Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-cell genomics to guide human stem cell and tissue engineering

Abstract

To understand human development and disease, as well as to regenerate damaged tissues, scientists are working to engineer certain cell types in vitro and to create 3D microenvironments in which cells behave physiologically. Single-cell genomics (SCG) technologies are being applied to primary human organs and to engineered cells and tissues to generate atlases of cell diversity in these systems at unparalleled resolution. Moving beyond atlases, SCG methods are powerful tools for gaining insight into the engineering and disease process. Here we discuss how scientists can use single-cell sequencing to optimize human cell and tissue engineering by measuring precision, detecting inefficiencies, and assessing accuracy. We also provide a perspective on how emerging SCG methods can be used to reverse-engineer human cells and tissues and unravel disease mechanisms.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A human cell atlas is an optimal reference for cell and tissue engineering.
Fig. 2: Single-cell genomics can be used to assess and enhance accuracy, precision, and efficiency during directed differentiation.
Fig. 3: Emerging methodologies that will guide cell and tissue engineering.

References

  1. Picelli, S. Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol. 14, 637–650 (2017).

    PubMed  Article  Google Scholar 

  2. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Pang, Z. P. et al. Induction of human neuronal cells by defined transcription factors. Nature 476, 220–223 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Takahashi, K. & Yamanaka, S. A decade of transcription factor–mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183–193 (2016).

    CAS  PubMed  Article  Google Scholar 

  5. Karow, M. et al. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11, 471–476 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. Graf, T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell 9, 504–516 (2011).

    CAS  PubMed  Article  Google Scholar 

  7. Xu, J., Du, Y. & Deng, H. Direct lineage reprogramming: strategies, mechanisms, and applications. Cell Stem Cell 16, 119–134 (2015).

    CAS  PubMed  Article  Google Scholar 

  8. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    CAS  PubMed  Article  Google Scholar 

  11. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS  PubMed  Article  Google Scholar 

  12. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  PubMed  Article  Google Scholar 

  13. Takebe, T. et al. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat. Protoc. 9, 396–409 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. McCracken, K. W. et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516, 400–404 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Takasato, M. et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526, 564–568 (2015).

    CAS  PubMed  Article  Google Scholar 

  17. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Tang, F. et al. mRNA-seq whole-transcriptome analysis of a single cell. Nat. Methods 6, 377–382 (2009). This study was the first to carry out whole-transcriptome analysis on single cells.

    CAS  PubMed  Article  Google Scholar 

  20. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201. Cell 161, 1187–1201 (2015).References 20 and 21 were the first studies to take advantage of droplet-based microfluidics to scale up the number of cells for single-cell sequencing.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Habib, N. et al. Div-Seq: single-nucleus RNA-seq reveals dynamics of rare adult newborn neurons. Science 353, 925–928 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015). This single-cell transcriptomic description of the developing human neocortex identified the gene expression phenotype of a cell population (outer radial glia) specifically enriched in the human cortex.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318–1323 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Rozenblatt-Rosen, O., Stubbington, M. J. T., Regev, A. & Teichmann, S. A. The Human Cell Atlas: from vision to reality. Nature 550, 451–453 (2017).

    CAS  PubMed  Article  Google Scholar 

  30. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Butler, A. & Satija, R. Integrated analysis of single cell transcriptomic data across conditions, technologies, and species. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/07/18/164889 (2017).

  33. Kiselev, V. Yu., Yiu, A. & Hemberg, M. scmap—a tool for unsupervised projection of single cell RNA-seq data. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/11/29/150292 (2017).

  34. van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat. Methods 14, 935–936 (2017).

    PubMed  Article  CAS  Google Scholar 

  35. Alpert, A., Moore, L. S., Dubovik, T. & Shen-Orr, S. S. Alignment of single-cell trajectories to compare cellular expression dynamics. Nat. Methods 15, 267–270 (2018).

    CAS  PubMed  Article  Google Scholar 

  36. Cacchiarelli, D. et al. Aligning single-cell developmental and reprogramming trajectories identifies molecular determinants of reprogramming outcome. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/03/30/122531 (2017).

  37. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    CAS  PubMed  Article  Google Scholar 

  38. Cahan, P. et al. CellNet: network biology applied to stem cell engineering. Cell 158, 903–915 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Symmons, O. & Raj, A. What’s luck got to do with it: single cells, multiple fates, and biological nondeterminism. Mol. Cell 62, 788–802 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Soneson, C. & Robinson, M. D. Bias, robustness and scalability in single-cell differential expression analysis. Nat. Methods 15, 255–261 (2018).

    CAS  PubMed  Article  Google Scholar 

  41. Treutlein, B. et al. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature 534, 391–395 (2016). This analysis of direct reprogramming established a precedent to use scRNA-seq to study reprogramming efficiency and revealed that an abundant alternative non-neuronal fate competes with the target neuronal fate.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. Bargaje, R. et al. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. Proc. Natl. Acad. Sci. 114, 2271–2276 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Loh, K. M. et al. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14, 237–252 (2014).This paper illustrates that predictions from transcriptomic data can be used to steer differentiation into the desired target fate.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Kee, N. et al. Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages. Cell Stem Cell 20, 29–40 (2017).

    CAS  PubMed  Article  Google Scholar 

  45. Yao, Z. et al. A single-cell roadmap of lineage bifurcation in human ESC models of embryonic brain development. Cell Stem Cell 20, 120–134 (2017).

    CAS  PubMed  Article  Google Scholar 

  46. La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580 (2016). The authors generate a comprehensive atlas of a developing human tissue and then compare the accuracy and precision of iPSC-derived cells to ‘prototypes’ in the primary tissue.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014). This study demonstrated the ability to infer developmental progression from variation in RNA expression between single cells.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Haghverdi, L., Büttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

    CAS  PubMed  Article  Google Scholar 

  49. Briggs, J. A. et al. Mouse embryonic stem cells can differentiate via multiple paths to the same state. eLife 6, e26945 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  50. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    CAS  PubMed  Article  Google Scholar 

  51. Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl. Acad. Sci. USA 112, 15672–15677 (2015).This paper presents the first systematic comparison of expression profiles between cells of primary tissue and the respective organoids on the single-cell level.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).

    CAS  PubMed  Article  Google Scholar 

  54. Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017). This paper was the first to analyze iPSC-derived cerebral organoids via high-throughput droplet-based single-cell transcriptomics.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Stoeckius, M. et al. Cell “hashing” with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/12/21/237693 (2017).

  56. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Article  Google Scholar 

  57. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Rackham, O. J. et al. A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48, 331–335 (2016).

    CAS  PubMed  Article  Google Scholar 

  59. Tsunemoto, R. et al. Diverse reprogramming codes for neuronal identity. Nature 557, 375–380 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    CAS  PubMed  Article  Google Scholar 

  61. Morrison, S. J. & Spradling, A. C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873 (2017).

    CAS  PubMed  Article  Google Scholar 

  63. Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

    CAS  PubMed  Article  Google Scholar 

  64. Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16, 57–66 (2015).

    CAS  PubMed  Article  Google Scholar 

  65. Shah, S., Lubeck, E., Zhou, W. & Cai, L. In situ transcription profiling of single cells reveals spatial organization of cells in the mouse hippocampus. Neuron 92, 342–357 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Medaglia, C. et al. Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq. Science 358, 1622–1626 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. Halpern, K. B. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542, 352–356 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. bioRxiv Preprint at https://www.biorxiv.org/content/early/2018/02/07/261529 (2018).

  69. Bhatia, S. N. & Ingber, D. E. Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014).

    CAS  PubMed  Article  Google Scholar 

  70. Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016). References 70–72 couple CRISPR–Cas9 genetic manipulation with a single-cell transcriptomic readout to analyze the effect of genetic perturbations on gene expression networks.

    CAS  PubMed  Article  Google Scholar 

  71. Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896 (2016).

    CAS  PubMed  Article  Google Scholar 

  73. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Montalbano, A., Canver, M. C. & Sanjana, N. E. High-throughput approaches to pinpoint function within the noncoding genome. Mol. Cell 68, 44–59 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015).

    CAS  PubMed  Article  Google Scholar 

  78. Schiebinger, G. et al. Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/09/27/191056 (2017).

  79. La Manno, G. et al. RNA velocity in single cells. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/10/19/206052 (2017).

  80. Biddy, B. A., Waye, S. E., Sun, T. & Morris, S. A. Single-cell analysis of clonal dynamics in direct lineage reprogramming: a combinatorial indexing method for lineage tracing. bioRxiv Preprint at https://www.biorxiv.org/content/early/2017/04/28/127860 (2017). This study is one of the first examples of lineage-coupled single-cell transcriptomics.

  81. Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360, 981–987 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Spanjaard, B. et al. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. Frieda, K. L. et al. Synthetic recording and in situ readout of lineage information in single cells. Nature 541, 107–111 (2017).

    CAS  PubMed  Article  Google Scholar 

  85. Smallwood, S. A. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11, 817–820 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84 (2016).

    PubMed  Article  CAS  Google Scholar 

  88. Trounson, A. & McDonald, C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17, 11–22 (2015).

    CAS  PubMed  Article  Google Scholar 

  89. Dutta, D., Heo, I. & Clevers, H. Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017).

    CAS  PubMed  Article  Google Scholar 

  90. Keren-Shaul, H. et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290 (2017). This study used scRNA-seq to show that a subpopulation of microglia is responsible for the pathogenicity of a disease with a complex phenotype.

    CAS  PubMed  Article  Google Scholar 

  91. Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360, 758–763 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Calderon, D. et al. Inferring relevant cell types for complex traits by using single-cell gene expression. Am. J. Hum. Genet. 101, 686–699 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

    CAS  PubMed  Article  Google Scholar 

  94. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. Couzin-Frankel, J. Worries, confusion after cancer trial deaths. Science 354, 1211 (2016).

    CAS  PubMed  Article  Google Scholar 

  97. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    CAS  PubMed  Article  Google Scholar 

  100. Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    CAS  PubMed  Article  Google Scholar 

  101. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS  PubMed  Article  Google Scholar 

  102. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    CAS  PubMed  Article  Google Scholar 

  103. Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).

    CAS  PubMed  Article  Google Scholar 

  104. Huang, L. et al. Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat. Med. 21, 1364–1371 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Sekine and T. Nawy for reading the manuscript and for their very thoughtful guidance. Funding for this work was provided by the Max Planck Society (J.G.C., D.W., and B.T.) and the European Research Council (Starting Grant 758877 to B.T.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Gray Camp or Barbara Treutlein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camp, J.G., Wollny, D. & Treutlein, B. Single-cell genomics to guide human stem cell and tissue engineering. Nat Methods 15, 661–667 (2018). https://doi.org/10.1038/s41592-018-0113-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-018-0113-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing