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Artificial intelligence in surgery

Chris Varghese    1, Ewen M. Harrison    2, Greg O’Grady1,3 & Eric J. Topol    4 

Artificial intelligence (AI) is rapidly emerging in healthcare, yet applications 
in surgery remain relatively nascent. Here we review the integration of AI in 
the field of surgery, centering our discussion on multifaceted improvements 
in surgical care in the preoperative, intraoperative and postoperative space. 
The emergence of foundation model architectures, wearable technologies 
and improving surgical data infrastructures is enabling rapid advances in 
AI interventions and utility. We discuss how maturing AI methods hold the 
potential to improve patient outcomes, facilitate surgical education and 
optimize surgical care. We review the current applications of deep learning 
approaches and outline a vision for future advances through multimodal 
foundation models.

Artificial intelligence (AI) tools are rapidly maturing for medical appli-
cations, with many studies determining that their performance can 
exceed or complement human experts for specific medical use cases1–3. 
Unimodal supervised learning AI tools have been assessed extensively 
for medical image interpretation, especially in the field of radiology, 
with some success in recognizing complex patterns in imaging data3,4. 
Surgery, however, remains a sector of medicine where the uptake of AI 
has been slower, but the potential is vast5.

Over 330 million surgical procedures are performed annually, with 
increasing waiting lists6,7 and growing demands on surgical capacity8. 
Substantial global inequities exist in terms of access to surgery, the bur-
den of complications and failure to rescue (that is, post-complication 
mortality) after surgery9–13. A multifaceted approach to surgical system 
strengthening is required to improve patient outcomes, including 
better access to surgery, surgical education, the detection and man-
agement of postoperative complications and optimization of surgical 
system efficiencies. To date, minimally invasive surgery has been a 
dominant driver of improvements in surgical outcomes, reducing 
postoperative infections, length of stay and postoperative pain and 
improving long-term recovery and wound healing. Enhanced recov-
ery programs14, improved patient selection, broadening adjuvant 
approaches and organ-sparing treatments have also been important 
contributors. We are now entering an era where data-driven methods 
will become increasingly important to further improving surgical care 
and outcomes15. AI tools hold the potential to improve every aspect 
of surgical care; preoperatively, with regards to patient selection 
and preparation; intraoperatively, for improving procedural perfor-
mance, operating room workflows and surgical team functioning; 

and postoperatively, to reduce complications, reduce mortality from 
complications and improve follow-up.

Current AI applications in surgery have been mostly limited to 
unimodal deep learning (Box 1). Transformers are a particular recent 
breakthrough in neural network architectures that have been very 
effective empirically in several areas, owing to their improved com-
putational efficiency through parallelizability16 and their enhanced 
scalability (with models able to handle vast input parameters). Such 
transformer models have been pivotal in enabling multimodal AI and 
foundation models, with substantial potential in surgery.

Emerging applications of AI in surgery include clinical risk predic-
tion17,18, automation and computer vision in robotic surgery19, intraop-
erative diagnostics20,21, enhanced surgical training22, postoperative 
monitoring through advanced sensors23,24, resource management25, 
discharge planning26 and more. The aim of this state-of-the-art Review 
is to summarize the current state of AI in surgery and identify themes 
that will help to guide its future development.

Preoperative
There is much room for improvement of preoperative surgical care, 
encompassing areas of active surgical research such as diagnostics, 
risk prognostication, patient selection, operative optimization and 
patient counseling—all aspects of the preoperative pathway of patients 
receiving surgery where AI has emerging capabilities.

Preoperative diagnostics
Patient selection and surgical planning have become increasingly 
evidence based, but are still contingent on experiential intuitions 
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diagnostic computed tomography and visually occult pancreatic ductal 
adenocarcinoma on prediagnostic computed tomography with AUROC 
values of 0.97 and 0.90, respectively30. Streamlining preoperative diag-
nostics can optimize integrated multidisciplinary surgical treatment 
pathways and facilitate early detection and intervention where timely 
management is prognostically critical31. Progress with large language 
models and integration with electronic healthcare record systems—
particularly the utility of foundation models empowering the analysis 
of unlabeled datasets—could be transformative in enabling earlier 
disease diagnosis and early treatment before disease progression32,33.

AI-based diagnosis is one of the most mature areas of surgical AI 
where model accuracy and generalizability are seeing early clinical trans-
lation. Numerous in-depth and domain-specific explorations of the effi-
cacy of AI in endoscopic34,35, histological36, radiological37 and genomic38 
diagnostics have been outlined elsewhere (see ref. 39). These task-specific 
advances are enabling more accurate diagnostics and disease staging 
in the oncology space, with substantial potential to optimize surgical 
planning. However, to date, all applications have been unimodal; novel 
transformer models that are able to integrate vastly more data, both 
in quantity and format, could spur further progress in the near future.

Clinical risk prediction and patient selection
High-accuracy risk prediction seeks to enable enhanced patient selec-
tion for operative management to improve outcomes, reduce futility40, 
better inform patient consent and shared decision-making41, triage 
resource allocation and enable pre-emptive intervention. It remains 
an elusive goal of surgical research18. Numerous critical reports have 
highlighted the high risk of bias42 and overall inadequacy of the high 
majority of clinical risk scores in the literature, with few penetrating 
routine clinical practice43. It is important to remember that in the pur-
suit of enhanced predictive capabilities, the novelty of a tool (such 
as AI) should not supersede a tool’s utility. Finlayson et al.44 expertly 
summarize the often false dichotomy of machine learning and statis-
tics; they argue that dichotomizing machine learning as separate to 
classical statistics neglects its underlying statistical principles and 
conflates innovation and technical sophistication with clinical utility.

The majority of current AI-based risk prediction tools offer sparse 
advances over existing tools, and few are used in clinical practice45. The 
COVIDSurg mortality score is one machine learning prediction score 
based on a generalized linear model (chosen for its superiority to random 
forest and decision tree alternatives) that shows a validation cohort 
AUROC of 0.80 (95% confidence interval = 0.77–0.83)46. Numerous 
other machine learning risk scores exist for preoperative prediction of 
postoperative morbidity and mortality45,47–51. One notable example is the 
smartphone app-based POTTER calculator, which uses optimal classifi-
cation trees and outperforms most existing mortality predictors with an 
accuracy of 0.92 at internal validation52, 0.93 in an external emergency 
surgery context48 and 0.80 in an external validation cohort of patients 
>65 years of age receiving emergency surgery47. Notably, POTTER also 
showed improved predictive accuracy compared with surgeon gestalt53. 
Deep learning methods have also shown utility in neonatal cardiac trans-
plantation outcomes, with high accuracy for predicting mortality and 
length of stay (AOROC values of 0.95 and 0.94, respectively)54.

The use of AI in surgical risk prediction remains an emerging field 
that is lacking in randomized trials55 and external validation, and has 
a high risk of bias56. Future work should move toward predictions of 
relevance to clinicians and patients57 and prioritize compliance with 
the CONSORT-AI extension58, TRIPOD (and its upcoming AI exten-
sion)59,60, DECIDE-AI61 and PRISMA AI62 and other relevant reporting 
guidelines, to advance the field in a standardized, safe and efficient 
manner while minimizing research waste.

Preoperative optimization
Preoperative optimization is still an underdeveloped concept that is 
beginning to receive more attention in surgical research63 and could 

(and biases), with profound individual and regional variabilities. The 
influence of AI may emerge most rapidly in the context of preopera-
tive imaging for early diagnosis and surgical planning. As an exam-
ple, a model-free reinforcement learning algorithm showed promise 
when applied to preoperative magnetic resonance images to identify 
and maximize tumor tissue removal while minimizing the impact 
on functional anatomical tissues during neurosurgery27. Technically 
challenging cases with high between-patient anatomical variations, 
such as in pulmonary segmentectomy, have been met with pioneering 
approaches to enhance preoperative planning with novel amalgama-
tions of virtual reality and AI-based segmentation systems. In a pilot 
study by Sadeghi et al.28, AI segmentation with virtual reality resulted 
in critical changes to surgical approaches in four out of ten patients.

Accurate preoperative diagnosis is an important area of surgical 
practice with substantial influence on clinical decision-making and 
therapeutic planning. For example, in the context of breast cancer diag-
nostics, the RadioLOGIC algorithm extracts unstructured radiological 
report data from electronic health records to enhance radiological 
diagnostics29. Extraction of unstructured reports using transfer learn-
ing (applying cross-domain knowledge to boost model performance on 
related tasks) showed high accuracy for the prediction of breast cancer 
(accuracy >0.9), and pathological outcome prediction was superior 
with transfer learning (area under the receiver operating characteristic 
curve (AUROC) = 0.945 versus 0.912). This report emphasizes the value 
of integrating natural language processing of unstructured text within 
existing infrastructures for promoting preoperative diagnostic accu-
racy. Another prominent example is a three-dimensional convolutional 
neural network that detected pancreatic ductal adenocarcinoma on 

Box 1

Emergent AI models and 
terminology
Diverse terminologies are used in the literature and for clarity are 
defined here:

•• Unimodal AI: models that operate and process data of a singular 
format, such as images, text or audio alone.

•• Multimodal AI: models that simultaneously integrate diverse 
data formats provided as training and prompt inputs, including 
images, text, biosignals, -omics data and more.

•• Generative AI: AI systems that can generate new content, such 
as texts, images (for example, DALL.E170) and other data formats. 
LLMs are an example of generative AI. These are trained on a vast 
corpus of language-based parameters.

•• Transformer models: a type of model that uses self-attention 
rather than recurrence and convolutions in making 
predictions that offer advantages in understanding long-range 
dependencies in input parameters, scalability and improved 
performance171.

•• Foundation models: large pretrained models that serve a variety 
of purposes. These models are trained on diverse data sources 
and can be fine-tuned for specific tasks. Such models serve to 
decrease the need for recursive and extensive model training.

•• Supervised learning: models trained on labeled datasets (the 
majority of applications to date).

•• Self-supervised learning: models that attempt to create their 
own data labels on unlabeled input data.

•• Unsupervised learning: models that evaluate unlabeled input 
data for inherent structures and relationships using clustering 
and dimensionality reduction methods.

http://www.nature.com/naturemedicine
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be leveraged with multimodal inputs. A multifaceted appreciation 
of patients’ cardiovascular fitness, frailty, muscle function and opti-
mizable biopsychosocial factors could be accurately characterized 
through multimodal AI approaches leveraging the full gamut of -omics 
data64,65. For example, research using AI to detect ventricular function 
using 12-lead electrocardiograms could rapidly streamline preopera-
tive cardiovascular assessment66–68. While more information does not 
necessarily correlate with improved risk prediction, a more holistic 
understanding of patient factors in the preoperative setting could 
be leveraged to optimize characteristics such as sarcopenia, anemia, 
glycemic control and more, to facilitate improved surgical outcomes.

Patient-facing AI for consent and patient education
Large language models (LLMs)—a form of generative AI—are a genera-
tional breakthrough, with the emergence and adoption of ChatGPT 
occurring at an unprecedented pace and other LLMs emerging at an 
equally rapid pace. These models have attained high scores on medi-
cal entrance exams69,70 and contextualized complex information as 
competently as surgeons71, and there is the potential for patients to 
interact with them as an initial clinical contact point72,73. AI models 
can augment clinician empathy74, contribute to reliable informed 
consent41,71 and reduce documentation burdens. A recent report 
demonstrates promising readability, accuracy and context aware-
ness of chatbot-derived material for informed consent compared with 
surgeons71. These advances offer a unique opportunity for tailored 
patient-facing interventions.

While clinical implementation of AI is a work in progress, there is 
great potential for superior patient-facing digital healthcare. A pilot clini-
cal trial by the company Soul Machines (Auckland, New Zealand) high-
lights the potential power of amalgamating LLMs and avatar digital health 
assistants (or digital people)75. OpenAI’s fine-tuned generative pretrained 
transformers and assistant application programming interfaces could be 
leveraged for such a purpose if solutions to trust and privacy concerns 
are found76,77. The COVID-19 pandemic highlighted the value of decen-
tralized digital health strategies to enable wider access to healthcare, 
and as global healthcare demands rise, these promising reports offer a 
valuable augment to the delivery of healthcare. These concepts also offer 
a step toward a hospital-at-home future that aims to further democratize 
healthcare delivery. Such innovations have particular utility in surgical 
care, where preoperative counseling, surgical consent and postopera-
tive recovery and follow-up could all be augmented by patient-facing AI 
models validated to show high reliability for target indications41,71,78,79.

In current practice, informed consent and nuanced discussions 
about surgical care plans are frequently confined to time-limited clinic 
appointments. Chatbots powered by accurate LLMs offer an oppor-
tunity for patients to ask more questions, facilitating ongoing com-
munication and better-informed care. Integrated with accurate deep 
learning-based risk prediction, such AI communication platforms 
could offer a personalized risk profile, answer questions about preop-
erative optimization and postoperative recovery and guide patients 
through the surgical journey, including postoperative follow-up con-
sultations80. Early generative AI models are probably already primed 
for translation to such clinical education settings81, with many more 
rapidly emerging (for example, Hippocratic AI, Sparrow82 and Gemini 
(Google DeepMind), BlenderBot 3 (Meta Platforms), HuggingChat 
and more). Nuanced appreciations of real-world complexity74 and 
the introduction of multi-agent conversational frameworks will be 
key for the testing and implementation of medical AIs83. At present, 
these models are yet to incorporate the vast and historic corpus of the 
medical literature; however, with specialized fine tuning and advances 
in unsupervised learning, the accuracy and generality of these tools is 
likely to improve. Nevertheless, further work to improve the transpar-
ency and reliability of such integrations is required84, as evidenced by 
recent examples of inaccurate and unreliable information from LLMs 
in breast cancer screening85.

In summary, multimodal approaches may transform the preopera-
tive patient flow paradigm. The use of unstructured text from electronic 
health records, in conjunction with preoperative computed or positron 
emission tomography, genomics, microbiomics, laboratory results, 
environmental exposures, immune phenotypes, personal physiolo-
gies, sensor inputs and more will enable deep phenotyping at the 
individual patient level to optimize personalized risk prediction and 
operative planning. Such advances are highly sought after to improve 
shared decision-making, patient selection and offer individualized 
targeted therapy.

Intraoperative
The intraoperative period is a data-rich environment, with continuous 
monitoring of physiological parameters amid complex insults and 
alterations to anatomy and physiology. This time is the core of surgical 
practice. Advances in intraoperative computer vision have enabled 
preliminary progress in the analysis of anatomy, including assessment 
of tissue characteristics and dissection planes, as well as pathology 
identification. Likewise, progressing the reliable identification of 
instruments and stage of operation and the prediction of procedural 
next steps are important foundations for future autonomous systems 
and data-driven improvements in surgical techniques19.

Events inside the operating theater have substantial impacts on 
recovery, postoperative complications and oncological outcomes86. 
Yet, despite their pivotal importance, minimal data are currently 
recorded, analyzed or collected in this setting. Valuable data streams 
from the intraoperative operative period should be harnessed to con-
tribute to advances in surgical automation and to underpin the utility 
of AI in the theater space15. We envision a future operating room with 
real-time access to patient-specific anatomy, operative plans, person-
alized risks and dashboards that integrate information in real time 
throughout a case, updating based on surgeon and operating team 
prompts, actions and decisions (Fig. 1).

Intraoperative decision-making
Most pragmatically, enhanced pathological diagnostics from tissue 
specimens (as overviewed above in the section ‘Preoperative diag-
nostics’) could optimize surgical resection margins, reduce operative 
durations and optimize surgical efficiency87,88. One such example is 
a recent patient-agnostic transfer-learned neural network that used 
rapid nanopore sequencing to enable accurate intraoperative diag-
nostics within 40 minutes88, enabling early information for operative 
decision-making. Multimodal AI interrogation of the surgical field 
could aid the determination of relevant and/or aberrant anatomy (with 
major strides toward such surgical vision already occurring in laparo-
scopic cholecystectomy19,89), augment the surgeon’s visual reviews (for 
example, by employing a second pair of AI 'eyes' to run the bowel when 
looking for perforation), inform the need for biopsies and quantify the 
risk of malignancy90.

The advantages of AI in hypothetico-deductive surgical 
decision-making are expertly overviewed by Loftus et al.25. Deep learn-
ing (in particular neural networks) is devised in an attempt to replicate 
human intuition—a key element of rapid decision-making among expe-
rienced surgeons91. One of the first machine learning tools developed 
for intraoperative decision-making92, which has undergone validation 
and translation to clinical use, is the hypotension prediction index93, 
which has shown proven benefit in two randomized trials20,94. This 
represents an early example of a supervised machine learning algo-
rithm that has undergone external validation and the gold standard of 
randomized clinical testing to demonstrate benefit. Notably, since its 
advent, numerous advances in AI methods have emerged to strengthen 
algorithmic performances95.

Such models could be improved in the future through continuous 
learning, ongoing iteration with constant refinement, and external vali-
dation. This requires collaboration with regulatory bodies to facilitate 
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safe and monitored development and maturation of algorithms as the 
field rapidly advances. The iterative nature of these models may pose 
challenges for clinical evidence requirements to keep pace with the 
rate of innovation.

The operative team
Early efforts to gather data in the operating room include the OR 
Black Box, the aim of which is to provide a reliable system for audit-
ing and monitoring intraoperative events and practice variations96,97. 
A particularly novel advance toward optimizing surgical teamwork 
comes from preliminary work toward an AI coach to infer the align-
ment of mental models within a surgical team98. Shared mental models, 
whereby teams have a collective understanding of tasks and goals, 
have been identified as a critical component to decreasing errors and 
harm in safety-critical fields such as aviation and healthcare. Such 
approaches require further interrogation within a real-world operat-
ing room context, but highlight the breadth of opportunities for digital  
innovation in surgery.

On the theme of surgical teamwork, multimodal digital inputs, 
including physiological inputs (for example, skin conductance and 
heart rate variability) for the identification of operative stress, anes-
thetic inputs (continuous pharmacological and vitals outputs), nursing 
team staffing inputs and equipment stock and availability inputs, are 
all routine elements of the operating room experience that could be 
quantified digitally and integrated into a digital pathway suitable for 
automation and optimization. The expansion of multimodal inputs 
and use of generative AI models incorporating both patient and envi-
ronmental inputs within the operating room present opportunities 
to augment nontechnical skills that are pivotal in surgery, including 

communication, situational awareness and operative team function-
ing99,100. Operative fatigue, anesthesiologist–surgeon miscommunica-
tion, staffing changeovers and shortages, and equipment unavailability 
are common causes for intraoperative mistakes and are all amenable to 
digital tracking. A digitized surgical platform can therefore be envis-
aged to facilitate an AI-enhanced future. The importance of investment 
toward the platform itself to leverage utility from digital innovations 
was, for example, embraced by Mayo Clinic in a recent CEO overview101.

Surgical robotics and automation
While there has been much progress19,102, early attempts at computer 
vision have been limited to specific tasks and have lacked external 
validation. AI has been applied to unicentric, unimodal video data to 
identify surgical activity103, gestures104, surgeon skill105,106 and instru-
ment actions107. A demonstrative advance has been made by Kiyasseh 
et al.108, who have developed a unified surgical AI system that accu-
rately identifies and assesses the quality of surgical steps and actions 
performed by the surgeon using unannotated videos (area under the 
curve >0.85 at external validation for needle withdrawal, handling and 
driving). This procedure-agnostic, multicentric approach, with a view 
to generalizability, facilitates integration into real-world practice108. 
Technical advances, such as through Meta’s self-supervised (SEER) 
model currently offer particular promise in the realm of computer 
vision109. Similar efforts in the future that aim to improve the feed-
back available to surgeons, tactile responses from laparoscopic and 
robotic systems and the identification of optimal surgical actions in 
the intraoperative window could be advanced through multimodal 
inputs, including rich physiological monitoring, rapid histological 
diagnostics and virtual reality-based guidance (for example, toward 

Anesthesia
machine

Equipment tower
(diathermy, operating
room black box and so on) 

Laparoscopic 
tower

Intraoperative 
dashboard

Technician

Instrument table

Surgeon

Nurse

Anesthetist

Fig. 1 | Integration of novel AI-powered digital interventions in the 
intraoperative setting. Operating room components with the potential 
for AI integration are shown in blue. Traditional laparoscopic towers could 
be integrated with virtual or augmented reality to facilitate improved three-
dimensional views, adjustable overlaid annotations and warning systems for 
aberrant anatomy. They could also overlay the individual patient’s imaging 
with AI diagnostics to improve R0 resections in oncological surgery, identify 
anatomical differences and better identify complex planes. Existing diathermy 
towers could incorporate voice assistants and black box-type systems for 

audit and quality control. An intraoperative dashboard aligned with the entire 
theater team could enable virtual consultations, virtual supervision for trainee 
surgeons and AI-powered access to the corpus of medical knowledge and surgical 
techniques, all contextualized to the operative plan. In addition, continuous vital 
signs, anesthetic inputs and patient-centered risks (for example, of hypotension) 
could be available as the operation progresses, to help the planning of pre-
emptive actions and postoperative care. Personalized screens for scrub nurses, 
indicating stock location, phase detection169 and the predicted next instrument 
needed could also improve efficiency.
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identification of aberrant anatomy and tissue planes, perfusion assess-
ments and more). Low-risk opportunities for the integration of these 
emerging technologies include co-pilot technologies for operative 
note writing; with surgeon oversight, providing verification and the 
potential for iterative model improvement110–112.

Computer vision, surgical robotics and autonomous robotic sur-
gery are at the very early stages of development, with incremental 
but exciting strides occurring. Importantly, robust frameworks have 
recently been developed to progress the development of surgical 
robotics and complementary AI technologies, with guidelines for 
evaluation, comparative research and monitoring throughout clinical 
translational phases113. Several reviews offer more in-depth analysis of 
these emerging topics108,114,115.

Operative education
Surgical education has long been entrenched in apprenticeship models 
of learning, with little progress toward objective metrics and useful 
mechanisms for feedback to trainee operators. As discussed above, the 
operating room setting is a data-rich environment that could be lever-
aged toward automated, statistical approaches to tailored learning. 
Reliable feedback results in improved surgical performance116–118, and 
data-driven optimization of surgical skill assessment has the potential 
to have a trans-generational impact on surgical practice119,120. Recently, 
the addition of human explanations to the supervised AI assessment of 
surgical videos improved reliability across different groups of surgeons 
at different stages of training, such that equitable and robust feedback 
could be generated through AI approaches108. This offers feedback to 
learners with mitigation against different quality feedback based on 
different surgeon sub-cohorts121. This is a promising example of the 
nuanced approaches to model development that will be key to the 
translation and implementation of AI models in real-world surgical 
education. An exploration of the potential biases of AI explanations in 
surgical video assessment122—namely under- and overskilling biases, 
based on the surgeon’s level of training—highlights the importance 
of comparisons with current gold standards and utilizing AI outputs 
as data with which to iterate, learn and optimize toward real-world 
benefits. In another example, an AI coach had both positive and nega-
tive impacts on the proficiency of medical students performing neu-
rosurgical simulation, including improved technical performance 
at the expense of reduced efficiency123. This example also shows the 
importance of expert guidance in the development and implementa-
tion of AI tools in specialized domains, as well as the need for ongo-
ing assessment of such programs. The opportunity to harness AI in 
operative education is evidenced by the growing number of registered 
randomized trials evaluating this approach22,124,125.

The intraoperative period is, therefore, a data-rich environment 
for surgical AI with early success seen with intraoperative diagnostic 
and surgical training models, as well as early emerging capabilities 
in computer vision and automation. Intraoperative applications are 
diverse and critical for the future of surgery, with vast potential to 
optimize nontechnical intraoperative functions such as communica-
tion, teamwork and skill assessment. Ongoing work toward computer 
vision systems will lay the groundwork for future autonomous surgical 
systems.

Postoperative
Postoperative monitoring
The aim of transforming hospital-based healthcare through 
hospital-at-home services is to liberalize and democratize healthcare 
and to improve equity and access while unburdening overloaded hos-
pitals. Such a future will enable patients to recover in a familiar envi-
ronment and will optimize patient recovery, convalescence and their 
return to functioning in society. Major strides have been made toward 
reducing postoperative lengths of stay, facilitating early discharge 
from hospital and improving functional recovery, largely through 

minimally invasive surgical approaches, encouragement of earlier 
return to normal activities, enhanced postoperative monitoring, early 
warning systems and better appreciation of important contributors 
to recovery. The implementation of enhanced recovery after surgery 
programs has been pivotal toward this goal.

However, the postoperative period frequently remains devoid of 
data-driven innovations, crippling further progress. Many hospitals 
still rely on four-hourly nurse-led observations, unnecessarily pro-
longed postoperative stays driven by historic protocols and a 'one 
size fits all' approach to the immediate postoperative period. Ample 
opportunity exists for wearables to offer continuous patient monitor-
ing, enabling multimodal inputs of physiological parameters that can 
contribute toward data-driven, patient-specific discharge planning. 
This would have the added benefit of unburdening nursing staff from 
cumbersome vital sign rounds, freeing up time and capacity for more 
patient-centered nursing care. Leveraging postoperative data can 
further guide discharge rehabilitation goals and interventions, inform 
analgesic prescriptions and prognosticate adverse outcomes.

One systematic review highlights 31 different wearable devices 
capable of monitoring vital signs, physiological parameters and physi-
cal activity23, but further work is required to realize the potential of 
these data, including improving the quality of research and report-
ing126,127. We envision a future where continuous inputs can be inte-
grated into predictive analytics and dashboard-style interfaces to 
enable rapid escalation, earlier prognostication of complications and 
reduced mortality from surgical complications128,129. Intensive care 
units are an example of a highly controlled, data-rich environment 
where such interventions are emerging, with the potential to modify 
the postoperative course130. Classical machine learning approaches, 
such as random forests, have been robustly applied in other heter-
ogenous, multimodal time-series applications and stand to have par-
ticular value in the postoperative monitoring setting. For example, the 
explainable AI-based Prescience system monitors vital signs, predicts 
hypoxemic events five minutes before they happen and provides clini-
cians with real-time risk scores that continuously update with transpar-
ent visualization of considered risk factors131,132.

To enable multimodal data-driven insights in postoperative sen-
sors, a plethora of novel medical devices and sensors are being pursued 
(Fig. 2). Real-time physiological sensing of wound healing133,134, remote 
identification of superficial skin infections135,136 and cardiorespiratory 
sensors137,138 are all putative technologies to enhance postoperative 
monitoring.

Complication prediction
The prediction of complications after surgery has been the goal of 
many academic studies139,140 and presents a formidable challenge in a 
complex postoperative setting, with myriad variables affecting care 
and outcomes. However, the early detection of complications138,141—in 
particular, devastating outcomes such as anastomotic leaks after rectal 
cancer surgery and postoperative pancreatic fistulas after pancre-
atic surgery142,143—is likely to have a substantial impact on the ability of 
healthcare systems to reduce mortality following complications144,145. 
MySurgeryRisk represents one of the few advances in complication pre-
diction, using a machine learning algorithm50. However, despite promis-
ing performance in single-center studies68, there is little understanding 
of how to scale these algorithms to other health systems. The value of 
algorithmic approaches to complication prediction18 and postoperative 
monitoring after pancreatic resections has been demonstrated in The 
Netherlands146, serving as a reproducible model to aspire to. Wellcome 
Leap’s US$50 million SAVE Program has identified failure to rescue from 
postoperative complications as a leading cause of death and the third 
most common cause of death globally147, and has prioritized this as a 
target for innovation. Its goals focus on advanced sensing, monitoring 
and pattern recognition148. This remains a nascent field with numerous 
attempts but few breakthroughs, making complication prognostication 
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a high-value target for AI-based technologies, particularly as sensors149, 
wearables23 and devices capable of enabling multimodal, temporally 
rich inputs emerge.

Home-based recovery
In the United States, 50% of those who undergo a surgical proce-
dure are over 65 years of age150. With advancing age, recovery can be 
prolonged and periods of return to baseline activities of daily living 
(ADLs) can extend beyond several months. Kim et al.151 have proposed 
a multidimensional, AI-driven, home-based recovery model enabled 
by frequent, noninvasive assessments of ADLs. They centered their 
proposed paradigm shift on the basis of: (1) continuous real-time data 
collection; (2) nuanced assessment of relevant measures of activities 
of daily living; and (3) innovative assessments of ADLs to be leveraged 
in the postoperative, post-discharge and home-based setting. Again, 
these innovations would be driven by sensor technologies152, including 
the continuous detection of video, location, audio, motion and tem-
perature data in various home-based settings, integrated to provide 
a continuous assessment of activity patterns. These data contribute 
toward phenotyping recovery patterns and predicting adverse out-
comes (for example, falls), informing care needs and personalized 
interventions in conjunction with multidisciplinary teams (such as 
occupational therapists). Systems-level implementation, data privacy 
and real-world prospective validation are awaited. ClinAIOps (clinical 
AI operations) is a recent framework for integrating AI into continu-
ous therapeutic monitoring in a way that could be directly translated 
toward postoperative home-based monitoring153.

As innovations proliferate toward the goal of remote postoperative 
monitoring, including mobile technologies24, sensors149, wearables23 
and hospital-at-home services, we have identified the key limitations 
to advancement to be the lack of routine large-scale implementation 
efforts, collaborations and comprehensive innovation evaluations in 
line with the IDEAL (idea, development, exploration, assessment and 
long-term follow-up) framework154.

Building the evidence base
Emerging AI technologies need to be robustly evaluated in line with 
existing innovation frameworks113,155 and, with the advent of multimodal 
and generative models, regulatory oversight and monitored implemen-
tation are pivotal. Complex intervention frameworks provide a robust 
tool to facilitate ongoing monitoring and rapid troubleshooting156. 
Engagement with all stakeholders, including patients, administrators, 
clinicians, industry and scientists, will be important to align visions and 
work concertedly toward improved surgical care.

While emerging models demonstrate promise, robust, prospec-
tive, randomized evidence is required to demonstrate improvements 
in patient care. To date, only six randomized trials of AI exist in surgery 

(Table 1), all of which employed unimodal approaches, but the increas-
ing number of trial registrations on the topic of assessing the efficacy of 
AI interventions is promising. AI offers diverse strengths and potential 
across many fields, but development alone is insufficient. Evaluation, 
validation, implementation and monitoring are required. The imple-
mentation of AI platforms at the pre-, intra- and postoperative phases 
should be guided by robust evidence of the benefits, such as a more 
accurate and timely diagnosis, reduced complications and improved 
systems efficiencies.

Future of surgical AI
Medicine is entering an exciting phase of digital innovation, with clinical 
evidence now beginning to accumulate behind advances in AI applica-
tions. Domain-specific excellence is emerging, with vast potential for 
translational progress in surgery. A sector of medical practice that 
once lagged behind in terms of evidence-based medicine157, surgery 
has evolved to thrive on world-class research and evidence158. Surgery 
now equals other fields, such as cardiology, in terms of the quantity of 
randomized trials in AI applications, only lagging behind frontrunner 
fields such as gastroenterology and radiology, where task-specific 
applications are opportune, particularly around image processing55. 
In this Review, we have highlighted many of the most pragmatic and 
innovative emerging use cases of AI in surgery, with a particular focus 
on direct feasibility and preparedness for clinical translation, but 
there remain numerous additional examples and untapped avenues 
for further pursuit. As we pioneer surgical AI, the values of privacy, data 
security, accuracy, reproducibility, mitigation of biases, enhancement 
of equity, widening access and, above all, evidence-based care should 
guide our technological advances.

Reviews of AI in surgery frequently speculate toward autonomous 
robotic surgeons. In our view, this is the most distant of the realizable 
goals of surgical AI systems. While much attention has also been given 
to surgical automation159, robotics and computer vision, these efforts 
should be contextualized in a time period where robotic surgery has 
yet to definitively demonstrate its advantage over other minimally 
invasive approaches159–161. In a resource-limited global surgical land-
scape, it remains to be seen whether AI-driven automation may offer 
the scalability to robotic surgical platforms that may help define its 
clinical value.

Surgery poses specific challenges for AI integration that are dis-
tinct from other areas of medicine. There is a paucity of digital infra-
structure in most healthcare settings such that annotated datasets 
and digitized intraoperative records are rarely available162. In addition, 
procedural heterogeneity, acuity and rapidly changing clinical param-
eters represent a challenging and dynamic environment in which AI 
interventions will be required to deliver accurate and evolving output. 
Despite these known challenges, targeted work in these areas, including 

Continuous inpatient 
monitoring 

Remote outpatient 
monitoring 

Facilitates early 
mobilization and 
enhanced recovery  

Early discharge,
safety netting and
hospital-at-home
services

Cardiorespiratory sensor

Axillary temperature sensor

Impedance-based wound 
infection sensor

Wrist-based continuous sensor

Ring-based continuous sensor 

Fig. 2 | Sensor inputs for peri- and postoperative continuous 
monitoring. Examples of innovative sensors include chest- and axilla-based 
electrocardiogram, respiratory rate, tidal volume, temperature and skin 
impedance sensors. In the postoperative setting, when patients are mobilizing 
and discharged home, wrist- and finger-based sensors offer a safety netting 

system for the monitoring of sympathetic stress (via heart rate variability and 
skin impedance), postoperative arrhythmia and wound healing (for the early 
identification of superficial skin infection and/or wound dehiscence). Sensor-
based technologies can be catergorized as continuous inpatient monitoring and 
early post-discharge monitoring to enable hospital-at-home services.
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growing priority toward digital infrastructure, data security and pri-
vacy, as well as unsupervised AI paradigms, demonstrates substantial 
promise.

Transformer models are poised to enable real-time analytics of 
multi-layered data, including patient anatomy, biomarkers of physiol-
ogy, sensor inputs, -omics data, environmental data and more. When 
leveraged by a fine-tuned understanding of the corpus of medical 
knowledge, such models stand to have a vast impact on surgical care64. 
At the time of writing, few examples exist for novel generative AI mod-
els in surgery. In the sections above, we present several opportunities 
for such generalizable AI models unburdened by labeling needs to be 
implemented in surgical care as the generalist AI surgeon augmenter. 
These approaches are common to AI in medicine, with the majority of 
approaches using decision trees, neural networks and reinforcement 
learning55. Early implementations of existing LLMs for text generation, 
data extraction and patient care are undoubtedly underway163, with 
notable caveats such as model accuracy degradation, output overcon-
fidence, lack of data privacy and regulatory approvals and a deficiency 
of prospective clinical trials yet to be overcome.

Numerous apprehensions remain with regard to the integration 
of AI into surgical practice, with many clinicians perceiving limited 
scope in a field dominated by experiential decision-making compe-
tency, apprentice model teaching structures and hands-on therapies. 
However, with the rapid development of AI in software, hardware and 
logistics, these perceived limitations in scope will be continuously 
tested. We envision a collaborative future between surgeons and AI 
technologies, with surgical innovation guided first and foremost by 
patient needs and outcomes.

AI in surgery is a rapidly developing and promising avenue for inno-
vation; the realization of this potential will be underpinned by increased 
collaboration154, robust randomized trial evidence55, the exploration of 
novel use cases164 and the development of a digitally minded surgical 
infrastructure to enable this technological transformation. The role of 
AI in surgery is set to expand dramatically and, with correct oversight, 
its ultimate promise is to effectively improve both patient and operator 
outcomes, reduce patient morbidity and mortality and enhance the 
delivery of surgery globally.
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