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Microbiome confounders and quantitative 
profiling challenge predicted microbial 
targets in colorectal cancer development

Raúl Y. Tito    1,2,11, Sara Verbandt3,11, Marta Aguirre Vazquez3, Leo Lahti    1,4, 
Chloe Verspecht1,2, Verónica Lloréns-Rico1,2,5, Sara Vieira-Silva    1,6,7, 
Janine Arts8, Gwen Falony1,2,6, Evelien Dekker9, Joke Reumers    10, 
Sabine Tejpar    3,11 & Jeroen Raes    1,2,11 

Despite substantial progress in cancer microbiome research, recognized 
confounders and advances in absolute microbiome quantification remain 
underused; this raises concerns regarding potential spurious associations. 
Here we study the fecal microbiota of 589 patients at different colorectal 
cancer (CRC) stages and compare observations with up to 15 published 
studies (4,439 patients and controls total). Using quantitative microbiome 
profiling based on 16S ribosomal RNA amplicon sequencing, combined 
with rigorous confounder control, we identified transit time, fecal 
calprotectin (intestinal inflammation) and body mass index as primary 
microbial covariates, superseding variance explained by CRC diagnostic 
groups. Well-established microbiome CRC targets, such as Fusobacterium 
nucleatum, did not significantly associate with CRC diagnostic groups 
(healthy, adenoma and carcinoma) when controlling for these covariates. In 
contrast, the associations of Anaerococcus vaginalis, Dialister pneumosintes, 
Parvimonas micra, Peptostreptococcus anaerobius, Porphyromonas 
asaccharolytica and Prevotella intermedia remained robust, highlighting 
their future target potential. Finally, control individuals (age 22–80 years, 
mean 57.7 years, standard deviation 11.3) meeting criteria for colonoscopy 
(for example, through a positive fecal immunochemical test) but without 
colonic lesions are enriched for the dysbiotic Bacteroides2 enterotype, 
emphasizing uncertainties in defining healthy controls in cancer 
microbiome research. Together, these results indicate the importance of 
quantitative microbiome profiling and covariate control for biomarker 
identification in CRC microbiome studies.

Colorectal cancer (CRC) incidence is steadily increasing1, especially 
in people under 50 years2. It is estimated that approximately 16 and 
approximately 14 individuals per 100,000 people in the United States 
and Belgium, respectively, die every year from CRC3. As medical 

interventions can effectively reduce CRC progression and associated 
mortality, it is imperative to identify individuals at increased risk.

Colonoscopies with polypectomy of adenomas reduce up to 90% 
of CRC risk4. Early identification of individuals with polyps would 
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defined as diagnosis groups, and we classified participants into three 
groups according to a thorough colonoscopy and clinical assessment:  
(1) patients without evidence of colonic lesions (CTLs, n = 205),  
(2) patients with polyps (considering polyps as a precancerous lesion; 
n < 10 and size between 6 and 10 mm) (ADE, n = 337) and (3) patients with 
CRC (n = 47; 2 (4%) stage 0, 14 (30%) stage I, 13 (28%) stage II, 11 (23%) stage 
III, 3 (6%) stage IV and 4 (9%) of undetermined stage). We excluded patients 
outside these criteria, as well as those with insufficient clinical and 
molecular data. The final Leuven CRC Progression Microbiome (LCPM) 
study cohort consisted of 589 patients. The most frequent indications for 
colonoscopy were either a positive fecal immunochemical test (FIT) or 
adenoma surveillance. Other indications included familial risk, abdomi-
nal symptoms and change in bowel habits (Fig. 1a and Supplementary 
Table 1). The study was registered at clinicaltrials.gov (NCT02947607).

We collected an extensive set of 165 universal metadata variables 
(nonspecific for any of the three groups) from each participant. After 
curation, we excluded variables that were colinear (if Pearson |r| > 0.8, 
we kept the variable with fewer missing data) or had incomplete data 
collection (variables missing more than 20% of the values). The final 
set consisted of 95 high-quality variables (Supplementary Table 2).

To identify metadata variables associated with diagnosis groups, 
we applied two statistical approaches: (1) nonparametric Kruskal–
Wallis (KW) test and its η2 effect size (Supplementary Table 3) for all 
numerical variables and (2) chi-square (CS) tests and Cramer’s V effect 
size (CV) (Supplementary Table 4) for categorical variables, followed 
by the Benjamini–Hochberg method for multiple testing correction 
(adjusted P). We found eight variables associated with diagnosis groups 
(false discovery rate <5%), namely: age, body mass index (BMI), cal-
protectin, reported hours of sleep, previous cancer (including CRC), 
dental status (complete, partial and so on), diabetes treatment and high 
blood pressure (Supplementary Tables 3 and 4). The CTL patients were 
younger (n = 589, KW test, η2 = 0.058, χ2 = 35.77, adjusted P = 2.6 × 10−7; 
post hoc Dunn (phD) tests, adjusted P < 0.05 for CTL versus ADE or 
CRC groups), had a lower BMI (n = 553, KW test, η2 = 0.023, χ2 = 15.73, 
adjusted P = 1.9 × 10−3; phD tests, adjusted P < 0.05 for CTL versus ADE) 
and reported fewer hours of sleep than participants from the other 
two diagnosis groups (n = 557, KW test, η2 = 0.019, χ2 = 13.41, adjusted 
P = 4.6 × 10−3; phD tests, adjusted P < 0.05 for CTL versus ADE; Fig. 1; see 
Supplementary Table 3 for full results). Moisture content, an important 
microbiota covariate16, was not significant across diagnosis groups 
(n = 589, KW test, η2 = −0.001, χ2 = 1.32, adjusted P = 7.0 × 10−1).

The calprotectin levels were positively associated with malignant 
transformation. The patients with CRC showed higher intestinal inflam-
mation, measured by fecal calprotectin18,26 (Fig. 1a and Supplemen-
tary Table 3). Specifically, CRC exhibited higher levels (219.42 µg g−1, 
range 2.74–1,114.42, n = 47) compared to ADE (70.24 µg g−1, range 
1.87–487.21, n = 337) or CTL (73.25 µg g−1, range 2.42–884.82, n = 202) 
(Fig. 1a, N = 583, KW test, η2 = 0.047, χ2 = 29.43, adjusted P = 3.0 × 10−6; 
phD tests, adjusted P < 0.05 for CRC versus CTL and CRC versus ADE). 

reduce the global burden of CRC. Yet, ascertainment of patients at 
an increased risk remains challenging, highlighting the need for 
population-wide screening.

Microbiota shifts have been associated with a wide array of disease 
phenotypes5. Some bacterial markers, such as Fusobacterium, have 
been reported enriched in lesions and stools of patients with CRC6–14 
across developing and developed countries15, suggesting a potential 
role for microbiome-based diagnostics and/or prognostics.

Although microbiome profiles are affected by multiple variables 
that may confound or compound biological phenomena, covariate 
control is far from standard. For example, moisture content, a proxy for 
transit time, remains uncontrolled despite showing the biggest explan-
atory power for overall gut microbiota variation in multiple cohorts16,17. 
Intestinal inflammation, measured as fecal calprotectin18,19 that reflects 
increased neutrophil shedding into the intestinal lumen20, is more 
sensitive than fecal occult blood for identifying patients with CRC21, 
thus a potential untapped target for molecular stool CRC-screening19.

Relative microbiome profiling (RMP, taxon abundances are 
expressed in percentages) remains the dominant approach in micro-
biome research. However, given issues with compositionality22 and 
interpretation of relative profiles23, the use of experimental and quanti-
tative approaches is increasingly recommended23–25. This reduces both 
false-positive and false-negative rates in downstream analyses, thereby 
lowering the risk of erroneous interpretation of microbiome associa-
tions, and allows focusing clinical programs on biologically relevant 
targets25. Although quantitative microbiome profiling (QMP) facilitates 
normalized comparisons across different samples or conditions24,25, so 
far, no QMP CRC microbiota studies were performed.

In this Article, we address these two gaps in CRC microbiota studies: 
(1) to quantitively characterize the microbiota profile associated with 
malignant colonic transformation and (2) to identify microbiota covari-
ates that may obscure biological phenomena behind microbiota-CRC 
associations. To this end, we examined the microbial profiles of 589 Bel-
gian patients from Universitair Ziekenhuis Leuven (UZL) who warranted 
colonoscopies based on clinical presentations, including patients with 
CRC, and compared these to existing published datasets (total n = 4,439 
patients and controls). To the best of our knowledge, this is the first large 
scale study of the gut microbiota across colonic cancer developmental 
stages that combines QMP analysis with extensive analysis of microbiota 
covariates to disentangle disease-associated from confounder-based 
signals to identify taxa specifically associated with CRC.

Results
Intestinal inflammation is higher in patients with colorectal 
tumors
We recruited 650 volunteers referred for colonoscopy and colonic 
resections at UZL between 2017 and 2018 who provided a stool sample 
before the colonic procedure. Most participants were from the Flemish 
region of Belgium. For this study, cancer developmental stages were 

Fig. 1 | The LCPM cohort and gut microbiota covariates in CRC progression.  
a, STROBE flowchart and cohort size. CTL represents patients without colonic 
lesions, ADE denotes patients with colonic polyps and CRC refers to patients with 
colorectal tumors (generated in BioRender.com). b, Colonoscopy referral reasons 
for patients of the LCPM cohort: positive FIT, adenoma surveillance, familial risk 
cancer (FCC), hereditary nonpolyposis CRC (HNPCC) and changes in defecation. 
NA, denotes the proportion of patients without information. c, Age, BMI and 
calprotectin are associated with diagnosis groups. The patients without lesions 
were younger (n = 589, two-sided KW test χ2 = 35.77, adjusted P = 2.6 × 10−7; phD 
tests) and had lower BMI (n = 553, two-sided KW test χ2 = 15.73, adjusted P = 1.9 × 10−3; 
phD tests), while patients with tumors had higher fecal calprotectin levels (n = 583, 
two-sided KW test χ2 = 29.43, adjusted P = 3.0 × 10−6; phD tests, adjusted ***P <0.001, 
**P <0.01, *P <0.05 and n.s., non-significant P > 0.05; Supplementary Table 3). The 
box plot center represents the median value whiskers extend from the quartiles to 
the last data point within 1.5 times of the interquartile range, with outliers beyond. 

d, Previous non-CRC cancer, high blood pressure and diabetes treatment are 
associated with the distribution of diagnosis groups. The patients with CRC have a 
higher proportion of previous cancer (47.5% versus 15.0 % and 12.1%, two-sided CS 
test, CV effect size of 0.24, χ2 = 31.65, d.f. of 2, adjusted P = 1.98 × 10−2) and high blood 
pressure (60.0% versus 44.3% and 30.5%, CV of 0.17, two-sided CS test, χ2 = 16.55, 
d.f. of 2, adjusted P = 1.98 × 10−2) while the CTL group has the lowest proportion of 
patients with diabetes treatment (2.4% versus 10.3 and 10.6, two-sided CV effect 
size of 0.15, CS test, χ2 = 13.79, d.f. of 2, adjusted P = 1.98 × 10−2). e, PCoA on BCD 
representing QMP species-level microbiota variation in the LCPM cohort (n = 589), 
PCoA1 (Axis.1) and PCoA2 (Axis.2) respectively explained 12.7% and 7% of the 
variance. Each dot represents one sample, colored by assigned diagnosis group. 
f, Cumulative effect sizes of significant covariates on microbiota community 
variation (cumulative bars; stepwise dbRDA on BCD) as compared to individual 
effect sizes (R2) assuming covariate independence in the LCPM cohort (n = 589; 
Supplementary Table 5). UC, ulcerative colitis.
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We also observed increased fecal calprotectin in patients reporting 
previous cancers (primarily breast and prostate cancer) (Wilcoxon 
ranksum (WR) test, W = 11,067, adjusted P = 4.1 × 10−3), consumption of 

cancer medication (WR test, W = 3,671, adjusted P < 0.05), heartburn 
complaints (WR test, W = 11,067, adjusted P = 1.0 × 10−10) and lower 
dietary fiber (WR test, W = 20,964, adjusted P = 3.3 × 10−2).
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The history of chronic diseases was distinct across diagnosis 
groups. The patients with CRC showed higher proportions of previ-
ous non-CRC cancer (47.5% versus 15.0 % and 12.1%, CS test, CV of 0.24, 
χ2 = 31.65, d.f. of 2, adjusted P = 1.98 × 10−2) and high blood pressure 
(60.0% versus 44.3% and 30.5%, CS test, CV of 0.17, χ2 = 16.55, d.f. of 2, 
adjusted P = 1.98 × 10−2) (Fig. 1b and Supplementary Table 4). The CTL 
group had the lowest diabetes treatment (2.4% versus 10.3% and 10.6%, 
CS test, CV of 0.15, χ2 = 13.79, d.f. of 2, adjusted P = 1.98 × 10−2) (Fig. 1b 
and Supplementary Table 4) and mostly complete dental sets (53.3% 
versus 35.2% and 32.5%, CS test, CV of 0.03, χ2 = 30.78, d.f. of 10, adjusted 
P = 1.98 × 10−2) (Supplementary Table 4).

Known confounders, not diagnosis groups, explain overall 
microbiota variation across CRC developmental stages
The influence of microbiota covariates and the quantitative amplitude 
of observed microbiota shifts are understudied in CRC. We combined 

sequencing data with flow cytometry measurements of fecal microbial 
load23 to generate QMP data from our study cohort.23 We studied the 
QMP variation in the context of the 94 potential covariates mentioned 
above (the 95th being microbial load) using established procedures17.

A principal coordinate analysis (PCoA; Fig. 1c) on a species-level 
Bray–Curtis dissimilarity (BCD) matrix revealed no significant separa-
tion between diagnosis groups. Furthermore, no difference in total 
microbial load was found between groups (n = 589, KW test, χ2 = 0.68, 
adjusted P = 8.2 × 10−1). Distance-based redundancy analysis (dbRDA) 
revealed 24 microbiota covariates associated with microbial variation 
in this cohort (Fig. 1d and Supplementary Table 5). We identified 17 
nonredundant covariates that jointly explained 6.7% of microbiota 
compositional variation (Supplementary Table 5).

Consistent with previous reports16,17, moisture content exhibited 
the highest explanatory value (2.8%) of all covariates (n = 589, step-
wise dbRDA, R2 = 2.8%, adjusted P = 2 × 10−3). Intestinal bowel disease/
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Fig. 2 | Microbial biomarkers in CRC progression. a, Nine species were identified 
with differential absolute abundance across diagnosis groups (n = 589, KW test, 
adjusted P < 0.05; Supplementary Table 7). b, Ten species were identified with 
differential relative abundance across diagnosis groups (n = 589, KW test, adjusted 
P < 0.05; Supplementary Table 7). The center of the box plot represents the median 
value of the data, and the whiskers extend from the quartiles to the last data point 
within 1.5 times of the interquartile range, with outliers beyond. The blue circles 
represent the mean. c, Biomarkers associations and their confounders. Species 
Spearman’s rank correlation with calprotectin levels and moisture proportions 

using QMP (first rho column panel) and RMP (second rho column panel) data. 
The effect size of the associations between species and calprotectin, moisture 
and diagnosis variables for QMP and RMP (n = 589, Spearman’s rank correlation 
comparison, adjusted P < 0.05). Significant associations were tested using two-
sided KW tests for QMP and RMP data and ANOVA for CLR data. The associations for 
Harryflintia acetispora, Parvimonas micra and Prevotella intermedia are sensitive 
to bias by the extreme values (absolute abundance) in the higher range. Removing 
these values leads to loss of significance. As rank-based approaches were used, it is 
not clear if this loss is due to the strength of the signal or the loss of power.
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ulcerative colitis (IBD/UC) status, a CRC-risk factor, possibly associated 
with its microbial dysbiotic community and intestinal inflammation27, 
was the second largest covariate. IBD/UC explained 0.4% of the microbi-
ota variation (n = 569, stepwise dbRDA, R2 = 0.4%, adjusted P = 2 × 10−3). 
Other top microbiota covariates included antibiotics and laxatives 
use (Fig. 1d). Delivery mode (cesarean or natural birth) explained 0.3% 
variation (n = 533, stepwise dbRDA, R2 = 0.3%, adjusted P = 2 ×10−3), 
although it is probably confounded by diet in this cohort (proportion 
of dietary vegetables; CS test, χ2 = 33.09, d.f. of 14, P = 2.8 × 10−3, adjusted 
P < 0.05). Intestinal inflammation (fecal calprotectin) explained 0.2% 
(n = 583, stepwise dbRDA, R2 = 0.2%, adjusted P = 2.6 × 10−2). In contrast 
with our previous study in the Flemish population (Flemish Gut Flora 
Project, FGFP)17, age did not explain microbiota variation (n = 589, 
univariate dbRDA, R2 = 0.2%, adjusted P = 5.9 × 10−2). Surprisingly, 
the cancer diagnosis group (CTL, ADE and CRC), as a covariate, was 
not associated with microbial variation (n = 589, univariate dbRDA, 
R2 = 0.2%, adjusted P = 0.22; Supplementary Table 5).

Fusobacterium association with CRC stages disappears when 
controlling for confounders or when using QMP
Microbiota signals can be specific to taxonomic groups and, thus, not 
reflected in broad community shifts. While a multitude of microbial 
associations have been reported in CRC studies using RMP6–8,13, we 
used QMP to identify species whose absolute abundance associated 
with diagnosis groups. The comparisons were limited to the 138 spe-
cies with a prevalence of greater than 5% in at least one of the diagnosis 
groups of the LCPM cohort (Supplementary Table 6). Only eight spe-
cies showed significant differential abundance (absolute or relative) 
among diagnosis groups: Anaerococcus vaginalis (Anaerococcus obe-
siensis), Alistipes onderdonkii, Dialister pneumosintes, Fusobacterium 
nucleatum, Parvimonas micra, Peptostreptococcus anaerobius, Porphy-
romonas asaccharolytica and Prevotella intermedia (KW test, adjusted 
P < 0.05; Fig. 2a,b and Supplementary Table 7). While Fusobacterium 
nucleatum has been consistently associated with colorectal lesions 
across cohorts of diverse backgrounds13,14, in the LCPM cohort, Fuso-
bacterium nucleatum absolute abundance was positively correlated 
with high fecal calprotectin levels (Spearman’s rank and Kendall’s tau 
correlations, adjusted P < 0.05; Fig. 2c, Extended Data Fig. 1 and Sup-
plementary Table 8) and cancer progression (diagnosis groups) (KW 
test, η2 = 0.010, adjusted P = 1.84 × 10−5; phD test adjusted P = 8.80 × 10−1 
for CTL versus ADE, adjusted P = 3.84 × 10−7 for CTL versus CRC and 
adjusted P = 3.84 × 10−7 for ADE versus CRC; Fig. 2c and Supplementary 
Table 7). However, after deconfounding for calprotectin only or com-
bined BMI, moisture content and calprotectin, and neither absolute 
nor relative Fusobacterium nucleatum abundance were associated 
with diagnosis (generalized linear model analysis of variance (ANOVA), 
n = 547, P > 0.05; Extended Data Fig. 2).

Multiple established CRC microbial markers are associated 
with transit time, intestinal inflammation and body mass 
index but not with CRC stages
The association of Fusobacterium abundance with fecal calprotectin 
urged us to investigate the influence of this confounder on previously 
reported CRC-associated genera, adding moisture content since it is 
the top microbiome covariate, and BMI, which showed differences 
among diagnosis groups.

To this end, we compiled a list of 89 CRC species-level markers 
from ten published cohorts6,9,11,13,14,28–31 (including 1,633 samples) and 
67 genera-level markers from 15 cohorts6–9,11–15,28–32 (representing 
4,439 samples). We used this compiled list of taxa as a criterion to test 
whether the CRC association of these taxa in our cohort is influenced 
by the target covariates. To reduce the impact of distinct statistical 
treatments, we downloaded the microbial profiles of nine out of ten 
studies at species level from the curated MetagenomicData33 resource 
and analyzed them using the statistical component of our pipeline.

Spearman correlation between taxa abundances and the three 
focus covariates revealed strong associations between microbial tar-
gets and these confounders at the species (Extended Data Fig. 3a) and 
genus level (Fig. 3b). Most of these associations were replicated in an 
independent population cohort (FGFP), suggesting these associations 
are robust and not specifically linked to CRC (Extended Data Fig. 3). 
Moisture content, the known major covariate in microbiome studies17, 
is unsurprisingly associated with many taxa validated in both cohorts.

As we compiled the CRC-associated taxa from non-QMP studies, 
we conducted analyses using both RMP and QMP to assess whether con-
founder associations influence quantitative association of biomarkers 
or targets to diagnosis groups in LCPM. We found only 8% (6 out of 89) 
and 10% (9 out of 89) of species previously associated with CRC using 
QMP and RMP replicating after confounder control. Anaerococcus vagi-
nalis, Dialister pneumosintes, Parvimonas micra, Peptostreptococcus 
anaerobius, Prevotella intermeia and Porphyromonas asaccharolytica, 
were identified by controlled QMP and RMP. Controlled QMP excluded 
Fusobacterium nucleatum and Alistipes onderdonkii, suggesting previ-
ous associations of these two species may be spurious (Fig. 3a).

We identified eight species previously linked to CRC (that is, using 
QMP and/or RMP), including Fusobacterium nucleatum and Peptos-
treptococcus anaerobius, to be associated with inflammation (Fig. 3 
and Supplementary Tables 8 and 9). This association was previously 
reported for only three out of the eight taxa above (Escherichia, Fuso-
bacterium and Streptococcus)24. Further validation of this association 
was conducted using the FGFP (Extended Data Fig. 3 and Supplemen-
tary Tables 8 and 9).

Recognizing that inflammation is a risk factor, not a requirement, 
for CRC progression, we further investigated markers associated with 
diagnosis groups in relation to inflammatory status. To this end, we 
focused on a subset of 340 samples, which, regardless of their CRC 
status, exhibited normal levels of calprotectin (fecal calprotectin under 
50 µg g−1 (ref. 34)), indicating no evidence of local inflammation (112 
CTL, 216 ADE and 12 CRC). Assessment of the 89 CRC species-level mark-
ers mentioned above confirmed that the association of three of the six 
replicating species (Anaerococcus vaginalis, Prevotella intermedia and 
Porphyromonas asaccharolytica) is independent of intestinal inflam-
mation (Supplementary Table 10).

Colonoscopy patients, with or without CRC, exhibit an excess 
of the Bacteroides2 enterotype
To study the LCPM cohort in a population context, we enterotyped par-
ticipants using Dirichlet multinomial mixtures (DMM) on a genus matrix 
against the background of microbial variation as observed in the FGFP 
samples (n = 1,045)17. Consistent with previous description of the Flem-
ish population23, we identified four community types based on selecting 
the optimal number of clusters using the Bayesian Information Crite-
rion (Fig. 4a,b and Extended Data Fig. 4), ‘Bacteroides1’ (Bact1), ‘Bac-
teroides2’ (Bact2), ‘Prevotella’ (Prev) and ‘Ruminococcaceae’ (Rum). 
The enterotype distribution was different between LCPM and FGFP (CS 
test, χ2 = 34.3, d.f. of 3, adjusted P = 1.7 × 10−7), but no differences were 
observed among diagnosis groups within the LCPM cohort (pairwise 
CS tests, adjusted P > 0.1). Pairwise comparisons of the prevalence of 
the dysbiotic Bact2 enterotype in the LCPM cohort diagnosis groups 
revealed that compared to the FGFP population, this enterotype was 
enriched in all CRC diagnosis groups (test of equal or given proportions, 
FGFP versus CTL: χ2 = 15.09, d.f. of 1, adjusted P = 1.1 × 10−4; FGFP versus 
ADE: χ2 = 18.93, d.f. of 1, adjusted P = 2.4 × 10−5; and FGFP versus CRC: 
χ2 = 4.34, d.f. of 1, adjusted P = 3.4 × 10−2). Although dysbiosis and CRC 
development were previously linked13,35, the high prevalence of this 
enterotype in the LCPM, even in samples from patients free of lesions, is 
unexpected. Consistent with previous reports24,25, the Bact2 enterotype 
in this group exhibited all hallmarks of dysbiosis: low cell count, low 
richness, higher calprotectin values, reduced butyrate producers and 
increased proinflammatory bacteria.
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Fig. 3 | BMI, intestinal inflammation and moisture correlations with 
microbial biomarkers and CRC. a,b, Species (a) and genera (b) previously 
reported in association with CRC (blue and green represent enrichment or 
depletion; the squares indicate reported in corresponding publications, while 
circles represent our reanalysis of the MetaPhlAn 3.0 profiles generated from 
the curatedMetagenomicData33 of these cohorts using the statistical part of our 
pipeline). Graphic representation of Spearman’s rank correlation of pairwise 
analysis of fecal calprotectin, BMI, and moisture values against absolute species 

