Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Qiita: rapid, web-enabled microbiome meta-analysis


Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example meta-analysis in Qiita.

Similar content being viewed by others

Data availability

All data used are available via Qiita and EBI (where applicable). The Human Microbiome Project (HMP) and iHMP data are available via the HMP Data Analysis and Coordination Center (DACC) at Analytical steps for this paper can be found at Additionally, the Qiita analysis can be found at; note that the user must log in to Qiita to access this analysis. Source data for Supplementary Fig. 1 are available online.


  1. Caporaso, J. G. et al. ISME J. 6, 1621–1624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thompson, L. R. et al. Nature 551, 457–463 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Halfvarson, J. et al. Nat. Microbiol. 2, 17004 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lozupone, C. A. & Knight, R. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).

  5. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Nat. Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiome 3, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Debelius, J. et al. Genome. Biol. 17, 217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lozupone, C. A. et al. Genome Res. 23, 1704–1714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Caporaso, J. G. et al. Nat. Methods 7, 335–336 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, M. et al. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langille, M. G. I., Ravel, J. & Fricke, W. F. Microbiome 6, 8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yilmaz, P. et al. Nat. Biotechnol. 29, 415–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sinha, R. et al. Nat. Biotechnol. 35, 1077–1086 (2017).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Gevers, D. et al. Cell. Host. Microbe. 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Human Microbiome Project Consortium. Nature 486, 207–214 (2012).

    Article  Google Scholar 

  16. Weingarden, A. et al. Microbiome 3, 10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lozupone, C. & Knight, R. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bokulich, N. A. et al. Nat. Methods 10, 57–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Navas-Molina, J. A. et al. Methods Enzymol. 531, 371–444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amir, A. et al. mSystems 2, e00191-16 (2017).

  21. Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. Gigascience 2, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We are grateful to J. Debelius, J. Jansson, D. Bazaldua, and J. Kuczynski for their help in improving Qiita via suggestion, code changes, and contributed datasets, or during the preparation of this manuscript; and to J. Gordon and his laboratory for helpful discussions. This work was supported in part by the Alfred P. Sloan Foundation (2017-9838 and 2015-13933 (R.K.)), the NIH/NIDDK (P01DK078669 (R.K.)), the NSF (DBI-1565057 and 1565100 (J.G.C. and R.K.)), the Office of Naval Research (ONR; N00014-15-1-2809 (R.K.)), and the US Army (CDMRP W81XWH-15-1-0653 (R.K.)).

Author information

Authors and Affiliations



A.G., J.A.N.-M., T.K., D.M., Y.V.-B., G.A., J.D., S.J., A.D.S., S.B.O., J.G.S., J.S., H.H., S.P., A.R.-P., C.J.B., M.W., J.R.R., E.B., M.D., J.G.C., P.C.D., and R.K. implemented the Qiita main or the Qiita plugins code. A.G., J.A.N.-M., and Y.V.-B. conducted the example meta-analysis. All authors wrote the manuscript.

Corresponding author

Correspondence to Rob Knight.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Data loaded in Qiita and uploaded to EBI.

A. Monthly studies and sample depositions to EBI-ENA via Qiita. B. Geographical distribution of the samples present in Qiita

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Tables 1 and 2

Reporting Summary

Supplementary Software contains two zip files: (1), which is the main code for the Qiita software at the time of publication (latest version:, and (2), which includes all steps and necessary files to reproduce all panels in Fig. 1 (live repository:

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, A., Navas-Molina, J.A., Kosciolek, T. et al. Qiita: rapid, web-enabled microbiome meta-analysis. Nat Methods 15, 796–798 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology