Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping

Abstract

Fibrotic diseases affect multiple organs and are associated with morbidity and mortality. To examine organ-specific and shared biologic mechanisms that underlie fibrosis in different organs, we developed machine learning models to quantify T1 time, a marker of interstitial fibrosis, in the liver, pancreas, heart and kidney among 43,881 UK Biobank participants who underwent magnetic resonance imaging. In phenome-wide association analyses, we demonstrate the association of increased organ-specific T1 time, reflecting increased interstitial fibrosis, with prevalent diseases across multiple organ systems. In genome-wide association analyses, we identified 27, 18, 11 and 10 independent genetic loci associated with liver, pancreas, myocardial and renal cortex T1 time, respectively. There was a modest genetic correlation between the examined organs. Several loci overlapped across the examined organs implicating genes involved in a myriad of biologic pathways including metal ion transport (SLC39A8, HFE and TMPRSS6), glucose metabolism (PCK2), blood group antigens (ABO and FUT2), immune function (BANK1 and PPP3CA), inflammation (NFKB1) and mitosis (CENPE). Finally, we found that an increasing number of organs with T1 time falling in the top quintile was associated with increased mortality in the population. Individuals with a high burden of fibrosis in ≥3 organs had a 3-fold increase in mortality compared to those with a low burden of fibrosis across all examined organs in multivariable-adjusted analysis (hazard ratio = 3.31, 95% confidence interval 1.77–6.19; P = 1.78 × 10−4). By leveraging machine learning to quantify T1 time across multiple organs at scale, we uncovered new organ-specific and shared biologic pathways underlying fibrosis that may provide therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study flow chart.
Fig. 2: Multi-organ T1 time association with disease.
Fig. 3: Multi-organ T1 time genome-wide association results.
Fig. 4: Genetic correlation of multi-organ T1 time.
Fig. 5: All-cause mortality stratified by number of organs with T1 time in the top quintile.

Similar content being viewed by others

Data availability

UKB data are made available to researchers from research institutions with genuine research inquiries, following IRB and UKB approval. Genome-wide association analysis summary statistics are available from the Downloads page of the Cardiovascular Disease Knowledge Portal (https://cvd.hugeamp.org/). Genome Reference Consortium Human Build 37 (GRCh37) data are publicly available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/. Genome Reference Consortium Human Build 38 (GRCh38) data are publicly available at https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/. Single-cell data for each organ are available via: Liver, (Gene Expression Omnibus (GEO) accession number GSE185477); Pancreas, https://doi.org/10.6084/m9.figshare.12173232 (ref. 108); Heart, processed single-cell data are available at https://singlecell.broadinstitute.org/single_cell/study/SCP1849/ and raw sequence data are available for authorized users at the database of Genotypes and Phenotypes, under accession number phs001539.v4.p1; Kidney, https://doi.org/10.6084/m9.figshare.21587670.v1 (ref. 109) (single-cell data) and https://doi.org/10.6084/m9.figshare.21587679.v1 (ref. 110) (single-nucleus data). Source data are provided with this paper. All other data are contained within the article and its supplementary information.

Code availability

Code used to ingest, for QC and to train machine learning models is available at https://github.com/broadinstitute/ml4h under an open-source BSD license.

References

  1. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, Y. et al. Aging reprograms the hematopoietic-vascular niche to impede regeneration and promote fibrosis. Cell Metab. 33, 395–410 (2021).

    CAS  PubMed  Google Scholar 

  3. Banerjee, R. et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J. Hepatol. 60, 69–77 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Cheng, M. et al. T1 mapping for the diagnosis of early chronic pancreatitis: correlation with Cambridge classification system. Br. J. Radiol. 94, 20200685 (2021).

    PubMed  PubMed Central  Google Scholar 

  5. Diao, K. et al. Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J. Cardiovasc. Magn. Reson. 18, 92 (2017).

    Google Scholar 

  6. Mao, W. et al. Evaluation of interstitial fibrosis in chronic kidney disease by multiparametric functional MRI and histopathologic analysis. Eur. Radiol. 33, 4138–4147 (2023).

    PubMed  Google Scholar 

  7. Dekkers, I. A. et al. Consensus-based technical recommendations for clinical translation of renal T1 and T2 mapping MRI. MAGMA 33, 163–176 (2020).

    PubMed  Google Scholar 

  8. Nauffal, V. et al. Genetics of myocardial interstitial fibrosis in the human heart and association with disease. Nat. Genet. 55, 777–786 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Inker, L. A. et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367, 20–29 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Marre, M., Bouhanick, B. & Berrut, G. Microalbuminuria. Curr. Opin. Nephrol. Hypertens. 3, 558–563 (1994).

    CAS  PubMed  Google Scholar 

  11. Welsh, C. E. et al. Urinary sodium excretion, blood pressure, and risk of future cardiovascular disease and mortality in subjects without prior cardiovascular disease. Hypertension 73, 1202–1209 (2019).

    CAS  PubMed  Google Scholar 

  12. O’Dushlaine, C. et al. Genome-wide association study of liver fat, iron, and extracellular fluid fraction in the UK Biobank. Preprint at medRxiv https://doi.org/10.1101/2021.10.25.21265127 (2021).

  13. Parisinos, C. A. et al. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis. J Hepatol. 73, 241–251 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Karlsen, T. H. & Chung, B. K. Genetic risk and the development of autoimmune liver disease. Dig. Dis. 33, 13–24 (2015).

    PubMed  Google Scholar 

  15. Donaldson, P. T. Genetics of liver disease: immunogenetics and disease pathogenesis. Gut 53, 599–608 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mack, C. L. HLA Associations in pediatric autoimmune liver diseases: current state and future research initiatives. Front. Immunol. 13, 1019339 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hitomi, Y. et al. NFKB1 and MANBA confer disease susceptibility to primary biliary cholangitis via independent putative primary functional variants. Cell Mol. Gastroenterol. Hepatol. 7, 515–532 (2019).

    PubMed  Google Scholar 

  19. Ueno, K. et al. Integrated GWAS and mRNA microarray analysis identified IFNG and CD40L as the central upstream regulators in primary biliary cholangitis. Hepatol. Commun. 4, 724–738 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Luedde, T. & Schwabe, R. F. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 8, 108–118 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pilling, L. C. et al. Common conditions associated with hereditary haemochromatosis genetic variants: cohort study in UK Biobank. BMJ 364, k5222 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Liu, Y. et al. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. Elife 10, e65554 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ramos-Tovar, E. & Muriel, P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants 9, 1279 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Innes, H. et al. Genome-wide association study for alcohol-related cirrhosis identifies risk loci in MARC1 and HNRNPUL1. Gastroenterology 159, 1276–1289 (2020).

    CAS  PubMed  Google Scholar 

  25. He, P. et al. Reduced expression of CENP-E contributes to the development of hepatocellular carcinoma and is associated with adverse clinical features. Biomed. Pharmacother. 123, 109795 (2020).

    CAS  PubMed  Google Scholar 

  26. Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840–860 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vujkovic, M. et al. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nat. Genet. 54, 761–771 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Subudhi, S. et al. Distinct hepatic gene-expression patterns of NAFLD in patients with obesity. Hepatol Commun 6, 77–89 (2022).

    CAS  PubMed  Google Scholar 

  29. Haas, M. E. et al. Machine learning enables new insights into genetic contributions to liver fat accumulation. Cell Genom. 1, 100066 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y. & Kato, J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 88, 7–15 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Mojtahed, A. et al. Reference range of liver corrected T1 values in a population at low risk for fatty liver disease-a UK Biobank sub-study, with an appendix of interesting cases. Abdom. Radiol. 44, 72–84 (2019).

    CAS  Google Scholar 

  32. Rosendahl, J. et al. Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis. Gut 67, 1855–1863 (2018).

    CAS  PubMed  Google Scholar 

  33. Weiss, F. U. et al. Fucosyltransferase 2 (FUT2) non-secretor status and blood group B are associated with elevated serum lipase activity in asymptomatic subjects, and an increased risk for chronic pancreatitis: a genetic association study. Gut 64, 646–656 (2015).

    CAS  PubMed  Google Scholar 

  34. Westmoreland, J. J. et al. Pancreas-specific deletion of Prox1 affects development and disrupts homeostasis of the exocrine pancreas. Gastroenterology 142, 999–1009 (2012).

    CAS  PubMed  Google Scholar 

  35. Hernandez, G. et al. Pancreatitis is an FGF21-deficient state that is corrected by replacement therapy. Sci. Transl. Med. 12, eaay5186 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mattis, K. K. et al. Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression. Diabetologia https://doi.org/10.1007/s00125-022-05856-6 (2022).

  37. Matsuda, T. et al. Ablation of C/EBPβ alleviates ER stress and pancreatic beta cell failure through the GRP78 chaperone in mice. J. Clin. Invest. 120, 115–126 (2010).

    CAS  PubMed  Google Scholar 

  38. Aksit, M. A. et al. Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis. Am. J. Hum. Genet. 109, 1894–1908 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Geng, L. et al. β-Klotho promotes glycolysis and glucose-stimulated insulin secretion via GP130. Nat. Metab. 4, 608–626 (2022).

    CAS  PubMed  Google Scholar 

  40. Xie, J. et al. Magnesium transporter protein solute carrier family 41 member 1 suppresses human pancreatic ductal adenocarcinoma through magnesium-dependent Akt/mTOR inhibition and bax-associated mitochondrial apoptosis. Aging 11, 2681–2698 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, J.-A. et al. Comprehensive functional analysis of the tousled-like kinase 2 frequently amplified in aggressive luminal breast cancers. Nat. Commun. 7, 12991 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jie, R., Zhu, P., Zhong, J., Zhang, Y. & Wu, H. LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-ĸB pathway in diabetic nephropathy. Diabetol. Metab. Syndr. 12, 77 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Su, J. et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 577, 566–571 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Peng, L. et al. A stop-gain mutation in GXYLT1 promotes metastasis of colorectal cancer via the MAPK pathway. Cell Death Dis. 13, 395 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, P. et al. Menin coordinates C/EBPβ-mediated TGF-β signaling for epithelial-mesenchymal transition and growth inhibition in pancreatic cancer. Mol. Ther. Nucleic Acids 18, 155–165 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Waldron, R. T. et al. Ethanol induced disordering of pancreatic acinar cell endoplasmic reticulum: an ER stress/defective unfolded protein response model. Cell Mol. Gastroenterol. Hepatol. 5, 479–497 (2018).

    PubMed  PubMed Central  Google Scholar 

  47. Hartley, T. et al. Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin. BMC Cell Biol. 11, 59 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Zhou, L. et al. ATF6 regulates the development of chronic pancreatitis by inducing p53-mediated apoptosis. Cell Death Dis. 10, 662 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Pattaro, C. et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 7, 10023 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Morris, A. P. et al. Trans-ethnic kidney function association study reveals putative causal genes and effects on kidney-specific disease aetiologies. Nat. Commun. 10, 29 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hellwege, J. N. et al. Mapping eGFR loci to the renal transcriptome and phenome in the VA Million Veteran Program. Nat. Commun. 10, 3842 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Doke, T. et al. Genome-wide association studies identify the role of caspase-9 in kidney disease. Sci. Adv. 7, eabi8051 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gómez Hernández, G., Morell, M. & Alarcón-Riquelme, M. E. The role of BANK1 in B cell signaling and disease. Cells 10, 1184 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Bolin, K. et al. Variants in BANK1 are associated with lupus nephritis of European ancestry. Genes Immun. 22, 194–202 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dutta, D. et al. Recruitment of calcineurin to the TCR positively regulates T cell activation. Nat. Immunol. 18, 196–204 (2017).

    CAS  PubMed  Google Scholar 

  56. Ume, A. C., Wenegieme, T.-Y. & Williams, C. R. Calcineurin inhibitors: a double-edged sword. Am. J. Physiol. Renal Physiol. 320, F336–F341 (2021).

    CAS  PubMed  Google Scholar 

  57. Liu, H. et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat. Genet. 54, 950–962 (2022).

    CAS  PubMed  Google Scholar 

  58. Charlton, J. R. et al. Beyond the tubule: pathological variants of LRP2, encoding the megalin receptor, result in glomerular loss and early progressive chronic kidney disease. Am. J. Physiol. Renal Physiol. 319, F988–F999 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Larsen, C. P. et al. LDL receptor-related protein 2 (Megalin) as a target antigen in human kidney anti-brush border antibody disease. J. Am. Soc. Nephrol. 29, 644–653 (2018).

    CAS  PubMed  Google Scholar 

  60. Rothé, B., Gagnieux, C., Leal-Esteban, L. C. & Constam, D. B. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell. Signal. 68, 109499 (2020).

    PubMed  Google Scholar 

  61. Stark, D. D. et al. Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology 154, 137–142 (1985).

    CAS  PubMed  Google Scholar 

  62. Andrews, T. S. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6, 821–840 (2022).

    CAS  PubMed  Google Scholar 

  63. Tosti, L. et al. Single-nucleus and in situ RNA-sequencing reveal cell topographies in the human pancreas. Gastroenterology 160, 1330–1344 (2021).

    CAS  PubMed  Google Scholar 

  64. Simonson, B. et al. Single-nucleus RNA sequencing in ischemic cardiomyopathy reveals common transcriptional profile underlying end-stage heart failure. Cell Rep. 42, 112086 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Quatredeniers, M. et al. Meta-analysis of single-cell and single-nucleus transcriptomics reveals kidney cell type consensus signatures. Sci. Data 10, 361 (2023).

    PubMed  PubMed Central  Google Scholar 

  66. Serrao, E. M. et al. Magnetic resonance fingerprinting of the pancreas at 1.5 T and 3.0 T. Sci. Rep. 10, 17563 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wolf, M. et al. Magnetic resonance imaging T1- and T2-mapping to assess renal structure and function: a systematic review and statement paper. Nephrol. Dial. Transplant. 33, ii41–ii50 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoon, J. H., Lee, J. M., Paek, M., Han, J. K. & Choi, B. I. Quantitative assessment of hepatic function: modified look-locker inversion recovery (MOLLI) sequence for T1 mapping on Gd-EOB-DTPA-enhanced liver MR imaging. Eur. Radiol. 26, 1775–1782 (2016).

    PubMed  Google Scholar 

  69. Messroghli, D. R. et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 19, 75 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Ashihara, N. et al. Correlation of pancreatic T1 values using modified look-locker inversion recovery sequence (MOLLI) with pancreatic exocrine and endocrine function. J. Clin. Med. 9, 1805 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Farmer, A. & Fox, R. Diagnosis, classification, and treatment of diabetes. BMJ 342, d3319 (2011).

    PubMed  Google Scholar 

  72. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nebert, D. W. & Liu, Z. SLC39A8 gene encoding a metal ion transporter: discovery and bench to bedside. Hum. Genomics 13, 51 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Choi, E. -K., Nguyen, T. -T., Gupta, N., Iwase, S. & Seo, Y. A. Functional analysis of SLC39A8 mutations and their implications for manganese deficiency and mitochondrial disorders. Sci. Rep. 8, 3163 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Mealer, R. G. et al. The schizophrenia risk locus in SLC39A8 alters brain metal transport and plasma glycosylation. Sci. Rep. 10, 13162 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin, W. et al. Hepatic metal ion transporter ZIP8 regulates manganese homeostasis and manganese-dependent enzyme activity. J. Clin. Invest. 127, 2407–2417 (2017).

    PubMed  PubMed Central  Google Scholar 

  77. Sunuwar, L. et al. Pleiotropic ZIP8 A391T implicates abnormal manganese homeostasis in complex human disease. JCI Insight 5, e140978 (2020).

    PubMed  PubMed Central  Google Scholar 

  78. Kozyrev, S. V. et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat. Genet. 40, 211–216 (2008).

    CAS  PubMed  Google Scholar 

  79. Liu, T., Zhang, L., Joo, D. & Sun, S.-C. NF-κB signaling in inflammation. Signal. Transduct. Target Ther. 2, 17023 (2017).

  80. Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172 (2014).

    PubMed  Google Scholar 

  81. Ahluwalia, T. S. et al. FUT2–ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses. Nat. Commun. 11, 6398 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ye, B. D. et al. Association of FUT2 and ABO with Crohn’s disease in Koreans. J. Gastroenterol. Hepatol. 35, 104–109 (2020).

    CAS  PubMed  Google Scholar 

  83. Wolpin, B. M. et al. Variant ABO blood group alleles, secretor status, and risk of pancreatic cancer: results from the pancreatic cancer cohort consortium. Cancer Epidemiol. Biomarkers Prev. 19, 3140–3149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lewis, L. C. et al. Hepatocyte mARC1 promotes fatty liver disease. JHEP Rep. https://doi.org/10.1016/j.jhepr.2023.100693 (2023).

  85. Ozoren, N. et al. The caspase 9 inhibitor Z-LEHD-FMK protects human liver cells while permitting death of cancer cells exposed to tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res. 60, 6259–6265 (2000).

    CAS  PubMed  Google Scholar 

  86. Kanasaki, K., Kitada, M. & Koya, D. Pathophysiology of the aging kidney and therapeutic interventions. Hypertens. Res. 35, 1121–1128 (2012).

    PubMed  Google Scholar 

  87. Gazoti Debessa, C. R., Mesiano Maifrino, L. B. & Rodrigues de Souza, R. Age related changes of the collagen network of the human heart. Mech. Ageing Dev. 122, 1049–1058 (2001).

    CAS  PubMed  Google Scholar 

  88. Hunt, N. J., (Sophie Kang, S. W., Lockwood, G. P., Le Couteur, D. G. & Cogger, V. C. Hallmarks of aging in the liver. Comput. Struct. Biotechnol. J. 17, 1151–1161 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. von Ulmenstein, S. et al. Assessment of hepatic fibrosis and inflammation with look-locker T1 mapping and magnetic resonance elastography with histopathology as reference standard. Abdom. Radiol. 47, 3746–3757 (2022).

    Google Scholar 

  90. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    PubMed  PubMed Central  Google Scholar 

  92. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. Nat. Commun. 11, 2624 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Petersen, S. E. et al. UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18, 8 (2015).

    Google Scholar 

  94. Li, C. H. & Lee, C. K. Minimum cross entropy thresholding. Pattern Recognit. 26, 617–625 (1993).

    Google Scholar 

  95. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979).

    Google Scholar 

  96. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Preprint at https://arxiv.org/abs/1512.03385 (2015).

  97. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 (eds Navab, N. et al.) vol. 9351, 234–241 (Springer International Publishing, 2015).

  98. Deng, J. et al. ImageNet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 https://doi.org/10.1109/CVPR.2009.5206848 (IEEE, 2009).

  99. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980v9 (2017).

  100. Huang, G., Liu, Z., Pleiss, G., Maaten, Lvander & Weinberger, K. Q. Convolutional networks with dense connectivity. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8704–8716 (2022).

    PubMed  Google Scholar 

  101. Wu, P. et al. Mapping ICD-10 and ICD-10-CM codes to phecodes: workflow development and initial evaluation. JMIR Med. Inform. 7, e14325 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Schizophrenia Working Group of the Psychiatric Genomics Consortium. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    PubMed Central  Google Scholar 

  104. Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics https://doi.org/10.1093/bioinformatics/btab186 (2021).

  105. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tosti, L et al. In situ RNA sequencing of the juvenile, adult and diseased pancreas. Figshare. https://doi.org/10.6084/m9.figshare.12173232.v1 (2020).

  109. Quatredeniers, M. scRNA-seq dataset. Figshare https://doi.org/10.6084/m9.figshare.21587670.v1 (2022).

  110. Quatredeniers, M. snRNA-seq dataset. Figshare https://doi.org/10.6084/m9.figshare.21587679.v1 (2022).

Download references

Acknowledgements

This research has been conducted using the UKB resource under application number 7089. We acknowledge the contributions of the UKB participants without whom this work would not have been possible. National Institutes of Health (NIH) T32HL007604 grant to V.N.; grants from the NIH (1RO1HL092577, 1R01HL157635 and 5R01HL139731), the American Heart Association (18SFRN34230127, 961045) and the European Union (MAESTRIA 965286) to P.T.E.; Scholar award from the Sarnoff Cardiovascular Research Foundation and NIH grant K08HL159346 to J.P.P.; NIH 1R01HL139731, NIH R01HL157635 and AHA 18SFRN34250007 grants to S.A.L.; NIH 5T32HL007208-42 grant to M.C.H.; Walter Benjamin Fellowship from the Deutsche Forschungsgemeinschaft (521832260) to S.K.

Author information

Authors and Affiliations

Authors

Contributions

V.N. and P.T.E. conceived the study. M.D.R.K. ingested and prepared the MRI data. V.N., M.D.R.K., P.D.A. and J.T.R., performed QC. M.D.R.K. and D.F.P. trained machine learning models. V.N. and M.D.R.K. performed the main analyses. V.N., M.D.R.K. and P.T.E. wrote the paper. All other authors contributed to the analysis plan or provided critical revisions.

Corresponding author

Correspondence to Patrick T. Ellinor.

Ethics declarations

Competing interests

M.D.R.K., P.D.A and P.B. are supported by grants from Bayer AG and IBM applying machine learning in cardiovascular disease. P.B. has consulted for Novartis and Prometheus Biosciences. P.B. is now employed by Flagship Pioneering. P.D.A. is now employed by Google. S.A.L. is now employed by Novartis. S.A.L. received sponsored research support from Bristol Myers Squibb/Pfizer, Bayer AG, Boehringer Ingelheim, Fitbit and IBM, and has consulted for Bristol Myers Squibb/Pfizer, Bayer AG, Blackstone Life Sciences and Invitae previously. P.T.E. receives sponsored research support from Bayer AG, IBM Research, Bristol Myers Squibb, Pfizer and Novo Nordisk; and has also served on advisory boards or consulted for MyoKardia and Bayer AG. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks David Brenner, Gerhard-Paul Diller, Yingkun Guo and Katalin Susztak for their contribution to the peer review of this work. Primary Handling Editor: Jerome Staal, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25.

Reporting Summary

Supplementary Tables 1–18

Spreadsheet-based supplementary tables combined into one workbook with multiple tabs.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nauffal, V., Klarqvist, M.D.R., Hill, M.C. et al. Noninvasive assessment of organ-specific and shared pathways in multi-organ fibrosis using T1 mapping. Nat Med 30, 1749–1760 (2024). https://doi.org/10.1038/s41591-024-03010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-03010-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing