biotechnol. J. 1, e201207002 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  19. Fernández, J. J., Li, S. & Crowther, R. A. CTF determination and correction in electron cryotomography. Ultramicroscopy 106, 587–596 (2006).

    PubMed  Google Scholar 

  20. Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  21. Hrabe, T. et al. PyTom: a Python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. J. Struct. Biol. 178, 177–188 (2012).

    CAS  PubMed  Google Scholar 

  22. Jensen, G. J. & Kornberg, R. D. Defocus-gradient corrected back-projection. Ultramicroscopy 84, 57–64 (2000).

    CAS  PubMed  Google Scholar 

  23. Turoňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J. Struct. Biol. 199, 187–195 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Kunz, M. & Frangakis, A. S. Three-dimensional CTF correction improves the resolution of electron tomograms. J. Struct. Biol. 197, 114–122 (2017).

    PubMed  Google Scholar 

  25. Rickgauer, J. P., Grigorieff, N. & Denk, W. Single-protein detection in crowded molecular environments in cryo-EM images. eLife 6, 1–22 (2017).

    Google Scholar 

  26. Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    PubMed  PubMed Central  Google Scholar 

  27. Förster, F., Pruggnaller, S., Seybert, A. & Frangakis, A. S. Classification of cryo-electron sub-tomograms using constrained correlation. J. Struct. Biol. 161, 276–286 (2008).

    PubMed  Google Scholar 

  28. Stewart, A. & Grigorieff, N. Noise bias in the refinement of structures derived from single particles. Ultramicroscopy 102, 67–84 (2004).

    CAS  PubMed  Google Scholar 

  29. Henderson, R. et al. Outcome of the first electron microscopy validation task force meeting. Structure 20, 205–214 (2012).

    CAS  PubMed  Google Scholar 

  30. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  31. Sindelar, C. V. & Grigorieff, N. Optimal noise reduction in 3D reconstructions of single particles using a volume-normalized filter. J. Struct. Biol. 180, 26–38 (2012).

    PubMed  PubMed Central  Google Scholar 

  32. Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    PubMed  PubMed Central  Google Scholar 

  33. Heumann, J. M., Hoenger, A. & Mastronarde, D. N. Clustering and variance maps for cryo-electron tomography using wedge-masked differences. J. Struct. Biol. 175, 288–299 (2011).

    PubMed  PubMed Central  Google Scholar 

  34. Alsberg, B. K. Multiscale cluster analysis. Anal. Chem. 71, 3092–3100 (1999).

    CAS  PubMed  Google Scholar 

  35. Marabini, R. et al. The Electron Microscopy eXchange (EMX) initiative. J. Struct. Biol. 194, 156–163 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Bharat, T. A. M. & Scheres, S. H. W. Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION. Nat. Protoc. 11, 2054–2065 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Khoshouei, M., Pfeffer, S., Baumeister, W., Förster, F. & Danev, R. Subtomogram analysis using the Volta phase plate. J. Struct. Biol. 197, 94–101 (2017).

    PubMed  Google Scholar 

  38. Bai, X. C., Fernandez, I. S., McMullan, G. & Scheres, S. H. W. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Schur, F. K. M. et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506–508 (2016).

    CAS  PubMed  Google Scholar 

  40. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gutell, R. R., Weiser, B., Woese, C. R. & Noller, H. F. Comparative anatomy of 16-S-like ribosomal RNA. Prog. Nucleic. Acid. Res. Mol. Biol. 32, 155–216 (1985).

    CAS  PubMed  Google Scholar 

  42. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    CAS  PubMed  Google Scholar 

  43. Mohan, S. & Noller, H. F. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Nat. Commun. 8, 14285 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Spahn, C. M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilson, D. N. & Nierhaus, K. H. The E-site story: the importance of maintaining two tRNAs on the ribosome during protein synthesis. Cell. Mol. Life Sci. 63, 2725–2737 (2006).

    CAS  PubMed  Google Scholar 

  46. Budkevich, T. V. et al. Regulation of the mammalian elongation cycle by subunit rolling: a eukaryotic-specific ribosome rearrangement. Cell 158, 121–131 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Abeyrathne, P. D., Koh, C. S., Grant, T., Grigorieff, N. & Korostelev, A. A. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 5, 1–31 (2016).

    Google Scholar 

  48. Gomez-Lorenzo, M. G. et al. Three-dimensional cryo-electron microscopy localization of EF2 in the Saccharomyces cerevisiae 80S ribosome at 17.5 A resolution. EMBO J. 19, 2710–2718 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chakraborty, B., Mukherjee, R. & Sengupta, J. Structural insights into the mechanism of translational inhibition by the fungicide sordarin. J. Comput. Aided. Mol. Des. 27, 173–184 (2013).

    CAS  PubMed  Google Scholar 

  50. Meyer, R. R., Kirkland, A. I. & Saxton, W. O. A new method for the determination of the wave aberration function for high-resolution TEM.; 2. Measurement of the antisymmetric aberrations. Ultramicroscopy 99, 115–123 (2004).

    CAS  PubMed  Google Scholar 

  51. Anger, A. M. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013).

    CAS  PubMed  Google Scholar 

  52. Ning, J. et al. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nat. Commun. 7, 13689 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernando, K. V. & Fuller, S. D. Determination of astigmatism in TEM images. J. Struct. Biol. 157, 189–200 (2007).

    PubMed  Google Scholar 

  54. Mastronarde, D. N. Fiducial marker and hybrid alignment methods for single- and double-axis tomography. In Electron Tomography: Methods for Three-dimensional Visualization of Structures in the Cell (ed Frank, J.)163–185 (Springer: New York, 2006).

  55. Xiong, Q., Morphew, M. K., Schwartz, C. L., Hoenger, A. H. & Mastronarde, D. N. CTF determination and correction for low dose tomographic tilt series. J. Struct. Biol. 168, 378–387 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Frank, J. Three-dimensional Electron Microscopy of Macromolecular Assemblies 15-69 (Oxford University Press: New York, 2006).

  57. Diebolder, C. A., Faas, F. G. A., Koster, A. J. & Koning, R. I. Conical Fourier shell correlation applied to electron tomograms. J. Struct. Biol. 190, 215–223 (2015).

    CAS  PubMed  Google Scholar 

  58. Winkler, H. et al. Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. J. Struct. Biol. 165, 64–77 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Frank and W. Li for very helpful discussions; D. Bevan for technical assistance with computer clusters; S. Loerch for help with Phenix real-space refinement and COOT; and T. Brosenitsch, F.J. Alvarez, and J.P. Rickgauer for reading the manuscript. We thank F. Schur and J. Briggs for the dataset on HIV-1 immature Gag, and X. Fu for testing the emClarity software. This work was supported by the National Institutes of Health (grants GM085043 and GM082251-6869 to P.Z.) and the UK Wellcome Trust Investigator Award (206422/Z/17/Z to P.Z.).

Author information

Authors and Affiliations

Authors

Contributions

P.Z. and B.A.H. conceived and designed the study. B.A.H. developed and tested the code for emClarity. B.A.H. and P.Z. analyzed the results and wrote the paper.

Corresponding author

Correspondence to Peijun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Benchmarking of emClarity performance on GPU cards.

(a) Relative comparison of emClarity run times among GPU cards. The run times are normalized to a V100 card (13 h 40 min). The other system components on each machine are very similar to those listed in Supplementary Table 2. (b) Comparison of speed-up factor with four processes per GPU when disk i/o is a limiting factor. These trend with the Nvidia GPU architecture Volta > Pascal > Maxwell. Interestingly, the 1080 Ti, which has Pascal architecture, does not handle multiple processes as well as the Titan line of consumer cards. These experiments were repeated independently three times and the average result is presented.

Supplementary Figure 2 TomoCPR, constrained projection refinement.

(a) Schematic overview for reference generation in the tomoCPR. (b-c) Cartoons illustrating overlapping information in the projections arising from other particles, components in the specimen, and variable defocus as a function of tilt. (d-e) Examples of non-tilted (d) and tilted (e) projections used to generate references for the yeast 80S tomoCPR. Overlapping particles and features due to contaminants (white arrows) and the carbon edge (white chevron) are shown. Scale bars, 30 nm.

Supplementary Figure 3 Illustration of the effect and compensation of the missing wedge at multiple length scales.

Far left, the total average filtered by Gaussian kernels of variable width to correlate voxels over the given length scales. Center, eigen-images composed of the average plus the eigenvector, sorted from the most variance explained (1) to least (21). Black and white arrows show examples where es27 density is absent or present in the L1 position. Right three columns show 3D-variance maps in red overlaid with the average: without missing-wedge compensation (ac), with wedge-marked differences (WMDs) (df) and with 3D-sampling function in emClarity (gi). Positions for L1 (green arrow), es27 (orange arrow), e-Site tRNA, and the mRNA channel entrance (blue arrow) are labeled.

Supplementary Figure 4 Gold-standard FSC between half-sets and angular distribution of yeast 80S ribosomes from EMPIAR-10045.

(a) Plots show FSC calculated over 38 cones (dashed lines) with the overall average FSC in solid black. (b) Angular distribution plots for emClarity and (c) RELION. The microscope reference frame indicated with the y-axis corresponding to the tilt axis and in a right-handed convention.

Supplementary Figure 5 emClarity processing of HIV-1 immature Gag particle.

Gold-standard FSC between subtomogram averages of half-sets of HIV-1 Gag (EMPIAR-10164) by emClarity. Red, fsc “true” tight mask with correction via phase randomization. Blue, soft mask with solvent corrected fsc, with an estimated solvent:protein volume ratio of 0.31. Both approaches indicated a resolution of 3.1 Å at the 0.143 cutoff (dashed line).

Supplementary information

Supplementary Information

Supplementary Figures 1–5 and Supplementary Tables 1–4

Reporting Summary

Supplementary Software

emClarity software

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himes, B.A., Zhang, P. emClarity: software for high-resolution cryo-electron tomography and subtomogram averaging. Nat Methods 15, 955–961 (2018). https://doi.org/10.1038/s41592-018-0167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-018-0167-z

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics