Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoparticles for super-resolution microscopy and single-molecule tracking

Abstract

We review the use of luminescent nanoparticles in super-resolution imaging and single-molecule tracking, and showcase novel approaches to super-resolution imaging that leverage the brightness, stability, and unique optical-switching properties of these nanoparticles. We also discuss the challenges associated with their use in biological systems, including intracellular delivery and molecular targeting. In doing so, we hope to provide practical guidance for biologists and continue to bridge the fields of super-resolution imaging and nanoparticle engineering to support their mutual advancement.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Luminescent nanoparticles used in super-resolution microscopy imaging and single-molecule tracking.
Fig. 2: Surface functionalization and bioconjugation strategies for a range of nanoparticles used in subcellular staining and tracking applications.
Fig. 3: Typical schemes used to optically switch luminescent nanoparticles between their ‘on’ and ‘off’ states in super-resolution microscopy.
Fig. 4: The evolution of super-resolution microscopy and single-molecule/particle localization approaches.

References

  1. 1.

    Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R. & Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 5, 763–775 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Yang, X. et al. Versatile application of fluorescent quantum dot labels in super-resolution fluorescence microscopy. ACS Photonics 3, 1611–1618 (2016). This paper provides an overview of practical examples of the use of commercial quantum dots in a variety of super-resolution microscopy systems widely accessible to biological labs.

    Article  CAS  Google Scholar 

  3. 3.

    Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 106, 22287–22292 (2009). This paper resports a high-contrast super-resolution method (SOFI) for imaging quantum-dot-labeled microtubules of fibroblast cells.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zeng, Z. et al. Fast super-resolution imaging with ultra-high labeling density achieved by joint tagging super-resolution optical fluctuation imaging. Sci. Rep 5, 8359 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. 6.

    Chen, X., Zeng, Z., Wang, H. & Xi, P. Three dimensional multimodal sub-diffraction imaging with spinning-disk confocal microscopy using blinking/fluctuation probes. Nano Res. 8, 2251–2260 (2015).

    Article  Google Scholar 

  7. 7.

    Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Fan, W., Bu, W. & Shi, J. On the latest three-stage development of nanomedicines based on upconversion nanoparticles. Adv. Mater. 28, 3977–4011 (2016).

    Article  CAS  Google Scholar 

  9. 9.

    Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Zhao, J. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 8, 729–734 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017). This paper describes highly doped upconversion nanoparticles suitable for low-power, high-contrast super-resolution microscopy with optical resolution 1/36 of the excitation wavelength.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Zhan, Q. et al. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 8, 1058 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Wang, B. et al. A mitochondria-targeted fluorescent probe based on TPP-conjugated carbon dots for both one- and two-photon fluorescence cell imaging. RSC Advances 4, 49960–49963 (2014).

    Article  CAS  Google Scholar 

  15. 15.

    Leménager, G., De Luca, E., Sun, Y.-P. & Pompa, P. P. Super-resolution fluorescence imaging of biocompatible carbon dots. Nanoscale 6, 8617–8623 (2014). This paper reports STED super-resolution microscopy using biocompatible CDots in both fixed and living cells.

    Article  PubMed  Google Scholar 

  16. 16.

    Chizhik, A. M. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 16, 237–242 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Khan, S., Verma, N. C., Gupta, A. & Nandi, C. K. Reversible photoswitching of carbon dots. Sci. Rep. 5, 11423 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    He, H. et al. High-density super-resolution localization imaging with blinking carbon dots. Anal. Chem. 89, 11831–11838 (2017). This paper systematically compares the performance of CDots and Cy3, Cy5, Alexa Fluor 647, and QDots 605, and shows that the stable blinking of CDots is suitable for high-density localization imaging of microtubules and membrane protein receptors.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Wu, C. et al. Bioconjugation of ultrabright semiconducting polymer dots for specific cellular targeting. J. Am. Chem. Soc. 132, 15410–15417 (2010).This paper reports surface-functionalized polymer dots for covalent conjugation to biomolecules, and systematically validates the exceptional brightness ofpolymer dots compared with that of Alexa Fluor dyes and quantum dot probes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Chen, X. et al. Small photoblinking semiconductor polymer dots for fluorescence nanoscopy. Adv. Mater. 29, 1604850 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Fang, X. et al. Multicolor photo-crosslinkable AIEgens toward compact nanodots for subcellular imaging and STED nanoscopy. Small 13, 1702128 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Li, D., Qin, W., Xu, B., Qian, J. & Tang, B. Z. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Adv. Mater. 29, 1703643 (2017).

    Article  CAS  Google Scholar 

  23. 23.

    Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Lowe, A. R. et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467, 600–603 (2010). This paper systematically studies how the nuclear pore complex facilitates the translocation of transport cargo complexes by tracking a large number of single protein-functionalized quantum dots.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    Cui, B. et al. One at a time, live tracking of NGF axonal transport using quantum dots. Proc. Natl. Acad. Sci. USA 104, 13666–13671 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. 26.

    Chowdary, P. D. et al. Nanoparticle-assisted optical tethering of endosomes reveals the cooperative function of dyneins in retrograde axonal transport. Sci. Rep. 5, 18059 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Warshaw, D. M. et al. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys. J. 88, L30–L32 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Yu, J. et al. Nanoscale 3D tracking with conjugated polymer nanoparticles. J. Am. Chem. Soc. 131, 18410–18414 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Chang, Y.-R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–288 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. 30.

    Haziza, S. et al. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12, 322–328 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Tzeng, Y. K. et al. Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew. Chem. Int. Ed. Engl. 50, 2262–2265 (2011). This paper demonstrates STED super-resolution imaging of single photostable fluorescent nanodiamonds in cells.

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Bae, Y. M. et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials 33, 9080–9086 (2012).

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Nam, S. H. et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew. Chem. 123, 6217–6221 (2011). This paper reports real-time tracking of near-infrared excited photostable upconverting nanoparticles in living cells for as long as 6 h.

    Article  Google Scholar 

  34. 34.

    Jo, H. L. et al. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles. Nanoscale 7, 19397–19402 (2015).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Liu, M. et al. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8, 15646 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Tracking nanoparticles by eye. Nat. Methods 15, 164 (2018).

    Google Scholar 

  37. 37.

    Wang, F. et al. Microscopic inspection and tracking of single upconversion nanoparticles in living cells. Light Sci. Appl. 7, 18007 (2018). This paper shows that single upconversion nanoparticles are very bright, stable and bleach resistant, and can be detected within cells by eye through the microscope eyepiece, thus providing a new tool for tracking experiments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sedlmeier, A. & Gorris, H. H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 44, 1526–1560 (2015).

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Wegner, K. D. & Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Derfus, A. M., Chan, W. C. & Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16, 961–966 (2004).

    Article  CAS  Google Scholar 

  41. 41.

    Delehanty, J. B., Mattoussi, H. & Medintz, I. L. Delivering quantum dots into cells: strategies, progress and remaining issues. Anal. Bioanal. Chem. 393, 1091–1105 (2009).

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G. & Dahan, M. Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6, 1491–1495 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Sun, Y. et al. A supramolecular self-assembly strategy for upconversion nanoparticle bioconjugation. Chem. Commun. (Camb.) 54, 3851–3854 (2018).

    Article  CAS  Google Scholar 

  44. 44.

    Drees, C. et al. Engineered upconversion nanoparticles for resolving protein interactions inside living cells. Angew. Chem. Int. Ed. Engl. 55, 11668–11672 (2016).

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Jung, Y. K., Shin, E. & Kim, B.-S. Cell nucleus-targeting zwitterionic carbon dots. Sci. Rep. 5, 18807 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. 46.

    Wu, L., Li, X., Ling, Y., Huang, C. & Jia, N. Morpholine derivative-functionalized carbon dots-based fluorescent probe for highly selective lysosomal imaging in living cells. ACS Appl. Mater. Interfaces 9, 28222–28232 (2017).

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Pinaud, F., King, D., Moore, H.-P. & Weiss, S. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J. Am. Chem. Soc. 126, 6115–6123 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. 48.

    Navas-Moreno, M. et al. Nanoparticles for live cell microscopy: a surface-enhanced Raman scattering perspective. Sci. Rep. 7, 4471 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Wildanger, D. et al. Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-ångström emitter localization. Adv. Mater. 24, OP309–OP313 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. 50.

    Han, K. Y., Kim, S. K., Eggeling, C. & Hell, S. W. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett. 10, 3199–3203 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Chen, X. et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light Sci. Appl. 4, e230 (2015).

    CAS  Google Scholar 

  52. 52.

    Han, K. Y. et al. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett. 9, 3323–3329 (2009).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Yang, X. et al. Sub-diffraction imaging of nitrogen-vacancy centers in diamond by stimulated emission depletion and structured illumination. RSC Advances 4, 11305–11310 (2014).

    Article  CAS  Google Scholar 

  54. 54.

    Chen, E. H., Gaathon, O., Trusheim, M. E. & Englund, D. Wide-field multispectral super-resolution imaging using spin-dependent fluorescence in nanodiamonds. Nano Lett. 13, 2073–2077 (2013).

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Yahiatene, I., Hennig, S., Müller, M. & Huser, T. Entropy-based super-resolution imaging (ESI): from disorder to fine detail. ACS Photonics 2, 1049–1056 (2015).

    Article  CAS  Google Scholar 

  56. 56.

    Mandula, O., Šestak, I. Š., Heintzmann, R. & Williams, C. K. Localisation microscopy with quantum dots using non-negative matrix factorisation. Opt. Express 22, 24594–24605 (2014).

    Article  PubMed  Google Scholar 

  57. 57.

    Cox, S. et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat. Methods 9, 195–200 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Hennig, S., Mönkemöller, V., Böger, C., Müller, M. & Huser, T. Nanoparticles as nonfluorescent analogues of fluorophores for optical nanoscopy. ACS Nano 9, 6196–6205 (2015).

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Ando, J., Fujita, K., Smith, N. I. & Kawata, S. Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett. 11, 5344–5348 (2011).

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Yang, B., Przybilla, F., Mestre, M., Trebbia, J.-B. & Lounis, B. Large parallelization of STED nanoscopy using optical lattices. Opt. Express 22, 5581–5589 (2014).

    Article  PubMed  Google Scholar 

  61. 61.

    Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA 109, E135–E143 (2012).

    Article  PubMed  Google Scholar 

  62. 62.

    Chmyrov, A. et al. Nanoscopy with more than 100,000 ‘doughnuts’. Nat. Methods 10, 737–740 (2013).

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Zhanghao, K. et al. Super-resolution with dipole orientation mapping via polarization demodulation. Light Sci. Appl. 5, e16166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Hafi, N. et al. Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat. Methods 11, 579–584 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. 65.

    Rittweger, E., Han, K., Irvine, S., Eggeling, C. & Hell, S. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3, 144–147 (2009).

    Article  CAS  Google Scholar 

  66. 66.

    Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  PubMed  CAS  Google Scholar 

  67. 67.

    Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006).

    Article  PubMed  CAS  Google Scholar 

  68. 68.

    Park, H. Y. et al. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343, 422–424 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. 69.

    Lubeck, E. & Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat. Methods 9, 743–748 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. 70.

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. 71.

    Lu, Y. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 8, 32–36 (2014).

    Article  CAS  Google Scholar 

  72. 72.

    Dong, H. et al. Versatile spectral and lifetime multiplexing nanoplatform with excitation orthogonalized upconversion luminescence. ACS Nano 11, 3289–3297 (2017).

    Article  PubMed  CAS  Google Scholar 

  73. 73.

    Lin, G., Baker, M. A. B., Hong, M. & Jin, D. The quest for optical multiplexing in bio-discoveries. Chem 4, 997–1021 (2018).

    Article  CAS  Google Scholar 

  74. 74.

    Liu, D. et al. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals. Nat. Commun. 7, 10254 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. 75.

    O’Neill, J. Rapid Diagnostics: Stopping Unnecessary Use of Antibiotics (Review on Antimicrobial Resistance, London, 2015).

  76. 76.

    Plochowietz, A., Crawford, R. & Kapanidis, A. N. Characterization of organic fluorophores for in vivo FRET studies based on electroporated molecules. Phys. Chem. Chem. Phys. 16, 12688–12694 (2014).

    Article  PubMed  CAS  Google Scholar 

  77. 77.

    van Oijen, A. M. & Dixon, N. E. Probing molecular choreography through single-molecule biochemistry. Nat. Struct. Mol. Biol. 22, 948–952 (2015).

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Gooding, J. J. & Gaus, K. Single-molecule sensors: challenges and opportunities for quantitative analysis. Angew. Chem. Int. Ed. Engl. 55, 11354–11366 (2016).

    Article  PubMed  CAS  Google Scholar 

  79. 79.

    Hoyer, P., Staudt, T., Engelhardt, J. & Hell, S. W. Quantum dot blueing and blinking enables fluorescence nanoscopy. Nano Lett. 11, 245–250 (2011).

    Article  PubMed  CAS  Google Scholar 

  80. 80.

    Xu, J., Tehrani, K. F. & Kner, P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano 9, 2917–2925 (2015).

    Article  PubMed  CAS  Google Scholar 

  81. 81.

    Chen, X. et al. Multicolor super-resolution fluorescence microscopy with blue and carmine small photoblinking polymer dots. ACS Nano 11, 8084–8091 (2017).

    Article  PubMed  CAS  Google Scholar 

  82. 82.

    McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat. Nanotechnol. 6, 358–363 (2011).

    Article  PubMed  CAS  Google Scholar 

  83. 83.

    Leduc, C. et al. A highly specific gold nanoprobe for live-cell single-molecule imaging. Nano Lett. 13, 1489–1494 (2013).

    Article  PubMed  CAS  Google Scholar 

  84. 84.

    Wu, C. et al. Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. Angew. Chem. Int. Ed. Engl. 49, 9436–9440 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. 85.

    Irvine, S. E., Staudt, T., Rittweger, E., Engelhardt, J. & Hell, S. W. Direct light-driven modulation of luminescence from Mn-doped ZnSe quantum dots. Angew. Chem. Int. Ed. Engl. 47, 2685–2688 (2008).

    Article  PubMed  CAS  Google Scholar 

  86. 86.

    Kolesov, R. et al. Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles. Phys. Rev. B 84, 153413 (2011).

    Article  CAS  Google Scholar 

  87. 87.

    Cutler, P. J. et al. Multi-color quantum dot tracking using a high-speed hyperspectral line-scanning microscope. PLoS One 8, e64320 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Keller, A. M. et al. 3-dimensional tracking of non-blinking ‘giant’ quantum dots in live cells. Adv. Funct. Mater. 24, 4796–4803 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Hatakeyama, H., Nakahata, Y., Yarimizu, H. & Kanzaki, M. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol. Biol. Cell 28, 173–181 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge S. Qu (Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences), C. Wu (Southern University of Science and Technology), Q. Su, O. Shimoni, and F. Wang for valuable technical discussions. D.J., A.M.v.O., and P.X. acknowledge support from the Australian Research Council (FT 130100517, FL140100027) and the National Natural Science Foundation of China (61729501, 51720105015). J.E. is grateful for financial support from the Cluster of Excellence and DFG Research Centre Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Dayong Jin or Peng Xi or Jörg Enderlein or Antoine M. van Oijen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, D., Xi, P., Wang, B. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Methods 15, 415–423 (2018). https://doi.org/10.1038/s41592-018-0012-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing