The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Lautenschläger, F. et al. The regulatory role of cell mechanics for migration of differentiating myeloid cells. Proc. Natl. Acad. Sci. USA 106, 15696–15701 (2009).

  2. 2.

    Guck, J. et al. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 88, 3689–3698 (2005).

  3. 3.

    Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).

  4. 4.

    Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

  5. 5.

    Phillip, J. M., Aifuwa, I., Walston, J. & Wirtz, D. The mechanobiology of aging. Annu. Rev. Biomed. Eng. 17, 113–141 (2015).

  6. 6.

    Bufi, N. et al. Human primary immune cells exhibit distinct mechanical properties that are modified by inflammation. Biophys. J. 108, 2181–2190 (2015).

  7. 7.

    Briscoe, B. J., Sebastian, K. S. & Adams, M. J. The effect of indenter geometry on the elastic response to indentation. J. Phys. D Appl. Phys. 27, 1156–1162 (1994).

  8. 8.

    Staunton, J. R., Doss, B. L., Lindsay, S. & Ros, R. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6, 19686 (2016).

  9. 9.

    Hertz, H. Über den Kontakt elastischer Körper. J. Reine Angew Math. 92, 156–171 (1881).

  10. 10.

    Thoumine, O. & Ott, A. Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110, 2109–2116 (1997).

  11. 11.

    Guck, J. et al. The optical stretcher: a novel laser tool to micromanipulate cells. Biophys. J. 81, 767–784 (2001).

  12. 12.

    Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C. & Käs, J. Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84, 5451–5454 (2000).

  13. 13.

    Chalut, K. J., Ekpenyong, A. E., Clegg, W. L., Melhuish, I. C. & Guck, J. Quantifying cellular differentiation by physical phenotype using digital holographic microscopy. Integr. Biol. (Camb.) 4, 280–284 (2012).

  14. 14.

    Boyde, L., Chalut, K. J. & Guck, J. Interaction of Gaussian beam with near-spherical particle: an analytic-numerical approach for assessing scattering and stresses. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 26, 1814–1826 (2009).

  15. 15.

    Remmerbach, T. W. et al. Oral cancer diagnosis by mechanical phenotyping. Cancer Res. 69, 1728–1732 (2009).

  16. 16.

    Fernández, P., Heymann, L., Ott, A., Aksel, N. & Pullarkat, P. A. Shear rheology of a cell monolayer. New J. Phys. 9, 419 (2007).

  17. 17.

    Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38, 301–326 (2009).

  18. 18.

    Wu, P. H. et al. High-throughput ballistic injection nanorheology to measure cell mechanics. Nat. Protoc. 7, 155–170 (2012).

  19. 19.

    Lee, J. S. et al. Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow. J. Cell Sci. 119, 1760–1768 (2006).

  20. 20.

    Dokukin, M. E., Guz, N. V. & Sokolov, I. Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments. Biophys. J. 104, 2123–2131 (2013).

  21. 21.

    Kollmannsberger, P. & Fabry, B. High-force magnetic tweezers with force feedback for biological applications. Rev. Sci. Instrum. 78, 114301 (2007).

  22. 22.

    Mitrossilis, D. et al. Single-cell response to stiffness exhibits muscle-like behavior. Proc. Natl. Acad. Sci. USA 106, 18243–18248 (2009).

  23. 23.

    Mitrossilis, D. et al. Real-time single-cell response to stiffness. Proc. Natl. Acad. Sci. USA 107, 16518–16523 (2010).

  24. 24.

    Dokukin, M. E. & Sokolov, I. On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depth. Macromolecules 45, 4277–4288 (2012).

  25. 25.

    Poh, Y. C. et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat. Commun. 5, 4000 (2014).

  26. 26.

    Guz, N., Dokukin, M., Kalaparthi, V. & Sokolov, I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575 (2014).

  27. 27.

    Zhou, X. et al. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev. 22, 1231–1243 (2008).

  28. 28.

    Sokolov, I., Iyer, S., Subba-Rao, V., Gaikwad, R. M. & Woodworth, C. D. Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl. Phys. Lett. 91, 023902 (2007).

  29. 29.

    Sokolov, I., Dokukin, M. E. & Guz, N. V. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 60, 202–213 (2013).

  30. 30.

    Simon, M. et al. Load rate and temperature dependent mechanical properties of the cortical neuron and its pericellular layer measured by atomic force microscopy. Langmuir 32, 1111–1119 (2016).

  31. 31.

    Hale, C. M., Sun, S. X. & Wirtz, D. Resolving the role of actoymyosin contractility in cell microrheology. PLoS One 4, e7054 (2009).

  32. 32.

    Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

  33. 33.

    Vahabi, M. et al. Elasticity of fibrous networks under uniaxial prestress. Soft Matter 12, 5050–5060 (2016).

  34. 34.

    van Oosten, A. S. et al. Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci. Rep. 6, 19270 (2016).

  35. 35.

    Perepelyuk, M. et al. Normal and fibrotic rat livers demonstrate shear strain softening and compression stiffening: a model for soft tissue mechanics. PLoS One 11, e0146588 (2016).

  36. 36.

    Pogoda, K. et al. Compression stiffening of brain and its effect on mechanosensing by glioma cells. New J. Phys. 16, 075002 (2014).

  37. 37.

    Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109, 7630–7635 (2012).

  38. 38.

    Byun, S. et al. Characterizing deformability and surface friction of cancer cells. Proc. Natl. Acad. Sci. USA 110, 7580–7585 (2013).

  39. 39.

    Lange, J. R. et al. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys. J. 109, 26–34 (2015).

  40. 40.

    Mietke, A. et al. Extracting cell stiffness from real-time deformability cytometry: theory and experiment. Biophys. J. 109, 2023–2036 (2015).

  41. 41.

    Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134 (2015).

  42. 42.

    Elsayad, K. et al. Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission-Brillouin imaging. Sci. Signal. 9, rs5 (2016).

  43. 43.

    Ebert, S., Travis, K., Lincoln, B. & Guck, J. Fluorescence ratio thermometry in a microfluidic dual-beam laser trap. Opt. Express 15, 15493–15499 (2007).

  44. 44.

    Savin, T. & Doyle, P. S. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005).

  45. 45.

    Wu, P. H., Arce, S. H., Burney, P. R. & Tseng, Y. A novel approach to high accuracy of video-based microrheology. Biophys. J. 96, 5103–5111 (2009).

  46. 46.

    Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

  47. 47.

    Wong, W. P. & Halvorsen, K. The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. Opt. Express 14, 12517–12531 (2006).

  48. 48.

    Desprat, N., Richert, A., Simeon, J. SpringerAmpamp; Asnacios, A. Creep function of a single living cell. Biophys. J. 88, 2224–2233 (2005).

  49. 49.

    Physical Sciences–Oncology Centers Network. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3, 1449 (2013).

  50. 50.

    Fabry, B. et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68, 041914 (2003).

  51. 51.

    Desprat, N., Guiroy, A. SpringerAmpamp; Asnacios, A. Microplates-based rheometer for a single living cell. Rev. Sci. Instrum. 77, 055111 (2006).

  52. 52.

    Wottawah, F. et al. Optical rheology of biological cells. Phys. Rev. Lett. 94, 098103 (2005).

  53. 53.

    Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

  54. 54.

    Wang, N. & Ingber, D. E. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66, 2181–2189 (1994).

  55. 55.

    Fabry, B. et al. Selected contribution: time course and heterogeneity of contractile responses in cultured human airway smooth muscle cells. J. Appl. Physiol. 91, 986–994 (2001).

  56. 56.

    Wang, N. & Ingber, D. E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73, 327–335 (1995).

  57. 57.

    Wang, N., Planus, E., Pouchelet, M., Fredberg, J. J. & Barlovatz-Meimon, G. Urokinase receptor mediates mechanical force transfer across the cell surface. Am. J. Physiol. 268, C1062–C1066 (1995).

  58. 58.

    Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B. & Fredberg, J. J. A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93, 1429–1436 (2002).

  59. 59.

    Mason, T. G., Ganesan, K., van Zanten, J. H., Wirtz, D. & Kuo, S. C. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79, 3282–3285 (1997).

  60. 60.

    Salpingidou, G., Smertenko, A., Hausmanowa-Petrucewicz, I., Hussey, P. J. & Hutchison, C. J. A novel role for the nuclear membrane protein emerin in association of the centrosome to the outer nuclear membrane. J. Cell Biol. 178, 897–904 (2007).

  61. 61.

    Sokolov, I. Atomic force microscopy in cancer cell research. In Cancer Nanotechnology (eds. Nalwa, H. S. & Webster, T.) Chapter 1 (American Scientific Publishers, Valencia, CA, 2007).

  62. 62.

    Berdyyeva, T. K., Woodworth, C. D. & Sokolov, I. Human epithelial cells increase their rigidity with ageing in vitro: direct measurements. Phys. Med. Biol. 50, 81–92 (2005).

  63. 63.

    Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389–393 (2009).

  64. 64.

    Butt, H. J. et al. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565 (1999).

Download references


This research was supported by the NIH (grants U54CA143868 and R01CA174388 to D.W. and P.-H.W.; GM072744 to N.W.; GM096971 and CA193417 to P.A.J.; and CA143862 to R.R.), the NSF (grant 1510700 to R.R.), Agence Nationale de la Recherche (“ImmunoMeca” ANR-12-BSV5-0007-01, “Initiatives d’excellence” Idex ANR-11-IDEX-0005-02, and “Labex Who Am I?” ANR-11-LABX-0071 to A.A.), and the Deutsche Forschungsgemeinschaft through the collaborative research center (SFB1027 to A.O.).

Author information


  1. Department of Chemical and Biomolecular Engineering and Departments of Pathology and Oncology, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, MD, USA

    • Pei-Hsun Wu
    • , Wei-Chiang Chen
    • , Jerry S. H. Lee
    •  & Denis Wirtz
  2. Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA

    • Dikla Raz-Ben Aroush
    •  & Paul A. Janmey
  3. Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche 7057, Centre National de la Recherche Scientifique (CNRS) and Université Paris–Diderot (Paris 7), Sorbonne Paris Cité, Paris, France

    • Atef Asnacios
    •  & Pauline Durand-Smet
  4. Department of Mechanical Engineering, Tufts University, Medford, MA, USA

    • Maxim E. Dokukin
    •  & Igor Sokolov
  5. Department of Physics, Arizona State University, Tempe, AZ, USA

    • Bryant L. Doss
    • , Robert Ros
    •  & Jack R. Staunton
  6. Biotechnology Center, Technische Universität Dresden, Dresden, Germany

    • Andrew Ekpenyong
    • , Jochen Guck
    •  & Graeme Whyte
  7. Department of Physics, Clarkson University, Potsdam, NY, USA

    • Nataliia V. Guz
  8. Center for Strategic Scientific Initiatives, National Cancer Institute, Bethesda, MD, USA

    • Jerry S. H. Lee
  9. Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana–Champaign, Urbana, IL, USA

    • Nicole M. Moore
    • , Yeh-Chuin Poh
    •  & Ning Wang
  10. Biological Experimental Physics Department, Saarland University, Saarbruecken, Germany

    • Albrecht Ott
    •  & Mathias Sander


  1. Search for Pei-Hsun Wu in:

  2. Search for Dikla Raz-Ben Aroush in:

  3. Search for Atef Asnacios in:

  4. Search for Wei-Chiang Chen in:

  5. Search for Maxim E. Dokukin in:

  6. Search for Bryant L. Doss in:

  7. Search for Pauline Durand-Smet in:

  8. Search for Andrew Ekpenyong in:

  9. Search for Jochen Guck in:

  10. Search for Nataliia V. Guz in:

  11. Search for Paul A. Janmey in:

  12. Search for Jerry S. H. Lee in:

  13. Search for Nicole M. Moore in:

  14. Search for Albrecht Ott in:

  15. Search for Yeh-Chuin Poh in:

  16. Search for Robert Ros in:

  17. Search for Mathias Sander in:

  18. Search for Igor Sokolov in:

  19. Search for Jack R. Staunton in:

  20. Search for Ning Wang in:

  21. Search for Graeme Whyte in:

  22. Search for Denis Wirtz in:


A.A., J.G., P.A.J., A.O., R.R., I.S., N.W., D.W., J.S.H.L., and N.M.M. designed the study. P.-H.W., D.R.-B.A., W.-C.C., M.E.D., B.L.D., P.D.-S., A.E., N.V.G., Y.-C.P., M.S., J.R.S., and G.W. performed the experiments and analysis. P.-H.W., A.A., J.G., P.A.J., A.O., R.R., I.S., N.W., and D.W. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Pei-Hsun Wu or Atef Asnacios or Jochen Guck or Paul A. Janmey or Albrecht Ott or Robert Ros or Igor Sokolov or Ning Wang or Denis Wirtz.

Integrated supplementary information

  1. Supplementary Figure 1 Relaxation and creep functions of individual cells with the parallel-plate rheometer.

    a, Typical creep function obtain for MCF 7 cell. b, Typical relaxation function obtain for MCF 7 cell. c, diagram representing the mean of the extensional modulus at 1Hz obtain for the different tests performed on MCF 7 cells with the parallel plates technique. (n=18 for the oscillation test, n=15 for the relaxation test, n =11 for the creep test). d, mean of the exponent of the power law found for the corresponding rheological tests in c. Error bars are standard errors.

  2. Supplementary Figure 2 Further analysis and details of OS results.

    a Distribution of initial compliance Jo for each MCF7 cell stretched (n = 514), based on the power law model. The dotted line represents the cumulative distribution. b Distribution of the power law exponent β. The average β here was found to be 0.85 ± 0.03. c. Average compliance curve for 11 MCF7 cells stretched using 1.5 W per fibre, showing more typical viscoelastic features than the cells stretched at 0.7 W per fibre as in the main text. d Distribution of the average refractive index obtained for 89 cells. Here, the population average is 1.374 ± 0.002.

Supplementary information

  1. Supplementary Text and Figures

    Supplementary Figures 1 and 2, Supplementary Notes 1–3 and Supplementary Tables 1 and 2

  2. Reporting Summary

About this article

Publication history