abundance (QMP) and RMP from the LCPM (N = 589) and FGFP (N = 1,045) cohorts 
(adjusted P < 0.05, Supplementary Table 8). The species enriched or depleted 
in relation to CRC diagnosis groups were tested using QMP, CLR and RMP data 
before (n = 589, two-sided KW test and Spearman’s rank correlation comparison, 
adjusted P < 0.05) and after controlling for microbiota covariates (before 
adjustment for BMI, calprotectin and moisture; generalized linear model  
ANOVA, adjusted P < 0.05).
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Additional categorical variables appeared associated with the 
Bact2 enterotype. They included antibiotic consumption (CS test, 
χ2 = 30.78, d.f. of 3, adjusted P = 2.1 × 10−2), current treatment with 
anti-inflammatory medications (CS test, χ2 = 30.78, d.f. of 3, adjusted 
P = 2.1 × 10−2), diabetes treatment (CS test, χ2 = 30.78, d.f. of 3, adjusted 
P = 3.3 × 10−2), recent diarrhea (last week) (CS test, χ2 = 30.78, d.f. of 3, 
adjusted P = 2.1 × 10−2), history of gallstones (CS test, χ2 = 30.78, d.f. of 3, 
adjusted P = 4.7 × 10−2) and recent use of laxatives (last week) (χ2 = 30.78, 
d.f. of 3, adjusted P = 4.2 × 10−2) (Supplementary Table 11).

Discussion
While associations between the gut microbiota and CRC have been 
extensive, this is the first study using QMP and extensive metadata 
collection to systematically investigate microbiota covariates that 
potentially are masking or creating spurious associations between 
specific taxa and malignant transformation.

At first glance, this study yielded a gut microbial profile partially 
consistent with previous reports of CRC-associated taxa. Further analy-
sis, however, suggested that many of the previously reported associa-
tions, including those of prominent biomarkers, such as Fusobacterium 
(nucleatum), are confounded by microbiota covariates. A total of 17 of 
94 variables explained 6.7% of the observed variation. Of those, the 
moisture content had highest explanatory power (2.7%), greater than 
eight times that of the next covariate (IBD status). The explanatory 
power of fecal calprotectin was lower (0.2%) but significant; age and, 
most importantly, diagnosis groups were not.

Some associations were complex in nature. For example, BMI, 
consistent with previous reports, showed an association with both 
microbial composition17,25 and cancer progression36, while others, such 
as age, suggested to modify the BMI-association with cancer progres-
sion37, were not significant in this cohort.

Inflammation is a known risk factor for CRC38, but its effect size in 
shaping the cancer-associated microbiota is yet to be described. Fecal 
calprotectin is a well-documented marker of intestinal local inflamma-
tion39,40 and has been associated with cancer progression, probably hav-
ing an effect on tumor development rather than on tumor initiation41. 
We observed participants with normal and elevated fecal calprotectin 
levels within each diagnosis group and covariate-controlled analysis of 

the LCPM cohort revealed that 8 and 19 CRC-associated markers, at the 
species and genus levels, respectively, associated with fecal calprotectin 
rather than with the diagnosis group. We replicated these observations 
in an independent cohort of apparently healthy individuals (FGFP).

High levels of fecal calprotectin have been associated with intesti-
nal inflammatory pathologies19. However, when removing patients with 
IBD from our analysis, CRC diagnosis groups remained not significant, 
and the significance of Fusobacterium nucleatum, among other six spe-
cies, was unaltered after differential abundance analysis. In patients 
with CRC, increased levels of fecal calprotectin (>50 µg g−1 stool18,26) 
are directly associated with tumor presence, as the level decreases 
after tumor resection42. Here, fecal calprotectin was increased in CRC, 
consistent with previous associations between malignant transforma-
tion, local inflammation43 and advanced tumor stages (T3 and T4)42. No 
difference in calprotectin levels was observed between CTL and ADE 
(mean 73.25 versus 70.24 µg g−1), suggesting that although no lesions 
are visible in the colon of the CTL group, they have a detectable level of 
local inflammation. The potential effect of local inflammation in shap-
ing the colonic microbiota in the context of malignant transformation, 
or its potential confounding effect, remains largely obscure, as most 
studies surveying the association between gut microbiota and CRC, 
including meta-analysis13,14, do not control for local inflammation.

We argue that strict control of covariates is a must in any microbiota 
analysis assessing potential clinical associations, as for example, three 
of the species with repeated CRC association11,13,14,28–30,32, Escherichia coli, 
Fusobacterium nucleatun and Parvimonas micra, exhibit association 
with local inflammation, unfortunately uncontrolled for in previous 
studies, that may or may not be associated with cancer progression.

Fusobacterium nucleatum is one of the species that attracts more 
attention as there is a substantial body of work linking it to CRC44. In 
this study, Fusobacterium was enriched in patients with CRC. However, 
this apparent association disappears when the analysis is covariate 
controlled. Our study suggests that the association of Fusobacterium 
nucleatum to cancer may be driven by its association to intestinal 
inflammatory conditions; there are no differences in the abundance 
of Fusobacterium nucleatum across diagnostic groups once calpro-
tectin is controlled for. These results suggest reassessment of the 
diagnostic utility of this marker. At the same time, our results do not 
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mean that Fusobacterium nucleatum is not linked to CRC; they rather 
suggest that the reasons behind this association might be less straight-
forward than originally considered. They, thus, present a cautionary 
tale of the importance to control for covariates as the microbiome 
field moves forward. Given that inflammation is a risk factor for CRC 
but not a requirement41, potential use of Fusobacterium nucleatum 
as a marker of CRC development could fail to identify those cases of 
inflammation-independent cancer progression. While not yet commer-
cialized, there are already publications proposing the use of microbial 
markers, including Fusobacterium nucleatum, for CRC screening7,45, 
which, in light of our results, raises concerns as uncontrolled variables 
may be obscuring actual biological mechanisms. We present evidence 
that purported CRC biomarkers, even those replicated in multiple 
studies, may suffer from the compounding or confounding effect of 
covariates, which in addition to the use of nonquantitative signals, 
may result in misleading conclusions on what diagnostic signals really 
mean—complicating the path towards potential clinical applications.

BMI, in combination or independent of inflammation, has been 
independently associated with changes in the gut microbiota46, which 
in turn are associated with increased risk of CRC47. Yet, microbial dys-
biosis by itself does not explain the higher risk of colon cancer observed 
in the obese population48, indicating that the underlying process that 
associates obesity and CRC is more complex and demands further 
investigation.

Among four described gut enterotypes, the Bact2 enterotype 
is defined as a dysbiotic microbial profile24,25. Bact2 enrichment is 
observed in obesity25 and in conditions such as PSC (Primary sclerosing 
cholangitis) and IBD24, further supporting the potential disease asso-
ciation of this enterotype. The analysis of the LCPM cohort revealed 
an excess of the Bact2 enterotype across all diagnosis subgroups, 
regardless of BMI.

Increased Bact2 prevalence in the no-lesions group compared to 
FGFP is particularly striking. While patients in the CTL group have no 
observable lesions, they may be considered at increased risk for colo-
rectal perturbations based on clinical referrals (blood loss in the stool, 
familiar risk to colonic lesion and so on) that warranted colonoscopies—
something that might also be reflected by their Bact2 enterotype. Of 
importance, ‘healthy’ biopsies included in CRC microbiome studies are 
often selected using colonoscopies with a negative result as the main 
criterium, posing a potential problem, as no other markers of colonic 
health are considered to qualify these healthy individuals. The reasons 
for the appearance of Bact2 in the no-lesion group are multifold, but 
these findings suggest that such individuals, while representing a 
useful category for biomarker discovery, may harbor an unhealthy gut 
ecosystem, from a microbial point of view.

There is a plethora of variables identified as modifiers of the gut 
microbiota. Yet, covariate control is far from standard and notably 
absent from most association studies. As intestinal microbial taxa are 
being nominated as potential biomarkers of malignant transforma-
tion, it is imperative to explore the influence of microbiota covariates 
as potential confounders or compounders of observed associations. 
Rather than denying previous associations, our analysis emphasizes the 
need for covariate-controlled analysis for any microbiota study aiming 
to establish clinical associations, as these covariates by themselves 
may explain most of the stool microbiota variation, independent of 
CRC status.

Out of the multiple taxa previously associated with CRC, six spe-
cies remain significant after strict control of covariates in this quanti-
tative cohort. Without denying other potential biomarkers, further 
studies are warranted on Anaerococcus vaginalis, Dialister pneumos-
intes, Parvimonas micra, Peptostreptococcus anaerobius, Prevotella 
intermedia and Porphyromonas asaccharolytica, as their reported 
association to CRC6,7 is robust enough to remain independent of the 
method. Our data present a strong argument in favor of revisiting 
potential microbial associations with clinical phenotypes to ensure 

that the purported associations are not driven by uncontrolled covari-
ates warranting further follow up of the mechanisms underlying these 
associations. Refining the approaches to discover microbial biomark-
ers will undoubtedly impact the microbiota field, facilitating the path 
towards the much-coveted clinical applications.

Limitations
We aim to identify taxa associated with malignant colonic transforma-
tion. While our cohort includes a set of participants without lesions, we 
make no claim that these are healthy controls, as there is an apparent 
increased incidence of gut dysbiosis in this group. Considering that all 
participants in this study had a medical need for a colonoscopy, there 
is an implicit increased risk to CRC. Thus, the present study cannot rule 
out that the group without polyps is undergoing potential molecular or 
cellular changes that are not detectable via colonoscopy. In addition, as 
this is a cross-sectional study, the term cancer progression is an extrapo-
lation of what is seen at cancer development stages (operationalized 
here as diagnosis groups). We cannot rule out potential particularities 
of our cohort that may be contributing to our observations, as most 
studies do not report sufficient metadata for us to compare across 
cohorts. It is important to consider that certain taxonomic groups 
may not even be represented in current databases, and specific micro-
bial species may require longer hypervariable regions or alternative 
sequencing approaches to achieve accurate species-level identification. 
Nonetheless, the V4 region for our cohort seems to be able to resolve 
species taxonomy of the biomarkers previously associated with CRC, 
as we show for the case of Fusobacterium.

Furthermore, it has been proposed that the potential diagnostic 
value of colonic microbial profiles goes beyond bacteria, as fungal 
and viral species have been proposed as CRC biomarkers49. We rec-
ognize that multidomain approaches to discover CRC biomarkers 
and longitudinal prospective studies to better study the dynamics of 
cancer progression are warranted to comprehensively inform cancer 
detection and treatment.
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Methods
Participant recruitment
The LCPM project was an observational cross-sectional survey for which 
procedures were approved by the medical ethics committee of the UZL 
(ethical approval number S57084). Between 2017 and 2018, we recruited 
patients through the study nurse following a standardized procedure. 
Briefly, we invited patients scheduled for lower gastrointestinal endos-
copy or abdominal surgery for CRC removal at the UZL were invited. 
After explaining the research project and if they expressed their agree-
ment, participants signed an informed consent, and no compensation 
was offered. A set of stool sample collection material was provided.

Each patient completed an extensive questionnaire containing 
information about the date of sample collection, the consistency of 
the stool, diet, antibiotics usage, clinical symptoms or disease among 
other variables17, as well as an extensive medical and clinical question-
naire using the Websurvey service of KU Leuven.

As a validation cohort we included the FGFP17, a population-wide 
microbiota monitoring effort, representing one of the largest and 
best characterized fecal microbiota database currently available. Its 
extensive metadata including health and lifestyle allowed the identifi-
cation of 69 factors associated with microbiota variation (microbiota 
covariates). The QMP transformation was conducted in parallel, with 
the same protocol, for both the FGFP and the LCPM cohorts.

CRC status classification
We invited patients referred for colonoscopy or colectomy to par-
ticipate in the study. Those that consented were instructed to collect 
a stool sample at home, which was kept frozen using a sample kit pro-
vided by the research team. Upon completion of the medically neces-
sary procedures (colonoscopy or colon resection), we stratified study 
participants into three diagnosis groups according to their clinical 
phenotype: (1) patients without evidence of lesions, (2) patients with 
polyps (n < 10 and size between 6 and 10 mm) (ADE) and (3) patients 
with CRC. Patients whose clinical presentation did not fit any of these 
three groups were excluded from the study. Once the participants 
were included in the corresponding groups, extensive metadata was 
collected from their medical records as stated in the informed consent.

Sample collection
The stool samples of patients from UZL were collected as part of the 
LCPM project using aliquot ready mat without any buffer or preserva-
tive (Supplementary Fig. 1). The samples were kept at −20 °C freezers at 
the patients’ homes and brought to our laboratory on icepacks. Upon 
arrival, samples were stored in the Raes’ Lab at −80 °C until further 
analysis. Each stool sample had a temperature logger to make sure that, 
during the storage at home or transport to the laboratory, low stable 
temperature was maintained.

Stool sample analyses
Microbial load measurement by flow cytometry. We determined 
microbial loads of stool samples of LCPM patients following published 
procedures23. We performed cell counting for all other samples in tripli-
cate. Briefly, we dissolved 0.2 g frozen (−80 °C) aliquots in physiological 
solution to a total volume of 100 ml (8.5 g l−1NaCl; VWR International). 
Subsequently, the slurry was diluted 1,000 times. The samples were 
filtered using a sterile syringe filter (pore size of 5 µm; Sartorius Ste-
dim Biotech). Next, we stained 1 ml of the microbial cell suspension 
obtained with 1 µl SYBR Green I (1:100 dilution in dimethylsulfoxide; 
shaded for 15 min of incubation at 37 °C; 10,000 concentrate, Thermo 
Fisher Scientific) and monitored fluorescence events using the FL1 
533/530 nm and FL3 >670 nm optical detectors of the C6 Accuri flow 
cytometer (BD Biosciences). In addition, forward and sideward scat-
tered light was collected. The BD Accuri CFlow (v.1.0.264.21) software 
was used to gate and separate the microbial fluorescence events on the 
FL1/FL3 density plot from background events Supplementary Fig. 2.  

A threshold value of 2,000 was applied on the FL1 channel. We evalu-
ated the gated fluorescence events on the forward and sideward density 
plot, as to exclude remaining background events. We kept instrument 
and gating settings identical for all samples as described previously24. 
Based on the exact weight of the aliquots analyzed, we converted cell 
counts to microbial loads per gram of fecal material.

Fecal moisture content. We determined moisture content as the 
percentage of mass loss after lyophilization from 0.2 g frozen aliquots 
of nonhomogenized fecal material (−80 °C) as described previously24.

Fecal calprotectin measurement. We quantified fecal calprotectin 
concentrations using the fCAL ELISA Kit (Buhlmann). For patients and 
FGFP participants, we conducted analyses on frozen fecal material 
(−80 °C) as described previously24.

Microbiota phylogenetic profiling
DNA extraction and sequencing data preprocessing. The fecal 
microbiota profile of the FGFP cohort was described previously17. For 
fecal DNA extraction and microbiota profiling of the new cohort, we 
followed the same protocols17.

The bacterial profiling was carried out as described previously50. 
Briefly, we extracted nucleic acids from frozen fecal aliquots using 
the MagAttract PowerMicrobiome DNA/RNA kit (Qiagen). We modi-
fied the manufacturer’s protocol by the addition of a heating step at 
90 °C for 10 min after vortexing and excluding the steps where DNA is 
removed. For bacterial and archaeal characterization, we used 16S ribo-
somal RNA primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACNVGGGTWTCTAAT-3′) targeting the V4 region. These prim-
ers were modified to contain a barcode sequence between each primer 
and the Illumina adapter sequences to produce dual-barcoded libraries 
from the extracted DNA (dilution 1:10) in triplicate. Deep sequencing was 
performed on a MiSeq platform (2 × 250 paired end (PE) reads, Illumina). 
We randomized all samples and negative controls (polymerase chain 
reaction (PCR) and extraction controls) taken along for sequencing. 
After demultiplexing with sdm as part of the LotuS pipeline (v. 1.60)51 
without allowing for mismatches, we further analyzed fastq sequences 
per sample using DADA2 pipeline (v. 1.6)52. Briefly, we removed the primer 
sequences and the first ten nucleotides after the primer. After merg-
ing paired sequences and removing chimeras, we assigned taxonomy 
using formatted Silva set ‘SLV_nr99_v138.1’. We performed taxonomic 
assignments at the domain, class, order, family, genus and species levels 
were performed using the ‘assignTaxonomy’ function from the DADA2 R 
library, by a naive Bayesian classifier method with a minimum bootstrap 
confidence of 50, using the ‘silva_nr99_v138.1_wSpecies_train_set.fa.gz’ 
training database (Extended Data Fig. 5). Deep sequencing was performed 
on a MiSeq platform from the DADA2 R library with the formatted Silva 
SSU database ‘silva_species_assignment_v138.1.fa.gz’ to obtain species 
assignments for the amplicon sequence variants (ASVs). We labeled any 
unassigned ASVs at any taxonomic level, with the prefix ‘uc’ along with 
the assigned taxonomic level (not species level) to avoid the lack of labels.

Before the analyses, we removed sequences annotated to the class 
Chloroplast, family mitochondria or unknown archaea and bacteria 
from eukaryotic origin. phyloseq (v. 1.36.0)53 and MicroViz (v. 0.11.0)54 
libraries were used for data curation and figure generation.

RMP. For the relative microbiome matrix, we transformed ASV counts 
to relative abundances. In other words, we divided ASV counts by the 
total counts of ASV per sample. We agglomerated ASV to species level 
using the phyloseq (v. 1.36.0)53 function ‘tax_glom’.

RMP (CLR). We agglomerated ASV to the species level, and the abun-
dance matrix was centered log-ratio (CLR)-transformed using ‘codaSeq.
clr’ in the CoDaSeq (v. 0.99.6)55 using the minimum proportional abun-
dance detected for each taxon for the imputation of zeros.
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Workflow Assessment. We conducted a workflow assessment using 
(1) a commercial mock community, ZymoBIOMICS Gut, and (2) two 
Fusobacterium species: Fusobacterium hwasookii (THCT14E2) and 
Fusobacterium nucleatum (DSM 20482T). The assessment followed 
our standard methods, involving the amplification, sequencing and 
analysis of the extracted DNA. This evaluation aimed to assess the per-
formance of our full methodology, as depicted in Extended Data Fig. 6.

Quality control assessment for amplicon sequencing data (16S 
rRNA) using RMP. In short, we sequenced all samples in six MiSeq runs 
(Extended Data Fig. 7a). Per each run, we used a set of internal controls 
to identify: 1) Technical variation within and between runs 1) Contami-
nation events during the DNA extraction, 2) Contamination events dur-
ing the amplification and sequencing procedures and, 3) Carry-over 
contamination at the sequencing facility and barcode crosstalk.

We amplified all samples, including biological material (stool sam-
ples), positive controls (DNA from a stool sample previously profiled 
and RS: nonhuman gut bacteria strain ‘Runella slithyformis’), negative 
controls (negative control of extraction (NCE) and negative control dur-
ing PCR (NCP)) in triplicate using a unique barcode combination, while 
omitting several barcode combinations to control for primer synthesis 
cross contamination. We used Runella slithyformis in duplicate within 
each sequencing library to detect barcode crosstalk during the sequenc-
ing procedure (Extended Data Fig. 7b). This genus is not detected in 
human gut samples; therefore, we expected no Runella slithyformis 
reads in any of the stool samples analyzed. We determined technical 
variation based on the BCD of positive control samples (Extended 
Data Fig. 7c). Finally, we included NCEs along the whole process from 
extraction to bioinformatic analysis. For amplification and sequencing 
contamination56, we used NCP and NCE (Extended Data Fig. 7d and Sup-
plementary Table 12), and for carry-over contamination events, we used 
a different set of barcode combinations in consecutive MiSeq runs56.

QMP. We built the QMP matrix as described previously23. In brief, 
we downsized samples to even sampling depth, defined as the ratio 
between sampling size (16S rRNA gene copy number-corrected 
sequencing depth) and microbial load (the average total cell counts per 
gram of frozen fecal material; Supplementary Table 2). We imputed 16S 
rRNA genome copies (GC) numbers using RasperGade16S (v. 0.0.1)57, 
a new tool that utilizes a heterogeneous pulsed evolution model for 
predicting 16S rRNA GC. It not only predicts the GC but also provides 
confidence estimates for the predictions57. We used a minimum rarefied 
read count of less than 150 for QMP analyses. We converted rarefied ASV 
abundances into numbers of cells per gram. The QMP matrices had a 
final size of 589 samples for the study cohort and 1,045 samples for the 
FGFP validation cohort17. We agglomerate the QMP matrix at ASV level 
to species level using the phyloseq (v. 1.36.0)53 function ‘tax_glom’. We 
used the resulting species QMP matrix for the main analysis.

Statistical analysis
We performed all statistical analyses with R (Version 4.2.1, RStudio 
v.2022.12.0 + 353, 86_64-apple-darwin17.0 (64-bit)) and packages phy-
loseq (v. 1.36.0)53, vegan (v. 2.6.2)58, coin(v. 1.4.2)59, effectsize (v. 0.8.3), 
vcd(1.4.11)60, DirichletMultinomial(v. 1.34.0)61, pairwiseAdonis (v. 0.4.1) 
and microbiome (v. 1.14.0)62. We used nonparametric statistical tests 
for robust comparisons among unbalanced groups. For multiple test-
ing, we corrected all P values using the Benjamini–Hochberg method 
(reported as adjusted P) as appropriate on lists (n > 1) of features (for 
example, taxa–metadata or metadata–metadata associations) and 
also when performing multiple pairwise group (n > 2) comparisons 
(for example, KW test with phD test).

Fecal microbiota derived features and visualization. We visualized 
microbiota interindividual variation by PCoA using BCD on the species 
QMP matrix24,25. All the rest of the microbiota derived features were 

calculated based on QMP. We determined the contribution of metadata 
variables to microbiota community variation (effect size) of each of 94 
variables by dbRDA on a species-level BCD with the capscale function 
in the vegan package58. We visualized absolute abundance species as 
log10 (abundance +1). This was the same for relative abundance.

Microbiota and physiological features associations. We excluded 
from analyzes any taxa unclassified at the species level or present in less 
than 5% of samples per each diagnosis group (Supplementary Table 6). 
We used Spearman correlations for rank–order correlations, between 
continuous variables complemented by Kendall’s tau correlation, includ-
ing species abundances, calprotectin values and moisture content. We 
used the Mann–Whitney U-test to test median differences of continuous 
variables between two different groups. For more than two groups, for 
example, for differential abundance analysis for QMP and RMP taxa 
versus diagnosis groups, we used the KW test with phD test. For differ-
ential abundance analysis among diagnosis groups and bacteria species 
abundances from CLR transformed data, we performed an ANOVA test.

We evaluated statistical differences in the proportions of cat-
egorical variables (enterotypes) between patient groups using pairwise 
CS tests. We tested for deconfounded microbiota contributions to 
the diagnosis groups variable by using a nested model comparison 
(ANOVA) of generalized linear models as follows:

[nullmodel]glm0 = rank(abundance) + rank(calprotectin)

+rank(moisture) + rank(BMI)

[alternative m od el] g lm 1 = rank(abundance) + rank(calprotectin) +  
rank(moisture) + rank(BMI) + diagnosis, where the diagnosis groups 
were recoded as 1, 2 and 3 for patients without evidence of CTLs, 
patients with polyps and patients with CRC, respectively. We treated 
this variable as a continuous variable, translating the directional 
increase in disease progression, from healthy to lesions, in the colonic 
mucosa. For the nested model comparison, we used taxa abundances 
(quantitative or relative) as explanatory variables, the diagnosis groups 
variable as response variable and BMI, fecal calprotectin and moisture 
as covariates. Additionally, we employed rank-transformed modeling to 
perform nonparametric testing on data that is not normally distributed, 
such as species abundances.

Previous reported CRC microbial markers. To compile a list of pub-
lished CRC markers that would define taxa that should be tested against 
covariates in our data set, we conducted a PubMed search query using 
the keywords ‘CRC AND microbiome AND stool AND human AND bio-
markers’. We found ten studies that met our inclusion criteria, namely: 
(1) a sample size minimum of 60 and (2) the CRC biomarker described 
at the species level, with statistical significance, in the main text of 
the publication. We included this list of published biomarkers in our 
correlation analysis between taxa and the three main covariates (fecal 
calprotectin, BMI and moisture) within the LCPM cohort. A similar 
procedure was followed at the genus level, which included 15 studies 
found in our PubMed search.

CRC microbial markers identification. We performed differential 
abundance analyzes on nine different CRC shotgun datasets as part of 
‘curatedMetagenomicData’33 using MetaPhlAn 3.0 profiles to compare 
the results while controlling for potential differences arising from the 
classification tools and statistical methods used in each independent 
study. The results of the meta-analysis are presented in Extended Data 
Fig. 8 and Supplementary Table 13.

Enterotyping and visualization. Using the genus matrix (agglomer-
ated and downsized to 10,000 reads), we enterotyped and calculated 
observed genus richness53, as already reported for previous studies24,25. 
For enterotyping (or community typing) based on the DMM approach 
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we used R as described previously61. We performed enterotyping on a 
combined genus-level abundance RMP matrix including LCPM samples 
compiled with 1,045 samples originating from the FGFP17. The optimal 
number of Dirichlet components based on the Bayesian information 
criterion was four. The four clusters were named ‘Bact1’, ‘Bact2’, ‘Prev’ 
and ‘Rum’, as described previously23.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw amplicon sequencing data and metadata reported in this study 
have been deposited in European Nucleotide Archive with accession 
code EGAS00001007413. FGFP 16S rRNA gene sequencing data and 
metadata are available at the European Genome-phenome Archive 
(EGAS00001003296). The diagnosis metadata and processed 
microbiome data required for the reanalysis are provided as Sup-
plementary Tables 1 and 14, respectively. Formatted Silva set ‘SLV_
nr99_v138.1’ files were downloaded from Zenodo via https://zenodo.
org/records/4587955/files/silva_nr99_v138.1_wSpecies_train_set.
fa.gz?download=1 (silva_nr99_v138.1_wSpecies_train_set.fa.gz)63 and 
https://zenodo.org/records/4587955/files/silva_species_assignment_
v138.1.fa.gz?download=1 (silva_species_assignment_v138.1.fa.gz)63. 
The nine CRC cohort MetaPhlAn 3.0 profiles were collected from curat-
edMetagenomicData, study names: FengQ_2015, HanniganGD_2017, 
ThomasAM_2018a, ThomasAM_2018b, VogtmannE_2016, Wir-
belJ_2018, YachidaS_2019 and YuJ_2015, ZellerG_2014 (https://doi.org/ 
10.18129/B9.bioc.curatedMetagenomicData). Source data are provided 
with this paper.

Code availability
Analysis codes are available via Github at https://github.com/raeslab/
QMP-Microbiome-CRC-confounders.
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Extended Data Fig. 1 | Association of intestinal inflammation with 
Fusobacterium nucleatum. Intestinal calprotectin levels associate 
Fusobacterium nucleatum absolute (a) and relative (b) abundance in the 
LCMP. Two-sided Spearman rank correlation (adjP <0.05) and ‘x’ axes are log 10 
transformed just for plotting. To rule out that the observed association is driven 

by a few samples with high abundance of Fusobacterium nucleatum, panel a has 
an insert of the plot removing samples with Fusobacterium nucleatum values 
above 1E8 cells per gram of stool. Best-fitting regression line in blue and 95% 
confidence interval shown in grey shading.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | Fusobacterium nucleatum abundances before and 
after correction for intestinal calprotectin across diagnosis groups. Absolute 
abundance of Fusobacterium nucleatum before (a) and after (b) correcting for 
intestinal calprotectin. Relative abundance of Fusobacterium nucleatum before 
(c) and after (d) correcting for intestinal calprotectin. The whiskers extend 

from the quartiles to the last data point within 1.5× of the interquartile range, 
with outliers beyond. The ‘y’ axes for (a) are log 10 transformed values (absolute 
abundance +1). The whiskers extend from the quartiles to the last data point 
within 1.5× of the interquartile range, with outliers beyond.

http://www.nature.com/naturemedicine
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Extended Data Fig. 3 | Spearman correlation between species abundance and 
microbiota covariates in the LCPM and FGFP cohorts. Two-sided Spearman’s 
rank correlation comparison between absolute species abundance (QMP) and 

relative abundance (RMP) from the LCPM (N = 589 samples) and FGFP (N = 1045 
samples) cohorts and a, BMI b, faecal calprotectin and c, moisture content values. 
Spearman correlation adjP < 0.05 (QMP and RMP, Supplementary Table 8).

http://www.nature.com/naturemedicine
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Extended Data Fig. 4 | Enterotype stratification by DMM community typing. 
a, Identification of optimal number of clusters (Dirichlet components) in the 
LCPM cohort (n = 589) complemented with 1045 samples from the FGFP cohort, 
based on the Bayesian Information Criterion (BIC). b, Barplot representation of 

the average relative abundance of a few representative genera split into the four 
enterotypes identified by DMM community typing on the combined LCPM and 
FGFP cohorts (n = 1634).

http://www.nature.com/naturemedicine
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Extended Data Fig. 5 | Taxa assignation performance of the V4 amplicon 
marker in the LCPM. a, Bootstrap values distribution across different ranks, 
b, Proportion of ASVs assigned from species to phylum, c, Proportion of ASVs 
assigned from species to phylum to each sample. The whiskers extend from the 
quartiles to the last data point within 1.5× of the interquartile range, with outliers 
beyond. The figure below (Panel a) illustrates our taxa assignation performance, 
showing that more than half of the ASVs were assigned to species level with 
bootstrap values above 80. Panel b shows the ASV assignation proportions from 

phylum (100%) to species level (50%). A comparison of proportions of ASVs 
assigned from each sample at different taxonomic levels revealed no significant 
differences in the distributions of assigned ASVs per sample across diagnosis 
groups, as indicated in panel c (KW test, p-values > 0.05). The center of the box 
plot represents the median value of the data, and the whiskers extend from the 
quartiles to the last data point within 1.5× of the interquartile range, with outliers 
beyond.

http://www.nature.com/naturemedicine
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Extended Data Fig. 6 | Performance of our methodology in small 
communities and isolated microorganisms. a, Species composition of the 
ZymoBIOMICS gut controls, ten successfully identified species and  

b, two Fusobacterium species: Fusobacterium hwasookii (THCT14E2) and 
Fusobacterium nucleatum (DSM 20482T) were successfully identified using our 
methodology.

http://www.nature.com/naturemedicine
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Extended Data Fig. 7 | Quality control assessment for amplicon sequencing 
data (V4 16S rRNA gene). a, The obtained reads for each sample are shown 
after processing with DADA2 (red and orange dashed lines represent 10, 000 
and 1,000 reads, respectively; NCP: PCR negative control, NCE: DNA extraction 
Negative control, PC: positive control, and RS: Runella slithyformis control). 
b, Sequencing controls reveal the absence of barcode crosstalk. RS sequences 
serve as a marker for barcode crosstalk during sequencing. The absence of RS 
sequences in the samples without RS (no_RS) ruled out barcode crosstalk during 
the sequencing or PCR setup procedures. c, BCD among technical replicates 
demonstrating reproducibility. Pairwise comparisons between PC samples 
within and among MiSeq runs showed values under 0.2 (depicted by the pointed 

blue line). The center of the box plot represents the median value of the data, 
and the whiskers extend from the quartiles to the last data point within 1.5× of 
the interquartile range, with outliers beyond. d, Species composition of negative 
controls is presented, indicating the relative abundance and prevalence of the 
top 20 species. None of the species detected with differential abundance using 
QMP, RMP or CLR were found as background contaminants. Non-significant 
differences in bacteria composition were observed among DNA sequencing runs 
(Padj > 0.05, pairwiseAdonis test). A full list of detected species is available in 
Supplementary Table 12. Of note, DI18R24 is not shown as the negative controls 
(NCE and NCP) did not produce reads.

http://www.nature.com/naturemedicine
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Extended Data Fig. 8 | Species and genera associated with CRC on a subset of the curatedMetagenomicData. After performing our differential abundance 
procedure on the MataPhalAn 3.0 profiles downloaded from the curatedMetagenomicData, 108 species (a) and 63 genera (b) were identified across the 9 
metagenomics datasets.

http://www.nature.com/naturemedicine
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Data collection [Amplicon sequencing data] After demultiplexing with sdm as part of the LotuS pipeline (v. 1.60) without allowing for mismatches, fastq raw 
amplicon sequencing files  (2x250, Miseq illumina) were further analysed per sample using DADA2 pipeline (v. 1.6).  
[Microbial load] The flow cytometry analysis was performed using a C6 Accuri flow cytometer (v.1.0.264.21, BD Biosciences).

Data analysis [Amplicon sequencing data] QMP profiles were created using QMP R-script (https://github.com/raeslab/QMP-Microbiome-CRC-confounders) 
to rarefy the profiles to even sampling depth using the microbial load and R package: RasperGade16S (v. 0.0.1). 
[Statistical analyses] Statistical analyses were performed on Rstudio with R(v.4.2.1) using the following R packages: phyloseq(v. 1.36.0), vegan 
(v. 2.6.2), coin(v. 1.4.2), effectsize(v. 0.8.3), vcd(1.4.11),  DirichletMultinomial(v. 1.34.0), pairwiseAdonis(v. 0.4.1) and microbiome(v. 1.14.0). 
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Raw amplicon sequencing data and metadata reported in this study have been deposited in European Nucleotide Archive with accession codes EGAS00001007413. 
FGFP 16S rRNA gene sequencing data and metadata are available at the European Genome-phenome Archive (EGAS00001003296). The diagnosis metadata and 
processed microbiome data required for the reanalysis are provided as Supplementary Table 1 and Supplementary Table 14, respectively. 
Formatted Silva set ‘SLV_nr99_v138.1’ files were downloaded from: https://zenodo.org/records/4587955/files/silva_nr99_v138.1_wSpecies_train_set.fa.gz?
download=1 (silva_nr99_v138.1_wSpecies_train_set.fa.gz) and https://zenodo.org/records/4587955/files/silva_species_assignment_v138.1.fa.gz?download=1 
(silva_species_assignment_v138.1.fa.gz). 
The 9 colorectal cancer cohort MetaPhlAn 3.0 profiles were collected from curatedMetagenomicData, study names: FengQ_2015, HanniganGD_2017, 
ThomasAM_2018a, ThomasAM_2018b, VogtmannE_2016, WirbelJ_2018, YachidaS_2019, YuJ_2015, ZellerG_2014  (DOI: 10.18129/
B9.bioc.curatedMetagenomicData).
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Reporting on sex and gender Results only refer to sex. Gender was not recorded.

Population characteristics A total of eight variables were found significantly associated (FDR < 5%) with diagnostic groups (namely: age, BMI, 
calprotectin, reported hours of sleep, previous cancer (including CRC), diabetes treatment and high blood pressure). 
Younger patients were more likely to exhibit no evidence of colonic lesions, whereas patients with lesions tended to be older. 
Additionally, patients with adenomas had a higher BMI compared to those without lesions, while patients without lesions 
have lower levels of intestinal calprotectin

Recruitment Patients were recruited through the study nurse following a standardized procedure. Briefly, we invited patients scheduled 
for lower gastrointestinal endoscopy or abdominal surgery for CRC removal at the UZL. After explaining the research project 
and upon expressed interest, the informed consent was signed, and stool sample collection materials were provided. After 
colonic examination, patients were assigned to one of the diagnosis groups. In the case of the CLT group without colonic 
lesions, there might be an intrinsic increased risk of colorectal cancer due to the clinical necessity of  a colonic examination.

Ethics oversight Medical ethics committee of the UZL [Ethical approval number: S57084].

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size No sample size calculation was performed. Cohort sizes were determined based on previous findings (Falony et al., Science 2016).

Data exclusions Taxa unclassified at the species level or present in <5 % of samples per each diagnosis group were excluded from the statistical analyses.

Replication Several correlation on species abundance and BMI (2 of 6), fecal calprotectin (17 of 29 ), and moisture content values (29 of 50) in the LCPM 
were replicated in the FGFP cohort.

Randomization Not applicable: this was a cross-sectional study, not a randomized study. No intervention was performed on subjects, and therefore no 
random allocation into groups.

Blinding Not applicable: this was a cross-sectional study, not a randomized study. Investigators were not blinded during data collection and analyses.
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Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration The study protocol was registered at clinicaltrial.gov (NCT02947607)

Study protocol The study protocol is available at https://clinicaltrials.gov/ct2/show/NCT02947607

Data collection The final Leuven CRC Progression Microbiome (LCPM) study cohort consisted of 589 patients. The screening cohort included 650 
volunteers referred for colonoscopy screening and colonic resections at UZL between 2017-2018, who provided a stool sample 
before the colonic procedure. Most participants were from the Flemish region of Belgium. These participants were classified within 
three diagnostic groups according to a thorough colonoscopy and clinical assessment: 1) patients without evidence of colonic lesions 
(CTL), 2) patients with polyps (n< 10 and size between 6 to 10 mm) (ADE), and 3) patients with CRC (CRC). 

Outcomes The hypotheses tested in this manuscript were not originally specified as part of the planned outcomes for the NCT02947607 study. 
The primary outcome of the project,  characterization of "Differential host microbiome composition and abundance in healthy, 
adenoma, and CRC patients and its correlation to CRC risk features and host genomic and transcriptomic components," is not 
addressed in this manuscript. 
While the secondary outcome, involving the analysis of "Host microbiome composition and abundance data generated from saliva, 
stool, and colonic biopsies using amplicon-based 16S ribosomal RNA sequencing," is partially explored in this manuscript, particularly 
regarding stool microbial communities, a comprehensive examination across all specified sample types and methodologies outlined 
in the study protocol, were not fully developed.
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Methodology

Sample preparation 0.2 g frozen (−80 °C) aliquots were dissolved in physiological solution to a total volume of 100 ml (8.5 g l−1 NaCl; VWR 
International). Subsequently, the slurry was diluted 1,000 times. Samples were filtered using a sterile syringe filter (pore size 
of 5 μm; Sartorius Stedim Biotech). Next, 1 ml of the microbial cell suspension obtained was stained with 1 μl SYBR Green I 
(1:100 dilution in dimethylsulfoxide; shaded for 15 min of incubation at 37 °C; 10,000 concentrate, Thermo Fisher Scientific). 

Instrument C6 Accuri flow cytometer (BD Biosciences)

Software BD Accuri CFlow software v.1.0.264.21 (BD Biosciences)

Cell population abundance not applicable. No sorting of fractions was performed.

Gating strategy Fluorescence events were monitored using the FL1 533/30 nm and FL3 > 670 nm optical detectors. In addition, forward and 
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Gating strategy sideward scattered light was collected. The BD Accuri CFlow software was used to gate and separate the microbial 

fluorescence events on the FL1/FL3 density plot from background events. The gated fluorescence events were evaluated on 
the forward and sideward density plot, as to exclude remaining background events. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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