Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adaptive selection at G6PD and disparities in diabetes complications

Abstract

Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828-T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828-T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828-T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plots of diabetic retinopathy genome-wide association studies by genetic ancestry.
Fig. 2: Box plots summarizing differences in HbA1c, plasma glucose and predicted HbA1c by G6PDdef status.
Fig. 3: Fitted log-odds of diabetic retinopathy by G6PDdef allele status.
Fig. 4: PheWAS plots summarizing the association of the G6PDdef risk allele with PheCodes in men with and without diabetes with NH-AFR ancestry.

Similar content being viewed by others

Data availability

The individual-level data from BioVU, MVP and MGBB are not able to be shared. Individual-level data from the UK Biobank are freely available to approved researchers. Individual-level phenotype data are also available to UK Biobank approved researchers for the health record datasets from which our trait of interest was derived. Instructions for access to UK Biobank data are available at https://www.ukbiobank.ac.uk/enable-your-research. The published article includes all significant results generated during this study. Summary statistics for genome-wide significant variants are available in the Supplementary Tables. Statistically significant reports for S-PrediXcan results for all tissues and PheWAS analyses are also available in the Supplementary Tables.

References

  1. Teo, Z. L. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128, 1580–1591 (2021).

    Article  PubMed  Google Scholar 

  2. Sachdeva, M. M. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy. Curr. Diab. Rep. 21, 65 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yumnamcha, T., Guerra, M., Singh, L. P. & Ibrahim, A. S. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy. Antioxidants (Basel) 9, 1244 (2020).

    Article  PubMed  CAS  Google Scholar 

  4. Miller, R. G. & Orchard, T. J. Understanding metabolic memory: a tale of two studies. Diabetes 69, 291–299 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Wong, T. Y. et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am. J. Ophthalmol. 141, 446–455 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Varma, R., Torres, M., Peña, F., Klein, R. & Azen, S. P. Prevalence of diabetic retinopathy in adult Latinos: the Los Angeles Latino eye study. Ophthalmology 111, 1298–1306 (2004).

    Article  PubMed  Google Scholar 

  7. Zhang, X. et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304, 649–656 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lundeen, E. A. et al. Prevalence of diabetic retinopathy in the US in 2021. JAMA Ophthalmol. 141, 747–754 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Burdon, K. P. et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 58, 2288–2297 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Graham, P. S. et al. Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy. BMC Med. Genet. 19, 71 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Imamura, M. et al. Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum. Mol. Genet. 30, 716–726 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liu, C. et al. Genome-wide association study for proliferative diabetic retinopathy in Africans. NPJ Genom. Med. 4, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Meng, W. et al. A genome-wide association study suggests new evidence for an association of the NADPH oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 96, e811–e819 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Peng, D. et al. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetologia 58, 1231–1238 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Pollack, S. et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control. Diabetes 68, 441–456 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Shtir, C. et al. Exome-based case-control association study using extreme phenotype design reveals novel candidates with protective effect in diabetic retinopathy. Hum. Genet. 135, 193–200 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Looker, H. C. et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes 56, 1160–1166 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Liang, X. Y. et al. Evidence of positively selected G6PD A- allele reduces risk of Plasmodium falciparum infection in African population on Bioko Island. Mol. Genet. Genom. Med. 8, e1061 (2020).

    Article  CAS  Google Scholar 

  19. Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    Article  PubMed  CAS  Google Scholar 

  20. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Leong, A. & Wheeler, E. Genetics of HbA1c: a case study in clinical translation. Curr. Opin. Genet. Dev. 50, 79–85 (2018).

    Article  PubMed  CAS  Google Scholar 

  22. Chen, Z. et al. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. Hum. Mol. Genet. 22, 2529–2538 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. da Rocha, J. E. B. et al. G6PD distribution in sub-Saharan Africa and potential risks of using chloroquine/hydroxychloroquine based treatments for COVID-19. Pharmacogenomics J. 21, 649–656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Farris, J. C. et al. Grainyhead-like 2 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: effects on anoikis. Mol. Cancer Res. 14, 528–538 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tomasoni, M. et al. Genome-wide association studies of retinal vessel tortuosity identify numerous novel loci revealing genes and pathways associated with ocular and cardiometabolic diseases. Ophthalmol. Sci. 3, 100288 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Veluchamy, A. et al. Novel genetic locus influencing retinal venular tortuosity is also associated with risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 39, 2542–2552 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bansal, A. et al. Integrative omics analyses reveal epigenetic memory in diabetic renal cells regulating genes associated with kidney dysfunction. Diabetes 69, 2490–2502 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jin, T. & Liu, L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol. Endocrinol. 22, 2383–2392 (2008).

    Article  PubMed  CAS  Google Scholar 

  30. Gloyn, A. L., Braun, M. & Rorsman, P. Type 2 diabetes susceptibility gene TCF7L2 and its role in beta-cell function. Diabetes 58, 800–802 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Del Bosque-Plata, L., Martínez-Martínez, E., Espinoza-Camacho, M. & Gragnoli, C. The role of TCF7L2 in type 2 diabetes. Diabetes 70, 1220–1228 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Alavi, M. V. et al. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci. Rep. 6, 18602 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Han, H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49, 185–197 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sears, J., Gilman, J. & Sternberg, P. Jr. Inherited retinal arteriolar tortuosity with retinal hemorrhages. Arch. Ophthalmol. 116, 1185–1188 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. Han, H. C., Chesnutt, J. K., Garcia, J. R., Liu, Q. & Wen, Q. Artery buckling: new phenotypes, models, and applications. Ann. Biomed. Eng. 41, 1399–1410 (2013).

    Article  PubMed  Google Scholar 

  36. Leong, A. et al. Association of G6PD variants with hemoglobin A1c and impact on diabetes diagnosis in East Asian individuals. BMJ Open Diabetes Res. Care 8, e001091 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mbanefo, E. C. et al. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis. Sci. Rep. 7, 45963 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cheng, Y. J. et al. Prevalence of diabetes by race and ethnicity in the United States, 2011–2016. JAMA 322, 2389–2398 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. McKean-Cowdin, R. et al. Prevalence and risk factors for DR in the African American Eye Disease Study. Invest. Ophthalmol. Vis. Sci. 60, 1089–1089 (2019).

    Google Scholar 

  40. Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wheeler, E. et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15, 379–393 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Pauling, L. et al. Sickle cell anemia a molecular disease. Science 110, 543–548 (1949).

    Article  PubMed  CAS  Google Scholar 

  45. Bigham, A. W. & Lee, F. S. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 28, 2189–2204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article  PubMed  Google Scholar 

  48. Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Allen, N. E., Sudlow, C., Peakman, T. & Collins, R. UK Biobank data: come and get it. Sci. Transl. Med. 6, 224ed224 (2014).

    Article  Google Scholar 

  50. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Karlson, E. W., Boutin, N. T., Hoffnagle, A. G. & Allen, N. L. Building the Partners HealthCare Biobank at Partners Personalized Medicine: informed consent, return of research results, recruitment lessons and operational considerations. J. Pers. Med. 6, 2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Dumitrescu, L. et al. Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records. Genet. Med. 12, 648–650 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Breeyear, J. H. et al. Development of portable electronic health record based algorithms to identify individuals with diabetic retinopathy. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2023.11.10.23298311v2 (2023).

  57. Eastwood, S. V. et al. Algorithms for the capture and adjudication of prevalent and incident diabetes in UK Biobank. PLoS ONE 11, e0162388 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  63. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).

    Article  Google Scholar 

  64. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30, 2375–2376 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gerstein, H. C. et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article  PubMed  CAS  Google Scholar 

  67. Therneau, T. M. A package for survival analysis in R. ‘Survival’ V3.5-8 https://cran.r-project.org/src/contrib/Archive/survival/survival_3.5-8.tar.gz (2020).

Download references

Acknowledgements

This research is based on data from the Million Veteran Program, the Office of Research and Development and the Veterans Health Administration. This research was funded in part by the Extramural Research Programs of the NIH and in part by the Intramural Research Program of the National Institute of Environmental Health Sciences. This publication does not represent the views of the Department of Veterans Affairs or the US Government. Mass General Brigham Biobank provided samples, genomic data and health information data. Efforts were supported by the NEI (grant nos. F31 EY033663 (J.H.B.), T32 EY021453-10 (J.H.B.), R01 EY025295 (Y.S.), R01 EY032159 (Y.S.), P30 EY026877 (Y.S.), P30 EY025885 (N.S.P.), P30 EY011373 (S.K.I.)), the NICHD (grant no. K12 HD043483 (J.N.H.)), the NIAMS (grant nos. R01 AR074989 (A.G.), K12 AR084232-24 (T.L.E.)), the NIDDK (grant nos. R01 DK127083 (M.K.R.), R01 DK127083 (L.S.P.), K01 DK120631 (A.G.)), the NHLBI (grant nos. R01 HL110380 (J.B.B.), R01 HL161516 (A.G.)), the NIAID (grant no. R21 AI156161 (L.S.P.)), the NHGRI (grant nos. U01 HG011723 (J.M.M.), U01 HG011723 (A.L.)), the NCATS (grant nos. TL1 TR002244 (J.H.B.), UM1 TR00406 (J.B.B.), UL1 TR002378 (L.S.P.)), the NCCDPHP (grant no. U18 DP006711 (L.S.P.)), the VA Office of Research & Development (grant nos. CSP 2002 (M.K.R.), CSP 2008 (L.S.P.), I01 CX001899 (L.S.P.), I01 CX001737 (L.S.P.), I01 BX005831 (L.S.P.), IK6 BX005233 (N.S.P.), I01 BX004557 (N.S.P.), I01 CX001481 (Y.S.)), the Doris Duke Foundation (grant no. 2020096 (A.L.)), the American Diabetes Association (grant nos. 1-19-ICTS-068 (J.M.M.), 11-22-ICTSPM-16 (J.M.M.), 7-22-ICTSPM-23 (A.L.)), a Cystic Fibrosis Foundation Award (grant no. PHILLI12A0 (L.S.P.)), an Unrestricted Grant from Research to Prevent Blindness (Stanford University, Y.S.) and the Intramural Research Program of the National Institute of Environmental Health Sciences (J.H.B., J.S.H. and A.A.M.-R.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.H.B., P.W.W., Y.V.S., A.G., L.S.P. and T.L.E. conceptualized the study. J.H.B., S.L.M., T.B.B., A.M.H., C.L.N., D.M.R., J.B.B., A.L., J.M.M., Y.V.S., A.G., L.S.P. and T.L.E. were responsible for the methodology. J.H.B., J.N.H., P.H.S., J.S.H. and H.M.P. performed the investigations. J.H.B., L.S.P. and T.L.E. wrote the original draft of the manuscript. J.H.B., J.N.H., J.S.H., S.L.M., T.B.B., P.D.R., J.B.M., M.K.R., Y.S., M.G.L., A.G.B., A.M.H., S.K.I., D.M.R., J.B.B., J.M.M., L.S., M.A.B., N.S.P., A.A.M.-R., P.W.W., Y.V.S., A.G., L.S.P. and T.L.E. reviewed and edited the manuscript. J.H.B., J.S.H. and A.G. performed visualizations. A.M.H., J.M.M., L.S., A.A.M.-R., Y.V.S., A.G., L.S.P. and T.L.E. were responsible for resources. B.C., A.K., C.W.H. and O.D.W. curated the data. P.W.W., Y.V.S., A.G., L.S.P. and T.L.E. supervised the study. P.W.W., Y.V.S., A.G., L.S.P. and T.L.E. were responsible for funding acquisition.

Corresponding authors

Correspondence to Ayush Giri or Todd L. Edwards.

Ethics declarations

Competing interests

L.S.P. declares that there is no duality of interest associated with this manuscript. With regard to potential conflicts of interest, L.S.P. has or had research support from Merck, Pfizer, Eli Lilly, Novo Nordisk, Sanofi, PhaseBio, Roche, Abbvie, Vascular Pharmaceuticals, Janssen, Glaxo SmithKline and the Cystic Fibrosis Foundation. L.S.P. is also a cofounder, Officer and Board member and stockholder for a company, Diasyst, Inc., which markets software aimed to help improve diabetes management. J.H.B., J.N.H., P.H.S., J.S.H., H.M.P., S.L.M., B.C., A.K., T.B.B., C.W.H., P.D.R., J.B.M., M.K.R., Y.S., M.G.L., A.G.B., O.D.W., A.M.H., C.L.N., S.K.I., D.M.R., J.B.B., A.L., J.M.M., L.S., M.A.B., N.S.P., A.A.M.-R., P.W.W., Y.V.S., A.G. and T.L.E. declare no conflict of interests.

Peer review

Peer review information

Nature Medicine thanks Julia Carrasco-Zanini-Sanchez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Sonia Muliyil, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Line graph summarizing the fitted log-odds of diabetic retinopathy and corresponding 95% confidence band by mean HbA1c post diabetes diagnosis, stratified by G6PDdef risk allele status in men of NH-AFR ancestry with diabetes.

(a) Line graph summarizing the fitted log-odds of diabetic retinopathy and corresponding 95% confidence band by mean HbA1c post diabetes diagnosis, stratified by G6PDdef risk allele status in men of NH-AFR ancestry with diabetes. The y-axis shows mean fitted log-odds of diabetic retinopathy, the x-axis shows HbA1c (%), the colored lines represent G6PDdef risk allele status, between the dotted lines represents 99% of the data. (b) The individual points used to calculate the fitted log-odds of diabetic retinopathy and corresponding 95% confidence band by mean HbA1c post diabetes diagnosis, stratified by G6PDdef risk allele status in men of NH-AFR ancestry with diabetes.

Supplementary information

Supplementary Information

Supplementary information and Tables 1–25.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breeyear, J.H., Hellwege, J.N., Schroeder, P.H. et al. Adaptive selection at G6PD and disparities in diabetes complications. Nat Med 30, 2480–2488 (2024). https://doi.org/10.1038/s41591-024-03089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-03089-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing