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Deep learning advances super-resolution imaging
Two approaches apply deep learning to improve single-molecule localization microscopy.

In single-molecule localization microscopy 
methods such as photoactivated 
localization microscopy (PALM) and 

stochastic optical reconstruction microscopy 
(STORM), samples are imaged over multiple 
rounds; in each round a random subset of 
fluorophores is activated and imaged at 
diffraction-limited resolution. The precise 
positions of these individual emitters are 
determined, and after multiple rounds 
a composite super-resolution image is 
generated from the localized fluorophores.

Localization microscopy tends to 
require thousands of rounds of imaging to 
generate a high-resolution image, because 
in each round, sparse emission is preferred. 
Sparse emission minimizes the likelihood 
of simultaneous emission from closely 
positioned fluorophores, which confounds 
their precise localization. The end result 
is long acquisition times, which hinder 
throughput and most live-cell applications.

Many existing methods address these 
challenges, including some that allow 
accurate localization in images where 
fluorophore emission is dense. Although 
these work well in some cases, they can 
limit image quality and resolution. For this 
reason, two groups independently developed 
approaches to improve the acquisition speed 
of PALM/STORM while maintaining image 
resolution. In both cases, the researchers 
used deep learning to generate super-
resolution images from a relatively small 
number of frames of localization microscopy 
data. Deep learning is a type of machine 
learning that uses artificial neural networks 
to learn a mapping between input and 
output data. Once trained, these models can 
predict outputs from supplied input data.

One of the two methods, artificial neural 
network accelerated PALM (ANNA-PALM), 
was developed by Christophe Zimmer 
and his student Wei Ouyang at the Institut 
Pasteur. In ANNA-PALM, an artificial 
neural network is trained on localizations 
from a small number of frames matched 
with dense localization data obtained from 
long-duration acquisitions of the same 
structures. The neural network can then 
produce accurate super-resolution images 
from images generated from a smaller 
number of frames. “This strategy resembles 
how humans recognize objects in noisy 

or blurred images,” explains Zimmer. The 
researchers used their approach to generate 
high-quality images of microtubules, nuclear 
pores and mitochondria, and found that 
they were able to obtain super-resolution 
images of more than a thousand cells in 
around three hours—an astonishing feat for 
the field.

Another method, Deep-STORM, was 
developed by Yoav Shechtman, Tomer 
Michaeli and their joint student Elias 
Nehme at the Technion – Israel Institute of 
Technology. In Deep-STORM, no a priori 
knowledge regarding the underlying object 
is used. Instead, the artificial neural network 
‘learns’ to extract information directly from 
images of dense blinking emitters, after 
being trained on correct emitter positions. 
This allows the trained model to infer 
correct emitter positions in images where 
emission is dense and output a super-
resolution image of a structure rapidly.  
Here, the ability to image densely labeled 
samples corresponds to a reduced total 
acquisition time. Using their approach, the 
researchers were able to outperform existing 
algorithms for image generation from 
densely labeled frames of synthetic data  
and images of microtubules.

Although the two approaches differ 
in their neural networks and training 
approach, they both can be used to generate 
super-resolution images that are appropriate 
for quantitative analysis. One important 
distinction between the output from both 
ANNA-PALM and Deep-STORM and that 
of traditional PALM/STORM is that the 
neural networks produce super-resolution 
images that are not composed of  
a compilation of emitter positions.

Approaches that generate complete 
images from relatively sparse input data can 
yield artifacts. Zimmer’s team addressed this 
issue by developing an algorithm that can 
identify and reduce artifacts by comparing 
the generated image with the wide-field 
image. This approach was inspired by 
NanoJ-SQUIRREL, developed by Ricardo 
Henriques’s lab.

Zimmer notes that a major focus was 
identifying the best way to train the neural 
network. For this, they developed a data-
augmentation strategy that allowed them to 
effectively increase the number of training 
images without more experimental data. 
Still, he recalls, “it was somewhat surprising 
to see that ANNA-PALM only needs to 
be a trained on a few super-resolution 
images—in some cases just one.” He explains 
that ANNA-PALM will improve with time 
if trained on more data. Shechtman was 
also surprised by the training of the neural 
network; he notes that small numbers of 
experimental images could train the network 
successfully, and that “while training 
the net on experimental measurements 
produced the best results, training the net 
on simulated data, of which we could easily 
generate huge amounts, already yielded 
excellent images.”

Although these methods represent early 
days in the application of deep learning 
to super-resolution microscopy, they are 
poised to have an important impact on the 
field and herald a bright future for this area. 
Shechtman says that user-friendly versions 
of these tools are an important future goal, 
and notes that his group is developing a 
stand-alone version of Deep-STORM. 
Zimmer says that his team is currently 
developing tools to facilitate training for use 
with ANNA-PALM. ❐
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A visual representation of the Deep-STORM 
network architecture. Reproduced with permission 
from Nehme et al. (2018), The Optical Society.
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