Deep learning reaches the motor system

A new article by Pandarinath et al. describes an artificial neural network model that captures some key aspects of the activity of populations of neurons in the primary motor cortex.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1

Kim Caesar/Springer Nature


  1. 1.

    Yamins, D. L. K. et al. Proc. Natl. Acad. Sci. USA 111, 8619–8624 (2014).

  2. 2.

    Yamins, D. L, Hong, H., Cadieu, C. & DiCarlo, J. J. in Advances in Neural Information Processing Systems 26 (eds Burges, C. J. C. et al.) 3093–3101 (NIPS Foundation, La Jolla, CA, 2013).

  3. 3.

    Pandarinath, C. et al. Nat. Methods. (2018).

  4. 4.

    Churchland, M. M. et al. Nature 487, 51–56 (2012).

  5. 5.

    Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I. & Shenoy, K. V. Neuron 68, 387–400 (2010).

  6. 6.

    Cunningham, J. P. & Yu, B. M. Nat. Neurosci. 17, 1500–1509 (2014).

  7. 7.

    Sadtler, P. T. et al. Nature 512, 423–426 (2014).

  8. 8.

    Peixoto, D. et al. bioRxiv Preprint at (2018).

Download references

Author information

Correspondence to Aaron P. Batista.

Ethics declarations

Competing interests

The authors declare no competing interests

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark