
Nature Medicine

nature medicine

https://doi.org/10.1038/s41591-024-02960-5Article

Dynamics of cognitive variability with 
age and its genetic underpinning in NIHR 
BioResource Genes and Cognition cohort 
participants

Md Shafiqur Rahman    1,2, Emma Harrison2,3, Heather Biggs2,3, Chloe Seikus2,3, 
Paul Elliott    4, Gerome Breen    5,6, Nathalie Kingston3,7, John R. Bradley    3,8, 
Steven M. Hill    1,10, Brian D. M. Tom    1   & Patrick F. Chinnery    2,3,9 

A leading explanation for translational failure in neurodegenerative disease is 
that new drugs are evaluated late in the disease course when clinical features 
have become irreversible. Here, to address this gap, we cognitively profiled 
21,051 people aged 17–85 years as part of the Genes and Cognition cohort 
within the National Institute for Health and Care Research BioResource 
across England. We describe the cohort, present cognitive trajectories 
and show the potential utility. Surprisingly, when studied at scale, the 
APOE genotype had negligible impact on cognitive performance. Different 
cognitive domains had distinct genetic architectures, with one indicating 
brain region-specific activation of microglia and another with glycogen 
metabolism. Thus, the molecular and cellular mechanisms underpinning 
cognition are distinct from dementia risk loci, presenting different targets 
to slow down age-related cognitive decline. Participants can now be recalled 
stratified by genotype and cognitive phenotype for natural history and 
interventional studies of neurodegenerative and other disorders.

By 2050, approximately 139 million people are expected to have demen-
tia worldwide1,2. Although there has been recent therapeutic progress 
(lecanemab3 and donanemab4), the vast majority of new treatments 
shown to be effective in animal studies do not benefit patients when 
evaluated in large-scale clinical trials5–7. Several explanations have been 
proposed for the translational failure, including a limited understand-
ing of the pathophysiology and animal models that do not accurately 
reflect the human disorder. However, a compelling explanation is that 

the new drugs are genuinely effective but have been evaluated too late 
in the disease course to have clinically meaningful impact. Therefore, 
there is an urgent need to understand the disease mechanisms during 
the preclinical and prodromal stages of neurodegenerative diseases 
and test new treatments at an early stage8, maximizing the potential to 
enhance the quality of life and reduce the societal burden of disease. This 
requires large cohorts of participants willing to be recalled for clinical  
and experimental studies, but despite major international efforts, 

Received: 21 November 2023

Accepted: 28 March 2024

Published online: xx xx xxxx

 Check for updates

1MRC Biostatistics Unit, University of Cambridge, Cambridge, UK. 2Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. 
3National Institute for Health and Care Research BioResource, Cambridge, UK. 4Department of Epidemiology and Biostatistics, Imperial College London 
School of Public Health, London, UK. 5Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s 
College London, London, UK. 6UK National Institute for Health Research Biomedical Research Centre for Mental Health, South London and Maudsley 
Hospital, London, UK. 7Dept of Haematology, Cambridge University, Cambridge, UK. 8Department of Medicine, University of Cambridge, Cambridge, UK. 
9MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK. 10Present address: Cancer Research UK National Biomarker Centre, University 
of Manchester, Manchester, UK.  e-mail: brian.tom@mrc-bsu.cam.ac.uk; pfc25@cam.ac.uk

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-024-02960-5
http://orcid.org/0000-0003-4068-6775
http://orcid.org/0000-0002-7511-5684
http://orcid.org/0000-0003-2053-1792
http://orcid.org/0000-0002-7774-8805
http://orcid.org/0000-0002-5909-692X
http://orcid.org/0000-0002-3335-9322
http://orcid.org/0000-0002-7065-6617
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-024-02960-5&domain=pdf
mailto:brian.tom@mrc-bsu.cam.ac.uk
mailto:pfc25@cam.ac.uk


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02960-5

Extended Data Figs. 1 and 2. Test scores from QZ (a measure of fluid 
intelligence), WM, MX, VY (a measure of crystallized intelligence) and 
SD were reversed so that higher scores indicate poorer performance, 
facilitating a direct comparison between all cognitive phenotypes. 
Those reporting a diagnosis known to affect cognition (n = 123) were 
excluded from subsequent analyses.

Common variance underlying cognitive tasks is known as general 
cognitive ability, general intelligence or g-factor14. We obtained two 
data-driven measures of general cognitive ability (G6 and G4) using 

studies specifically focused on dementia are typically in the order of 
a few thousands with low recallable capability9–11.

The National Institute for Health and Care Research (NIHR) BioRe-
source in England was established to facilitate the recall of volunteers 
keen to engage in experimental medicine and clinical trials across the 
whole of medicine12. Most of the participants are healthy, are exten-
sively phenotyped and have genome-wide genetic data available. Rec-
ognizing the unmet need to develop treatments for neurodegenerative 
disorders, we partnered with patients and carers from the UK Alzhei-
mer’s Society to design and deliver the Genes and Cognition (G&C) 
cohort as an open-ended study nested within the NIHR BioResource. 
Individuals undertook cognitive profiling and genetic testing mirror-
ing UK Biobank (UKB), enabling targeted recall studies in 21,051 NIHR 
BioResource participants from the UK population for both discovery 
and experimental validation. This also offers an opportunity to study 
the dynamics of cognitive variability across the lifespan and its genetic 
underpinnings. In this Article, we report the demographic, cognitive 
and genetic data available for participant recall, including educational 
status, measures of deprivation, comorbidities and 13 cognitive phe-
notypes. To show the potential power of the resource, we determine 
the heritability of each cognitive phenotypes, show phenotypic and 
genetic correlation between cognitive phenotypes, and determine 
the genetic landscape for two novel measures of cognitive ability, 
discovering novel genetic loci influencing cognitive performance 
throughout the life course.

Results
Participant data on demographics, cognition and genetics  
for recall
Eleven cognitive tests (Reaction test, RT; Stroop box, SB; Stroop ink, 
SI; Symbol digits, SD; Trail making: numeric, TMN; Trail making: alpha 
numeric, TMA; Matrices, MX; Quiz, QZ; Vocabulary, VY; Working 
memory, WM; Pairing 7, PR) spanning different cognitive domains 
were undertaken at the participants’ convenience using downloaded 
software (Fig. 1 and Methods). The tests were those used in the Air-
wave study13 adapted to work on a range of different devices. Data from 
21,051 participants were available (Table 1). Self-reported clinical infor-
mation is presented in Supplementary Table 1, and a summary of 11 
tests (phenotypes) is presented in Supplementary Tables 2 and 3, and 
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Fig. 1 | Study flow chart and derivation of two measures of general cognitive 
ability (G4 and G6). Diagnoses that affected cognition (N = 123) and participants 
with missing values in cognitive tests were excluded while measuring G4 and G6.

Table 1 | Characteristics of G&C study participants

Characteristics N = 21,051 Missing (%)

Agea (years), mean (s.d.)/median 
(IQR)

50.48 (14.81)/52 (39, 62) —

Age (years) category, n (%)

17–25 1,238 (5.9)

—

26–35 2,900 (13.8)

36–45 3,439 (16.3)

46–55 4,701 (22.3)

56–65 5,084 (24.2)

66–75 3,322 (15.8)

76+ 367 (1.7)

Gendera, female/male/other, n (%) 13,298 (63.2)/7,692 
(36.5)/61 (0.3)

—

Ethnicitya, n (%)

African 73 (0.4)

5.4

Asian 148 (0.7)

Mixed 283 (1.4)

Other 126 (0.6)

White 19,292 (96.8)

Smoking statusa, n (%)

Current smoker 428 (5.4)

62.2Nonsmoker 4,568 (57.4)

Past smoker 2,959 (37.2)

Alcohol usea (yes), n (%) 7,424 (84.4) 58.2

BMIa (kg m−2), n (%)

Underweight (<18.5) 122 (1.4)

Healthy weight (18.5–24.9) 3,812 (43.4)

58.3Overweight (25–29.9) 3,144 (35.8)

Obese (≥30) 1,709 (19.4)

Multiple deprivation index, n (%)

High (1–3) 3,474 (17.2)

4.2Medium (4–7) 8,334 (41.3)

Low (8–10) 8,351 (41.4)

Educationa, n (%)

1 (lowest) 295 (3.9)

64.4
2 2,019 (27.0)

3 748 (10.0)

4 (highest) 4,427 (59.1)

Worked nights 72 h before testa 
(yes), n (%)

431 (2.0) —

First language is Englisha, n (%) 20,082 (96.9) 1.5
aSelf-reported in response to questionnaire provided either by NIHR BioResource or Cognitive 
Test application. IQR, interquartile range.participants will be no different
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principal component (PC) analysis across participants based on dis-
joint subsets of the cognitive phenotypes (Methods and Extended 
Data Figs. 2, 3 and 4). G6 corresponds to the first PC (explaining 66.5% 
of variation) derived from RT, SB, SI, SD, TMN and TMA (Methods and 
Extended Data Fig. 3a–c). G4 corresponds to the first PC (explaining 
46.6% of variation) derived from MX, QZ, VY and WM (Methods and 
Extended Data Fig. 4a–c). All 13 cognitive phenotypes (11 cognitive 
tests, G4 and G6) were positively correlated with each other except VY, 
which was positively correlated with QZ, MX, WM, TMA and G4, and 
negatively correlated with the other cognitive phenotypes (Extended 
Data Fig. 5).

The majority of participants used iOS devices (46%), followed by 
Android (31%) and Windows (23%) devices to take the tests (Extended 
Data Fig. 6). With the exception of WM, there were systematic differ-
ences in test scores between the device types, which remained after 
adjusting for age and gender, possibly reflecting differences in input 
interface (touchscreen versus mouse; Extended Data Fig. 7 and Supple-
mentary Table 4). The device type was thus factored into all subsequent 
analysis other than WM. Although there were differences in device use 
between different age, socioeconomic and educational groups (Sup-
plementary Table 5), potentially influencing some of the cognitive 
phenotypes (except WM and PR). However, this should be borne in 
mind if participants are recalled on the basis of their cognitive profiles.

Available genome-wide genotype array data (based on UKB Axiom 
Array) confirmed the self-reported ethnicity (99.3%) in a subgroup 

of participants (N = 10,038) representative of the whole G&C cohort 
(Supplementary Tables 3, 6 and 7).

Cognition, gender, education, deprivation and health
As expected, performance across all cognitive tests decreased with 
age, except VY, which increased with age (Bonferroni–Holm-adjusted 
P < 0.05; Fig. 2 and Supplementary Table 8). Previous reports have 
shown that VY performance declines beyond age 60 years15,16, but 
this was not apparent across 20,777 NIHR BioResource participants. 
Males had, on average, higher SD, TMN, TMA and PR scores, and lower 
scores in other phenotypes when compared with females (Bonfer-
roni–Holm-adjusted P < 0.05; Fig. 2 and Supplementary Table 8) except 
for G6 where there was no clear evidence for a gender difference. A 
significant age-by-gender interaction effect was observed for SD, VY 
and G4 (Bonferroni–Holm-adjusted P < 0.05; Supplementary Table 8, 
model 1). An indication of age-by-gender interaction was observed for 
RT, SB and QZ. However, age and gender terms did not make a major 
contribution to the variance of WM (1.09%), QZ (1.16%) and G4 (2.53%). 
Although several previous studies reported differences in cognition 
between males and females, these have been inconsistent17–22. Here, we 
confirm that the overall pattern of cognitive change between males and 
females is strikingly similar, with gender only accounting for 0.1–1.33% 
of the variation in cognitive phenotypes. Adjusting for deprivation 
and ethnicity did not influence this analysis (Supplementary Table 8, 
model 2).
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Fig. 2 | Cognitive tests and measures of general cognitive ability (G4 and G6) by age and gender. a–l, Cognitive test scores for RT (a), SB (b), SI (c), SD (d), TMN (e), 
TMA (f), MX (g), WM (h), QZ (i), VY (j) and PR (k) and G4 and G6 scores (l) plotted against age. Lines of best fit with standard error are stratified by gender (indicated by 
line color). Response time is the average time taken per item.
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Likewise, in keeping with previous studies23, the lowest two educa-
tion groups had higher scores (worse performance) across all cognitive 
phenotypes when compared with the highest education group (Bonfer-
roni–Holm-adjusted P < 0.05; Supplementary Table 9), and there was 
a linear trend between cognitive performance and educational attain-
ment (Bonferroni–Holm-adjusted P < 0.05; Supplementary Table 9). All 
cognitive phenotypes except PR correlated with levels of multiple dep-
rivation (Bonferroni–Holm-adjusted P < 0.05; Extended Data Fig. 8 and 
Supplementary Table 10), with a significant linear trend indicating worse 
performance with higher levels of multiple deprivation (Bonferroni– 
Holm-adjusted P < 0.05). Associations between cognitive profiles and 
self-reported health-related issues are presented in Supplementary 
Table 11. Given the correlation between all of these parameters and 
cognition, these data have been made available for recall, allowing 
participants to be matched by potential confounders of cognition.

Cognitive trajectory and APOE genotype
APOE e4 allele status has a major impact on Alzheimer’s disease (AD) 
risk24. APOE genotype is also thought to influence cognition and brain 
activity in healthy individuals, but studies have been small, with incon-
sistent findings25–29. To show the utility of the NIHR BioResource G&C 
cohort, we determined whether APOE genotype influences cognitive 
performance throughout adult life.

APOE e4 carriers showed a subtle increase in RT, SB, SI, SD, TMA, 
G6, QZ and PR emerging in late middle age (45–64 years) and TMN in 

late old age (>65 years) when compared with e3/e3 carriers (Extended 
Data Fig. 9), but this did not withstand adjustment for covariates (Sup-
plementary Table 12). On further inspection of those nine cognitive 
phenotypes showing subtle increase, RT, SB, SI and G6 showed a trend 
toward having pointwise higher mean scores for e4 allele carriers after 
the age 45 when using categorized age (Extended Data Fig. 10). An 
age-by-APOE interaction was observed for SD and G6, where e4 carri-
ers had higher scores than e3/e3 carriers (uncorrected P < 0.05), and 
an age2-by-APOE interaction effect was observed for SI, where e2/e3 
carriers had higher scores compared with e3/e3 carriers (uncorrected 
P < 0.05; Supplementary Table 12). Previous studies reported associa-
tions with APOE for specific age groups, including 60–65 years30,31, and 
between 47 and 56 years32, particularly for processing speed (similar 
to SD) and visual episodic memory (similar to PR). However, in our 
study, none of these associations survived correction for multiple 
testing. In conclusion, across the age range studied we saw no compel-
ling evidence that APOE genotype influenced performance of the 11 
established cognitive phenotypes in the 9,691 individuals where the 
genotype could be unambiguously called (Methods).

Stratification by AD polygenic risk scores
Given the interest in polygenic risk scores (PRS) in AD risk stratification, 
AD-PRS were calculated for participants to facilitate informed recall. 
AD-PRS obtained from Lambert et al.33,34 were used to test whether AD 
genetic risk was associated with cognitive performance across the age 
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range. Two PRS were created (Supplementary Table 13), one includ-
ing APOE (AD-PRSAPOE) and the other without APOE (AD-PRSnoAPOE) to 
determine the value of non-APOE PRS in risk prediction. The 11 cogni-
tive scores, G4 and G6 were compared between the top 5th percen-
tile of AD-PRS (‘AD-PRS-high’ group) and the bottom 95th percentile 
of AD-PRS (‘AD-PRS-low’ group). For AD-PRSAPOE, positive deviation 
in RT, SB, SI, SD, TMN, PR, QZ and G6 scores were observed for the 
AD-PRSAPOE-high group starting between ages 55 and 65. A similar 
score deviation was observed around late adulthood (over 65 years) 
for TMA (Fig. 3). For AD-PRSnoAPOE, a positive score deviation in RT, SB, 
TMN and VY was observed for the AD-PRSnoAPOE-high group beginning 
in either late middle age or late adulthood (Supplementary Fig. 1). In 
the adjusted analysis, these score deviations did not differ between 
the AD-PRSAPOE (Supplementary Table 14) and AD-PRSnoAPOE groups 
(Supplementary Table 15). However, an age-by-AD-PRSAPOE risk group 
interaction was observed for SB, SI and G6 (Supplementary Table 14), 
but only the SI association remained following multiple testing correc-
tions (Bonferroni–Holm-adjusted P = 0.039). Our exploratory analysis 
using categorized age showed that mean values for SB, SI, SD and G6 
between AD-PRSAPOE groups differed (P < 0.05) for the 60–64-year-old 
age category (Supplementary Fig. 2). No age-by-AD-PRSnoAPOE risk group 
interaction effect was observed for RT, SB, TMN and VY (Supplementary 
Fig. 3). Thus, AD-PRS had a minimal impact on cognitive performance, 
with effects being noticeable only in later life. The use of AD-PRS had 
inferior discriminatory ability than the APOE genotype alone to identify 
early changes in cognitive ability.

Heritability, genetic and phenotypic correlation
Having annotated the cohort for recall studies based on cognition and 
genotype, we moved on to estimate single-nucleotide polymorphism 
(SNP) heritability for each cognitive phenotype, as well as the genetic 
and phenotypic correlations between these phenotypes. Based on 
individual-level genetic data, the heritability of each cognitive pheno-
type ranged from 0.06 to 0.28 (Methods and Supplementary Tables 16 
and 17), confirming published findings for QZ35, RT36, TMA37 and general 
cognitive ability38. The correlations between genetic profiles associ-
ated with cognitive phenotypes were stronger than the correlations  
between the cognitive phenotypes themselves (Methods and  
Supplementary Fig. 4a,b).

Genome-wide association study of general cognitive ability
Given that G4 and G6 explained most of the variation seen in the individ-
ual tests (Extended Data Figs. 3 and 4), we conducted two genome-wide 
association studies (GWAS) to identify known or novel genetic loci 
determining general cognitive ability. Covariates included in the GWAS 
are listed in Supplementary Table 17. G4 and G6 were associated with 
distinct genome-wide significant loci (Figs. 4a and 5a and Supplemen-
tary Fig. 5). There was no evidence of confounding due to population 
stratification (G4: λGC = 1.0466, linkage disequilibrium score regres-
sion (LDSR)39 intercept 0.9974, and G6: λGC = 1.0466, LDSR intercept 
1.0095), indicating that the different cognitive domains probably have 
different molecular bases. The strongest association for G4 spanned 75 
SNPs (P < 5 × 10−8) including the independent SNP, rs62034351 (intronic 
variant, P = 9.1 × 10−9), within CCDC101 (SGF29) in a gene-dense region 
on chromosome 16 (Fig. 4b and Supplementary Tables 18 and 19). 
Rs62034351 explained 185-fold more of the variance in G4 (0.37%, 
analysis of variance (ANOVA) P = 1.38 × 10−8) than APOE (0.002%, ANOVA 
P = 0.93). Four additional loci were suggestive of genome-wide associa-
tion with G4 (P < 1 × 10−6; Supplementary Table 20). For G6, the strongest 
association was on chromosome 3, with the independent SNP at this 
locus (rs11705789; P = 4.5 × 10−8) near GBE1 (Fig. 5b and Supplementary 
Tables 18 and 21). Three additional loci were suggestive of an associa-
tion with G6 (Supplementary Table 22). Rs11705789 explained 5.5-fold 
more variance in G6 (0.11%, ANOVA P = 2.52 × 10−5) than APOE (0.02%, 
ANOVA P = 0.21). To validate these findings, we reviewed two previous 

meta-analyses of intelligence40,41. The G4/rs62034351 discovery repli-
cated in the same direction in both studies40,41, but the G6/rs11705789 
discovery did not replicate, possibly reflecting differences in the cog-
nitive profiling and its contribution to G6 (Supplementary Table 23).

Functional mapping of the G4 locus
SNPs in linkage disequilibrium (LD) with G4/rs62034351 were anno-
tated using ANNOVAR (n = 423). The majority of SNPs were intronic 
(44.3%) or intergenic (36.1%), but 14 lay within exons of which 7 were 
predicted to change the amino acid sequence (Fig. 4c and Supplemen-
tary Table 24). Thirteen SNPs (3.7%) were predicted to be deleterious 
(combined annotation-dependent depletion (CADD)42 score >12.37), 
17 (4%) were likely to regulate gene expression (Regulome DB43 (RDB) 
score <2) and 385 (91.25%) had regulatory potential (minimum chroma-
tin state <8). Genome-wide gene-based association (GWGBA) analysis 
identified 16 genes associated with G4 (CLN3 was the highest ranked; 
Supplementary Fig. 6). Collectively, GWGBA, positional, expression 
quantitative trait loci (eQTL) and chromatin interaction mapping identi-
fied 128 genes for G4, including NUPR1, ATXN2L, CCDC101 and SULT1A1 
observed through all mapping strategies (Supplementary Table 25  
and Supplementary Fig. 7).

To cast light on the mechanisms underpinning G4 we investigated 
tissue-specific expression of the mapped gene set for 53 specific GTEx 
(v8)44 tissue types. Most of the implicated genes were downregulated 
across multiple tissues, particularly in the brain (Supplementary Fig. 8). 
The majority of the top 10 enriched terms identified by pathway and 
process analysis were immunological, with microglial response to 
γ-interferon being the highest ranked (Fig. 4d and Supplementary 
Table 26) and INTERFERON_GAMMA_RESPONSE being the top hall-
mark gene set (P = 3.68 × 10−19; Supplementary Fig. 9). In keeping with 
this, SNPs associated with G4 also influenced the expression of TUFM, 
SULT1A1 and SULT1A2 in microglia (microglial eQTLs45; Fig. 4e). To inves-
tigate whether the effects of G4 were restricted to different anatomical 
locations in the brain, we performed summary-based Mendelian rand-
omization (SMR) analysis using GTEx (v8) eQTL on G4-GWAS summary 
statistics on tissue from 12 brain regions. This indicated a potential 
causal link between SNVs in 11 genes (seven protein coding), including 
TUFM (seven brain regions), SULT1A1 (eight brain regions) and SULT1A2 
(eight brain regions), and G4-cognitive phenotype through differential 
microglial gene expression (Fig. 4f). Statistical fine mapping identified 
rs3743963, rs11074904, rs62031607 and rs2411453 as most plausible 
causal variants (Supplementary Fig. 10).

Functional mapping of the G6 locus
A total of 186 SNPs in LD were annotated for the G6/rs11705789 locus. 
The majority of the SNPs were intergenic (Fig. 5c). Nine SNPs (4.83%) 
were predicted to be deleterious, and 152 SNPs (81.72%) were identified 
with regulatory potential. GWGBA analysis identified GBE1 as the only 
associated gene (Fig. 5d). The overall expression of GBE1 was lower in all 
bulk brain tissues than the other tissue types (Fig. 5e). Independently, 
positional, eQTL and chromatin interaction mapping also prioritized 
CYP51A1P1, RP11-359D24.1 and RP11-142L1.1, none of which are protein 
coding. G6/rs11705789 is an expression quantitative locus for GBE1 
(Fig. 5f). There was no instrumental variable available for GBE1 locus 
precluding SMR analysis. Statistical fine mapping showed rs12635671, 
rs820270 and rs2691073 to be the likely causal variant regulating GBE1 
expression.

Correlation of general cognitive ability and related 
phenotypes
To assess the life course stability of general cognitive ability, we exam-
ined the association of G4 and G6 with childhood46 and adulthood40,41 
intelligence quotient using GWAS summary statistics. Childhood 
and adulthood intelligence quotient had a high genetic correlation 
(GC) with G4 and G6, and the estimate for G4 was higher than G6 
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Fig. 4 | Genetic associations with G4 and likely functional relevance.  
a, A Manhattan plot of the genome-wide association analysis of G4. The x axis 
shows SNP chromosome positions, and the y axis shows the corresponding −log10 
two-tailed P values from the two-sided BOLT infinitesimal model. The horizontal 
red line indicates the genome-wide significance threshold at P = 5 × 10−8. The 
horizontal blue line indicates the suggestive genome-wide significance threshold 
at P = 1 × 10−6. The nearest gene or top SNP is highlighted for loci associated at 
P < 1 × 10−6. b, Regional association and LD plots for G4-associated genome-wide 
significant locus. The x axis shows the SNP position on the chromosome, and the 
y axis shows the −log10(P value). The independent SNP is indicated by the purple 
diamond. The circles show other SNPs in pairwise LD with the independent SNP, 
with color indicating the strength of LD (r2). The strength of LD (r2) is presented in 
the upper left corner of the plot. The dashed horizontal line indicates genome-
wide significant threshold. Estimated recombination rates are marked in light 
blue. Bottom: genes within ±200 kb of the independent SNP. c, A pie chart 
showing the proportion of the functional consequences of the G4-associated 

independent SNP and its proxies as annotated with ANNOVAR. d, Pathway and 
process enrichment analysis of genes mapped for G4 locus. The figure presents 
the top ten clusters along with their respective enriched terms (one per cluster).  
P values (−log10 transformed) are computed using the cumulative hypergeometric 
distribution, and the most statistically significant term within each cluster is 
selected to represent it. e, Colocalization of G4-associated signals with microglia 
eQTLs at SULT1A1 (i), SULT1A2 (ii), TUFM (iii) and long noncoding RNA (lncRNA) 
(iv). Each colored point indicates the strength of LD (red, ≥0.8; orange, 0.6–0.8; 
green, 0.4–0.6; light blue, 0.2–0.4; dark blue, <0.2) with candidate SNP (purple 
diamond labeled with rsID). PPH4 values indicate PP in support of shared single 
causal variants between the traits. PPH3 values indicate PP in support of sharing 
different causal variants between traits. f, A bar graph showing evidence from SMR 
between G4-GWAS and GTEx (v8) Brain eQTLs (cis) for G4-associated locus. The 
x axis represents coefficients from SMR for associated brain tissues (indicated by 
color), and the y axis represents prioritized genes.
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(Supplementary Table 27), suggesting that fluid and crystallized intel-
ligence domains might be less variable within an individual across the 
life course than processing speed and executive function. We assessed 
the relevance of G4 and G6 in educational attainment47 using GC. G4 
had a 2.4 times higher GC estimate with educational attainment than 
G6 (Supplementary Table 27), indicating that fluid and crystallized 
intelligence domains might predict better educational attainment 
than processing speed and executive function. We also looked for a 
GC between summary measures of cognitive abilities (G4 and G6) and 
AD34. A strong GC would imply a shared biological processes between 
two phenotypes48 (in this instance, cognition in healthy people and AD). 
However, our analysis only revealed a very weak correlation between 
the genetic factors associated with normal cognition and genetic fac-
tors associated with AD (Supplementary Table 27), implying different 
underlying biological mechanisms.

Discussion
Here, we report cross-sectional data for 11 cognitive tests and two 
summary statistics (G4 and G6) in 20,928 healthy individuals aged 
17–85 years who participated in the newly established NIHR BioResource 
G&C cohort. Analyzing data at this scale confirmed well-established 
determinants of cognition, including age, socioeconomic status and 
educational status, and showed negligible differences in cognitive 
performance between males and females across the life course. Con-
trary to previous reports from smaller studies, genetic risk factors 
for dementia, including APOE genotype and AD-PRS, have a minimal 
impact on cognition in healthy individuals. However, a small effect of 
e4 and AD-PRS on cognitive performance in certain domains emerges 
in mid-life, potentially reflecting the presence of patients with early 
AD neuropathological changes or demographic characteristics of the 
study influencing the e4-mediated effect on cognition. On the other 
hand, our unbiased genome-wide approach identified novel risk factors 
for different cognitive parameters. Thus, the genetic and biological 
basis of cognition in healthy individuals appears to be distinct from the 
pathogenesis of neurodegenerative dementia, and characterizing the 
different molecular pathways has the potential to uncover new targets 
to prevent age-related cognitive decline.

For G4, which summarizes short-term memory, fluid and 
crystallized intelligence, our functional annotation implicated 
microglial-mediated immunological processes in the age-related cog-
nitive trajectory, supporting previous circulating cytokine measure-
ments49,50. Multiple lines of evidence implicated three plausible genes 
(TUFM, SULT1A1 and SULT1A2) with G4. TUFM encodes the mitochon-
drial elongation factor Tu, which is involved in mitochondrial protein 
synthesis and has been implicated with cognitive trajectory51 and 
AD pathology52. SULT1A1 (sulfotransferase family 1A member 1) and 
SULT1A2 (sulfotransferase family 1A member 2) encode sulfotransferase 

enzymes responsible for the metabolism of hormones, and xenobiot-
ics53. While the functional roles of SULT1A1 and SUKT1A2 in the brain 
remain largely unexplored, both genes are expressed in the adult brain 
and are implicated in the local metabolism of catecholamines and 
toxin clearance54,55. However, the region is genetically complex, rais-
ing the possibility that other genes play a critical role through LD with 
the four likely causal SNVs: rs3743963, rs11074904, rs62031607 and 
rs2411453. The locus also contains IL27 coding for interleukin 27, which 
can be both pro-inflammatory and anti-inflammatory56 and influence 
microglial activation57. In addition, several proximal candidates have 
been implicated with brain function and cognition such as CLN358, 
KIF2259, ALDOA, SEZ6L2 and TAOK260,61. Functional studies are required 
to clarify whether these genes play a role in general cognition, but 
this will be very challenging because phenotypes in cellular or animal 
models are unlikely to closely reflect cognitive function in healthy 
humans as they age.

For G6, which summarizes reaction time, attention, processing  
speed and executive functioning, only one protein-coding gene 
was associated with cognition: GBE1, which codes for 1,4-α-glucan- 
branching enzyme and plays a critical role in glycogen synthesis 
and glucose storage. Rare recessive mutations in GBE1 cause adult 
polyglucosan body disease, which often affects cognition including 
executive function62–64, and in a recent GWAS, GBE1 was implicated in 
musical beat synchronization65, which is closely related to attention 
and executive function (planning, organizing and controlling action). 
These independent observations support our findings indicating that 
GBE1—and more broadly, glycogen metabolism—probably play a role in  
general cognitive ability. Glycogen’s presence in the brain has not been 
considered to be as important as glucose, but its role in cognition  
has attracted recent interest66–68, warranting further investigation.

The strengths of this resource include online cognitive assessment 
allowing rapid data collection of thousands of individuals, cognitive 
phenotyping covering various domains, and genotyping mirroring 
the UKB. However, unlike UKB, the NIHR BioResource is designed 
specifically for participant recall, which is now possible based on both 
cognitive and genetic profiles. Several limitations also require consid-
eration. So far, the cognitive data are cross-sectional, and measure-
ment error may have diluted associations. The cognitive tests were 
also device dependent. Although this was taken into account in our 
analysis, this could confound recall studies unless factored into sub-
sequent designs. It is important to note that our choice of cognitive 
tests does not represent all possible cognitive domains, such as verbal 
episodic memory and visuospatial skills. In addition, our findings are 
based on an analysis of participants of white European background, 
with the majority having benefited from higher education. Thus, our 
findings cannot be generalized across all ethnicities with confidence 
at this stage. Finally, it is important to note that, other than genetic and 

Fig. 5 | Genetic associatons with G6 and likely functional relevance.  
a, A Manhattan plot of the genome-wide association analysis of G6. The x axis 
shows SNP chromosome positions, and the y axis shows the corresponding −log10 
two-tailed P values from the two-sided BOLT infinitesimal model. The horizontal 
red line indicates the genome-wide significance threshold at P = 5 × 10−8. The 
horizontal blue line indicates the suggestive genome-wide significance threshold 
at P = 1 × 10−6. The nearest gene or top SNP is highlighted for loci associated at 
P < 1 × 10−6. b, Regional association and LD plots for G6-associated genome-wide  
significant locus. The x axis shows SNP position on the chromosome, and the y axis 
shows −log10(P value). Tick marks at the top of the plot indicate SNP position. 
The independent SNP is indicated by the purple diamond. The circles show other 
SNPs in pairwise LD with the independent SNP, with color indicating the strength 
of LD (r2). The strength of LD (r2) is presented in the upper left corner of the plot. 
Estimated recombination rates are marked in light blue. Bottom: genes within 
±500 kb of the independent SNP. c, A pie chart showing the proportion of the 
functional consequences of G4-associated independent SNP and its proxies as 
annotated with ANNOVAR. d, A Manhattan plot for the GWGBA analysis of G6. 
The y axis shows the −log10-transformed two-tailed P value of each gene from a 

linear model, and the x axis shows the chromosomal position. The dotted red line 
indicates the Bonferroni-corrected threshold (P = 2.614 × 10−6) for the  
genome-wide significance of the gene-based test. The gene with the lowest  
P value is highlighted. e, Bulk tissue expression of the GBE1 gene across tissue 
types from GTEx v8. The y axis represents transcripts per million (TPM), and 
the x axis represents the GTEx (V.8) tissues. Box plots feature the median, 25th 
and 75th percentiles. Points are displayed as outliers if they fall beyond 1.5 times 
the interquartile range. The figure was adapted from the GTEx Portal (https://
www.gtexportal.org/home/gene/GBE1). f, A circos plot displaying chromatin 
interactions (Ci) and eQTLs for rs11705789. The outermost layer shows the 
Manhattan plot with −log10(P value) for the G6-associated locus, and SNPs 
with P < 0.05 are displayed. The LD relationship between rs11705789 and other 
SNPs is indicated with red (r2 > 0.8), orange (r2 > 0.6) and green (r2 > 0.4) colors. 
Gray SNPs show minimal LD with r2 ≤ 0.20. The second circle represents the 
chromosome ring with coordinates, where the genomic risk locus is highlighted 
in blue. The third circle shows the same chromosome ring, but with Ci- and 
eQTL-mapped genes represented by orange and green lines, respectively. Genes 
mapped by both approaches are colored red.
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cognitive characterization, we have not yet measured any biomarkers 
specific for neurodegenerative diseases. It is therefore possible that 
recalled participants will be no different from the background popula-
tion for specific neurodegeneration biomarkers such as brain imaging. 
On the other hand, this emphasizes the potential utility of the NIHR 
BioResource for a wide range of studies beyond neurodegeneration, 
including age-related cognitive decline and other common human 
disorders.

Our analyses of APOE genotypes and AD-PRS and G4 and G6 
were chosen to illustrate the potential use of the data generated 
through the NIHR G&C study. However, the potential for further 
analysis extends way beyond what has been explored so far. The 
participants of the NIHR BioResource G&C cohort have consented to 
be recalled for clinical studies and clinical data linkage from across 
England. Defining the principal demographic and genetic factors 
that explain why any two individuals differ allows careful matching 
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of participants in early proof-of-concept clinical trials, thus reducing 
the risk of confounding variables influencing experimental studies. 
It is also possible to recall specific genetic subgroups to optimize 
the chance of observing a specific treatment effect based on known 
mechanisms of action. We are currently repeating the cognitive pro-
filing of all participants to determine cognitive trajectories over 
time, expanding to include more diverse ethnic groups and carrying 
out long-read genome sequencing to enrich the recall potential for 
both academic and industry researchers. The data access procedure 
for the NIHR BioResource is described at https://bioresource.nihr.
ac.uk/using-our-bioresource/apply-for-bioresource-data-access/,  
and the participant recall process for the NIHR BioResource is 
explained at https://bioresource.nihr.ac.uk/using-our-bioresource/
apply-for-recall/.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-024-02960-5.
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Methods
Study population and data collection
The G&C study is a prospective open cohort nested within the NIHR 
BioResource, which recruits participants from the general population 
and National Health Service organizations in England. The G&C study 
participants were recruited via NIHR BioResource with the objective 
of gaining insights into brain and cognitive function within healthy 
populations and facilitating early experimental studies in people at 
risk of neurodegenerative diseases such as dementia.

The NIHR BioResource operates under two separate set of ethics: 
a study for the recruitment of patients with rare disease (REC REF: 13/
EE/0325) and a research tissue bank for the recruitment of all other par-
ticipants (REC REF: 17/EE/0025). All participants of NIHR BioResource 
were invited to take part in the G&C study in two phases: (1) pilot phase 
(~June 2020 to ~August 2020) and (2) main phase (~November 2020 to 
~November 2021). A total of 315 participants took part in the pilot study, 
and 20,869 participants participated in the main study. Combining 
both phases (excluding those who withdrew their consent or were 
missing vital information), 21,052 participants served as the study 
base. These participants were considered cognitively healthy at the 
time of recruitment for the G&C study. They donated their DNA via a 
blood sample and completed a questionnaire containing basic lifestyle 
and health-related information, including self-reported height and 
weight, ethnicity, current smoking status, alcohol consumption and 
diagnosis of certain diseases (for example, diabetes, stroke and mental 
health issues), all at recruitment to NIHR BioResource. Ethical approval 
for the G&C study was obtained from the North of Scotland Research 
Ethics Committee (REC REF: 19/NS/0118). All participants consented 
to be part of NIHR BioResource and to be recalled for future studies.

Cognitive tests and measures of general cognitive ability
The G&C study participants were invited to take online cognitive tests 
using the ‘Cognitive Test (v4.4.7-v5.6.7)’ application that was down-
loadable onto a compatible device. The ‘Cognitive Test’ application 
was composed of a short pretest questionnaire and ten cognitive tests 
(RT; SB; SI; SD; Trail making: TMN and TMA; MX; WM; QZ; VY; and PR). 
The total time to complete all these tests was approximately 30 min. 
We reversed some test scores to make the direction of all tests similar. 
In this work, a higher score across cognitive tests signifies poorer 
performance. The majority of these tests are similar to cognitive tests 
performed in UKB. The 4-week test–retest reliability of the UKB cogni-
tive tests was moderate to high (range 0.40–0.83), with most showing 
a modest to good correlation with reference datasets69. A brief discus-
sion of each test and measures of general cognitive ability (G4 and G6) 
is presented in Supplementary Note.

Other covariates
Information on age, gender, body mass index (BMI), self-reported 
ethnicity, smoking status, alcohol use and multiple deprivation index 
was collected centrally by NIHR BioResource. Age reflects the age 
at the time of cognitive testing. In this work, we used age as both a 
continuous and categorical variable. For the continuous use, age was 
centered by subtracting off the mean age in the G&C cohort, which was 
used to create a second-degree polynomial term. Self-reported gender 
was categorized as male, female and other. We categorized BMI into 
underweight (<18.5 kg m−2), healthy weight (18.5–24.9 kg m−2), over-
weight (25–29.9 kg m−2) and obese (≥30 kg m−2), following the criteria 
of the World Health Organization70. The multiple deprivation index is 
a relative measure of deprivation assigned to each participant on the 
basis of post codes71. Deprivation indices were available in deciles, 
where higher score correspond to lesser deprivation. In this study, 
we categorized deciles of multiple deprivations into three groups:  
(1) high (first three deciles), (2) medium (fourth to seventh deciles) and 
(3) low deprivation (eighth to tenth deciles). Information on education 
and participants’ first language was collected using the ‘Cognitive 

Test’ application. We categorized education into four groups, where 
the first category represents the lowest level of education and covers 
certificates of secondary education (CSEs)/equivalent/equivalent or 
other professional degrees/not specified. The second category covers  
A-level/O-level/national vocational qualification (NVQ)/higher national 
diploma (HND)/higher national certificate (HNC)/equivalent edu-
cation, while the third category covers A-level/O-level/NVQ/HND/
HNC/equivalent education with a professional degree and the fourth 
category covers college/university/equivalent professional degree.

Self-reported diagnosis
Several self-reported diagnoses were available for G&C study par-
ticipants. Information on arthritis, diabetes, the presence of autism, 
attention-deficit/hyperactivity disorder, any heart condition, high 
blood pressure, mental health issues and stroke or related conditions 
was collected using a questionnaire centrally by NIHR BioResource. 
Information on color blindness, learning disability and conditions 
that participants thought would interfere with their cognition was 
collected via the ‘Cognitive Test’ application before cognitive testing.

Genotyping, imputation and quality control
DNA was extracted from whole blood and/or saliva. Aliquoted samples 
were sent to Affymetrix for genotyping and processing with the stand-
ard pipeline. Participants were genotyped using either Affymetrix v1.0 
or v2.1 array by ThermoFisher Scientific72. Samples on the v1.0 and v2.1 
chips were genotyped on the genome build hg37 and hg38, respectively. 
Before the imputation, we lifted variants on the genome build hg38 to 
hg37 using Liftover73 and 708,654 variants common in both chips were 
used for pre-imputation quality control. Genotyped markers were 
used to infer genetic sex and determine European ancestry (EU) using 
the 1000 Genomes dataset. The multidimensional scaling approach 
incorporating the 1000 Genomes dataset was used to infer the genetic 
ethnicity of the samples. Plink 1.9 (ref. 74) was used for multidimensional 
scaling analysis75. Only genetically inferred EU participants were used 
for imputation. We applied the following filters before the imputa-
tion: minor allele frequency (<0.01), marker missingness (>0.01), indi-
vidual missingness (>0.01), Hardy–Weinberg equilibrium (P < 1 × 10−6), 
exclusion of individuals with extreme heterozygosity (±3 standard 
deviations (s.d.) from the mean heterozygosity rate) and exclusion of 
mono-morphic variants and those who had an allelic mismatch with 
Haplotype Reference Consortium (HRC)76. A total of 518,164 high-quality 
autosomal markers (genotyping rate 99.6%) were used for imputation 
using the HRC reference panel on the Michigan imputation server77. 
HRC consisted of whole-genome sequence data from cohorts of EU 
ancestry, providing large coverage for the common genetic variants 
in European ancestry population. To analyze the samples with genetic 
data, we excluded participants for whom there was a mismatch between 
genetically inferred sex and self-reported gender. To account for popula-
tion stratification, 20 genetic PCs were created using post-imputation 
quality-controlled data, implemented on Plink 1.9 (ref. 74).

Identification of APOE alleles
We use rs429358 and rs7412 to determine APOE alleles78. Both SNPs 
were imputed in our data. We used the method specified at GitHub 
(https://github.com/neurogenetics/APOE_genotypes). There were 279 
participants for whom the APOE allele was ambiguous or unknown, and 
these were therefore excluded. In the remaining sample, the propor-
tion of e2/e2, e2/e3, e3/e3, e3/e4 and e4/e4 carriers was 0.01 (n = 69), 
0.13 (n = 1,238), 0.61 (n = 5,931), 0.24 (n = 2,304) and 0.02 (n = 218), 
respectively. We combined e4 carriers into one group (e3/e4 and e4/e4, 
n = 2,522) and e2 carriers into another group (e2/e2 and e2/e3, n = 1,307).

Derivation of AD-PRS
The PRS provides an individual-level estimate of genetic liability for 
any given phenotype. The PRS is measured by combining weighted 
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effect sizes (odds ratios or β) of multiple SNPs into one score, where 
weights are obtained from previous GWAS performed for that pheno-
type of interest79. The most widely used PRS for AD is obtained from 
Lambert et al.34 study, which included EU ancestry participants. We 
used previously created PRS based on Lambert et al.34 from the poly-
genic score (PGS) catalog. The PGS ID PGS002289 included 23 SNPs, 
of which rs11218343, rs670139 and rs8093731 were not available for 
G&C study participants. Of the 20 available SNPs, rs429358 and rs7412 
represent APOE. We created two PRS using PGS ID PGS002289 (refs. 
32,33), (1) AD-PRSAPOE: including 20 SNPs (2 APOE SNPs included) and 
(2) AD-PRSnoAPOE: including 18 SNPs (without APOE SNPs). Assuming 
an additive model, both PRS were computed using PRSice-2 (v2.3.3)80 
with the ‘--score std’ and ‘--missing MEAN_IMPUTE’ settings. For both 
PRS (AD-PRSAPOE and AD-PRSnoAPOE), we categorized participants into 
high-risk (values >95th percentile) and low-risk (values ≤95th percen-
tile) groups (AD-PRS-high and AD-PRS-low).

Statistical Analysis
Demographics, clinical characteristics and scores for 13 cognitive 
phenotypes (11 cognitive tests, G4 and G6) are presented for both the 
whole sample and a subset with available genetic data. Categorical data 
were presented as proportions, while continuous data were summa-
rized using mean, median, s.d. or interquartile range. A small number 
of individuals (n = 123 out of 21,051) were excluded because they had a 
medical disorder or disability that could bias the effect estimates. The 
phenotypic correlation between cognitive phenotypes was measured 
using Pearson correlation (the whole sample and a subset with available 
genetic data). The association between 13 cognitive phenotypes and 
devices used (iOS device user served as reference category) to take cog-
nitive tests was examined using a linear regression model with further 
adjustment for age and gender. Age and gender effects on cognitive 
phenotypes were measured, excluding those who self-identified as 
‘other’ (N = 61). Trajectories of each cognitive phenotype (11 tests, G4 
and G6) were plotted across age, stratified by gender, using the ‘geom_
smooth’ function from the ggplot2 package in R with the ‘method’ 
argument set to ‘loess’. The associations of cognitive phenotypes were 
assessed in relation to age and gender. While testing associations, age 
(centered), age2, gender, an interaction term for age-by-gender and 
age2-by-gender, and devices used to take cognitive tests (except WM) 
were considered as covariates in a stepwise linear regression model 
using the ‘stepAIC’ function with both forward and backward selec-
tion implemented with MASS package in R to choose the best model 
for each cognitive phenotype. Henceforth, variables selected using 
stepwise regression (base model) remained consistent for each cogni-
tive phenotype while testing association in relation to other factors, 
unless stated otherwise. Additionally, base models were adjusted for 
self-reported ethnicity and multiple deprivation. Since self-reported 
ethnicity and multiple deprivation had negligible effects on the cog-
nitive phenotypes, none of the associations tested from this point 
onward included those factors. We assessed the association for cogni-
tive phenotypes with education and multiple deprivation using linear 
regression model adjusting for the cognitive phenotype-specific base 
model. A linear trend in the association between cognitive phenotypes 
and both education and multiple deprivation was also examined. The 
association between cognitive phenotypes and self-reported diagnosis 
was explored using the linear regression model, which was adjusted 
for age terms, gender and device used to take the test. The associa-
tion of cognitive phenotypes with age, gender, education, multiple 
deprivation and the self-reported diagnosis was corrected using the 
Bonferroni–Holm correction for 13 tests (considering the 13 cognitive 
phenotypes). The terms age2, age-by-gender, or age2-by-gender were 
corrected (Bonferroni–Holm) in accordance with the number of times 
they were subjected to testing against cognitive phenotypes.

Each cognitive phenotype was plotted against age, with the 
smooth line fitted and stratified by the APOE allele. Following visual 

inspection, nine cognitive phenotypes were selected to undergo test-
ing for their association with age term(s) and APOE utilizing the lin-
ear mixed-effects model adjusting for sex (genetically determined), 
devices used for cognitive tests, genotyping batch as a random effect, 
genotyping array and first five genomic PCs. We used e3/e3 carriers as 
a reference while assessing the association between cognitive phe-
notypes and APOE. The model also examined the interaction effect 
between age term(s) and APOE on cognitive phenotypes. The results of 
the linear mixed-effects model were corrected using Bonferroni–Holm 
correction for nine tests. Furthermore, the mean difference in all nine 
cognitive phenotypes across different age groups was explored using 
the ANOVA test.

The correlation between PRSs was measured using Pearson corre-
lation. Cognitive phenotype trajectories across the age continuum (fit-
ted smooth line) were inspected for an indication of score deviation in 
the AD-PRS-high group compared with the AD-PRS-low group. Based on 
the observations, the association for candidate cognitive phenotypes 
in relation to age term(s) and AD-PRS group (high versus low) was exam-
ined using the linear mixed-effects model adjusting for sex, devices 
used for cognitive tests, genotyping batch as a random effect, genotyp-
ing array and the first five genomic PCs. The model also assessed the 
interaction effect of age term(s) and AD-PRS group for each cognitive 
phenotype. The findings were presented following the Bonferroni–
Holm correction. Based on the outcome of linear mixed-effects models, 
the mean difference in four cognitive phenotypes (for each PRS) were 
explored across age groups between AD-PRS-high and AD-PRS-low 
groups (based on AD-PRSAPOE and AD-PRSnoAPOE) using t-tests.

Heritability and GC analysis
We used individual-level genetic data to estimate SNP heritability and 
GC for 13 cognitive phenotypes. SNP heritability for cognitive pheno-
types was estimated using BOLT-REML (V.2.4)81,82. Covariates adjusted 
in the heritability analysis are specified in Supplementary Table 17. GC 
between cognitive phenotypes was measured using Bivariate GREML 
analysis on GCTA (v1.94.1)83. Before the analysis, we removed related 
individuals using the ‘--grm-cutoff’ value of 0.125. For each cognitive 
phenotype, residuals were obtained from the separate linear regression 
model adjusted for covariates (except batch, genotyping chips and 
genetic PCs) specified in Supplementary Table 17. These residuals were 
used for GC analysis, which was adjusted for batch, genotyping chips 
and the first ten genomic PCs as covariates. Moreover, we measured 
summary statistics based GC for G4 and G6 in relation to childhood46 
and adulthood40,41 intelligence, educational attainment47 and AD34 
using LDSR (v1.0.1)39. Precomputed LD scores based on 1000 Genomes 
European data restricted to HapMap release-3 SNPs (n = 1,217,311) were 
used to calculate SNP heritability and GCs. Precomputed LD scores 
and the list of HapMap3 SNPs were obtained from https://data.broad-
institute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2 and https://
data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2.

GWAS of general cognitive ability
We performed GWAS on G6 and G4 using the linear mixed model 
implemented in BOLT-LMM (V.2.3.6)81, which accounts for popula-
tion structure and cryptic relatedness. These analyses were performed 
assuming an additive SNP effect on both phenotypes. Covariates 
adjusted for in the genome-wide association analysis of G4 and G6 are 
specified in Supplementary Table 17. We applied the following filters 
for the genome-wide association analysis of G4 and G6: minor allele 
frequency ≥0.05, imputation quality scores (INFO) ≥0.50, and HWE 
threshold P value <1 × 10−6. A P-value threshold of 5 × 10−8 (for sugges-
tive significance, P value <1 × 10−6) was used to determine genome-wide 
significance. LDSR (v1.0.1)39 was used to assess inflation (λGC) and to 
distinguish confounding from polygenicity in GWAS summary statis-
tics. SNPs with P value <1 × 10−5 at each genome-wide significant locus 
were considered to identify independent SNP at r2 ≥ 0.4 using the 
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publicly available web-based application FUMA (functional mapping 
and annotation)84. We measured the percentage of variance explained 
in G4 by the rs62034351 and APOE using linear regression models that 
included age, age2, sex, age-by-sex interaction, batch, array and first 
five genomic PCs as covariates. Likewise, the variance explained in G6 
by rs11705789 and APOE was measured using linear regression models 
that included age, age2, sex, batch, array and first five genomic PCs as 
covariates. Model significances were examined by comparing with the 
model that included all relevant covariates using ANOVA.

Replication of G&C locus in UKB
For the replication of the G4- and G6-associated locus (SNP with lowest 
P value considered), we used previously published GWAS studies by 
Sniekers et al.41 and Savage et al.40. Sniekers and colleagues41 performed 
a genome-wide association meta-analysis on human intelligence using 
78,308 European descent individuals from 13 cohorts where phenotype 
was either Spearman’s g or a measure of fluid intelligence. The major-
ity of the study participants (N = 54,119) were from UKB. For these 
participants, only fluid intelligence (either touchscreen or web-based) 
test score was used, which was considered to correlate highly with 
g (ref. 85). We obtained summary statistics for Sniekers et al.41 from 
http://ctg.cncr.nl/software/summary_statistics. The Savage et al.40 
study performed a genome-wide association meta-analysis in 269,867 
European descent individuals from 14 cohorts where various cogni-
tive phenotypes were used to measure intelligence. Most of the study 
participants (72.5%) were obtained from UKB (N = 195,653), for which 
either touchscreen or web-based fluid intelligence test scores were 
used. Savage et al.40 summary statistics were obtained from https://
ctg.cncr.nl/. In both intelligence GWAS studies40,85, the imputation of 
participating cohorts varied. However, the authors provided no details 
regarding the direction of test scores across participating cohorts. 
Given that UKB forms the large majority of their participants and fluid 
intelligence measures were used for UKB-GWAS, we can assume that, 
overall, a higher score for the phenotype in both studies meant better 
performance. In contrast, we performed GWAS on G4 and G6, where 
a higher score meant poor performance. To resolve confusion, we 
reported replication findings from Sniekers et al.41 and Savage et al.40, 
harmonizing the summary statistics in line with the G&C study.

Functional annotation
FUMA84 was used to annotate genome-wide significant loci for G4 
and G6. SNP2GENE function in FUMA was used to annotate SNPs and 
prioritize genes at each locus using gene-based association analysis 
(implemented in MAGMA86) and three gene mapping strategies (posi-
tional, eQTL and chromatin interaction). ANNOVAR87 implemented in 
FUMA84 annotated SNPs (minimum minor allele frequency threshold 
set at 0.0001) in LD with independent SNP within a 250 kb window 
based on the 1000 Genome Phase3 reference panel. SNPs with CADD 
scores >12.37 are predicted to be pathogenic, RDB scores <2 are pre-
dicted to have a regulatory function and chromatin state ≥7 indicates 
open chromatin region.

Gene mapping strategies
ANNOVAR87-annotated SNPs were used to prioritize genes on the basis 
of positional, eQTL and chromatin interaction mapping. Positional 
mapping considered a 10 kb window from the human reference assem-
bly GRCh37/hg19 to map each SNP to genes. For eQTL mapping, SNPs 
were mapped to eQTL data repositories available by default to annotate 
SNP effect on gene expression at a false discovery rate threshold <0.05. 
For chromatin interaction mapping, SNPs were linked to chromatin 
interaction data available by default to map SNP to gene promoter 
regions (250 bp upstream and 500 bp downstream of the transcrip-
tion start site). Also, we opted for annotating enhancer/promoter 
regions based on Roadmap 111 epigenomes and filtered SNPs over-
lapping with those regions. A false discovery rate threshold <1 × 10−6 

was used to detect significant interaction. In addition, we performed 
GWGBA analysis implemented with MAGMA86 to prioritize genes for 
each genome-wide significant locus where all SNPs from GWAS sum-
mary data were mapped to 19,128 protein-coding genes. Genome-wide 
significance was defined at P value of 0.05/19,128 = 2.614 × 10−6.

Tissue specificity and gene expression
Genes prioritized using all mapping strategies (positional, eQTL, chro-
matin interaction and GWGBA) were used for tissue specificity analysis 
using the GENE2FUNC option on FUMA84. For G4, tissue specificity 
analysis was performed using predefined differentially expressed gene 
(DEG) sets for GTEx v8 54 tissue44. The gene set was characterized as  
(1) upregulated DEG, (2) downregulated DEG and (3) DEG, both sides. All 
FUMA-mapped genes were used as input to test each DEG using default 
parameters. For G6, bulk tissue gene expression for GBE1 across GTEx 
v8 (ref. 44) tissues were visualized using GTEx Portal (https://www.
gtexportal.org/home/gene/GBE1).

Gene-set enrichment
FUMA84-mapped genes for G4 were used for pathway and process 
enrichment analysis using ‘Metascape’ (http://metascape.org/)88 
with input and analysis species set to Homo sapiens. Of the 128 genes, 
Metascape considered 106 genes for the enrichment analysis. The 
following ontology sources were used in the analysis: KEGG Pathway, 
GO Molecular Functions, GO Cellular Components, GO Biological 
Processes, Immunologic Signatures, Oncogenic Signatures, Reactome 
Gene Sets, Hallmark Gene Sets, Canonical Pathways, Chemical and 
Genetic Perturbations, BioCarta Gene Sets, CORUM and WikiPathways. 
We used default Metascape settings. All genes in the genome were used 
as background for the enrichment in Metascape88. Metascape findings 
were validated using GENE2FUNCTION option on FUMA84.

Colocalization
We examined evidence of shared colocalization between microglia 
eQTL and G4-associated significant locus at the level of individual genes 
within a 1 MB window around GWAS-independent SNP. Meta-analyzed 
(random effects) eQTL summary statistics (out_mfg_stg_svz_tha.
metasoft.gz) of four microglial brain regions (medial frontal gyrus, 
superior temporal gyrus, thalamus and subventricular zone) with 
random effects were used for colocalization and downloaded from 
Zenodo (https://doi.org/10.5281/zenodo.4118676). We used a Bayesian 
colocalization method (COLOC89) assuming one single causal variant 
underlying the locus. A total of five hypotheses were tested to evalu-
ate colocalization: H0, there is no causal variant for both traits (PP0); 
H1 or H2, causal variant associated with either trait 1 or trait 2 (PP1 or 
PP2); H3, two independent causal variants for trait 1 and trait 2 (PP3); 
H4, one single causal variant associated with both traits (PP4). COLOC 
generates a posterior probability (PP) for each hypothesis, with higher 
values indicating the degree to which we favor a hypothesis. A higher 
PP for H3 (PP3) supports the presence of two independent variants for 
both traits. A higher PP for H4 (PP4) supports the presence of single 
independent variants affecting both traits. We considered thresholds of 
PP H4 (PP4) ≥0.5 for suggestive, ≥0.7 for moderate and ≥0.8 for strong 
colocalization, respectively.

SMR and HEIDI analysis
The SMR method uses principals of Mendelian randomization to inte-
grate summary-level data of an exposure (for example, gene expres-
sion) and outcome (that is, intelligence) to test for an association 
between the two due to a shared and potentially causal variant at a 
locus90. We used SMR to prioritize brain regions and genes associ-
ated with G4. We retained 2 Mb regions around GWAS independent 
SNPs for the analysis where cis-eQTLs from 12 GTEx (version 8) brain 
regions were used as the instrumental variable, gene expression of 
each brain region as exposure and G4 as the outcome. For each gene, 
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heterogeneity in dependent instruments (HEIDI)90 test was performed, 
which distinguishes pleiotropy (that is, gene expression and G4 are 
associated owing to a single shared genetic variant) from linkage (that 
is, two variants in LD independently affecting gene expression and G4). 
We performed SMR and HEIDI analysis on the Complex-Traits Genet-
ics Virtual Lab91 platform. Threshold levels of significance for SMR 
tests were adjusted for multiple comparisons by Bonferroni correc-
tion (PSMR < 0.05/number of genes in each eQTL analysis). Genes with 
PHEIDI < 0.05 were considered as linkage and removed.

Statistical fine mapping
We performed statistical fine mapping of G4- and G6-associated locus. 
First, GWAS-associated regions were analyzed using GCTA-COJO 
(v1.94.1)92 to identify conditionally independent lead variants. All 
variants within a 1 MB window of the lead variant were analyzed using 
FINEMAP (v1.4.2)93, a Bayesian fine-mapping method, to identify 
high-confidence putative causal SNPs for G4 and G6. We allowed for a 
maximum number of five causal variants for fine mapping. FINEMAP 
calculates PPs and assigns a Bayes factor to each variant. We considered 
variants with PP >0.95 and log10 Bayes factor ≥2 as plausibly causal.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for G4 and G6 GWAS were deposited in Zenodo 
at https://doi.org/10.5281/zenodo.10836380 (ref. 94). Other data rel-
evant to the study are included in the article or uploaded as online 
supplementary information. NIHR BioResource holds individual-level 
genetic and phenotypic data for genes and cognitive study partici-
pants that can be accessed through https://bioresource.nihr.ac.uk/
using-our-bioresource/.

Code availability
All software used in this study is publicly available. The codes used  
for cognitive data cleaning are available on GitHub (https://github. 
com/shafiqnoa/Genes-and-Cognition-Phase-1/tree/main/Phase1_ 
Cognitive_Data_Clean).
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Extended Data Fig. 1 | Proportion of missing values in cognitive test scores. QZ: Quiz; WM: Working memory; MX: Matrices; SD: Symbols Digit; VY: Vocabulary;  
RT: Reaction Test; PR: Pairing 7; SB: Stroop Box; SI: Stroop Ink; TMN: Trail Making Numeric; TMA: Trail Making Alpha Numeric.
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Extended Data Fig. 2 | Distribution of cognitive test scores and two summary 
scores (G4 and G6). In the x-axis subtitle, n indicates the number of non-missing 
values and m indicates the number of missing values. QZ: Quiz; WM: Working 

memory; MX: Matrices; SD: Symbols Digit; VY: Vocabulary; RT: Reaction Test; PR: 
Pairing 7; SB: Stroop Box; SI: Stroop Ink; TMN: Trail Making Numeric; TMA: Trail 
Making Alpha Numeric.
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Extended Data Fig. 3 | (A) Percentage of variance explained by principal 
components (PCs) derived from six cognitive tests (SB: Stroop Box, SI: Stroop 
Ink, SD: Symbols Digit, TMN: Trail Making Numeric, TMA: Trail Making Alpha 
Numeric, RT: Reaction Test), (B) Contribution of each of the six cognitive tests to 

PC1. Horizontal red (dashed) line expected value of each test if the contribution 
where uniform, and (C) Generalised scree plot for PCs derived from SB, SI, SD, 
TMN, TMA and RT tests.
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Extended Data Fig. 4 | (A) Percentage of variance explained by principal 
components (PCs) derived from four cognitive tests (QZ: Quiz, VY: Vocabulary, 
MX: Matrices, WM: Working Memory), (B) Contribution of each of the four 

cognitive tests to PC1. Horizontal red (dashed) line expected value of each test if 
the contribution where uniform, and (C) Generalised scree plot for PCs derived 
from QZ, VY, MX and WM tests.
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Extended Data Fig. 5 | Phenotypic correlation for 11 cognitive test scores and 
two measures of general cognitive ability (G4 and G6). QZ: Quiz; WM: Working 
memory; MX: Matrices; SD: Symbols Digit; VY: Vocabulary; RT: Reaction Test; PR: 
Pairing 7; SB: Stroop Box; SI: Stroop Ink; TMN: Trail Making Numeric; TMA: Trail 
Making Alpha Numeric. Each coloured cell indicates magnitudes of phenotypic 

correlations. The corresponding colour scale is presented on the right side of the 
heatmap where dark green represents the highest genetic correlation, and darker 
moderate pink represents highest negative correlation. On the x- and y-axis, all 
cognitive phenotypes are presented maintaining the order.
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Extended Data Fig. 6 | Devices used to take the cognitive tests. The x-axis represents types of devices used to take cognitive test and the y-axis represents number of 
observations.
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Extended Data Fig. 7 | (A-K) Cognitive tests Scores by devices used to take  
the test and (L-M) Measures of general cognitive ability (G4 and G6) by device 
used to complete all cognitive tests. Across all plots, the x-axis represents 
types of devices used to take cognitive test and the y-axis represents score for 
the corresponding test or measures of general cognitive ability. Response Time 

is the average time taken per item. In each box plot (A–L), the box represents 
the interquartile range, with the center line denoting the median. The edges of 
the box indicate the first and third quartiles, while the whiskers extend to span a 
range of 1.5 interquartile distances from the edges. Individual data points that fall 
beyond the whiskers are presented as circles.
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Extended Data Fig. 8 | (A-K) Cognitive tests Scores by groups of multiple 
deprivation and (L-M) Measures of general cognitive ability (G4 and G6) by 
groups of multiple deprivation. Across all plots, the x-axis represents groups 
of multiple deprivation, and the y-axis represents score for the corresponding 
test or measures of general cognitive ability. Response Time is the average time 

taken per item. In each box plot (A-L), the box represents the interquartile range, 
with the center line denoting the median. The edges of the box indicate the first 
and third quartiles, while the whiskers extend to span a range of 1.5 interquartile 
distances from the edges. Individual data points that fall beyond the whiskers are 
presented as circles.
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Extended Data Fig. 9 | Cognitive tests and two measures of general cognitive ability (G4 and G6) stratified by APOE alleles status. (A–K) Cognitive test scores and 
(L) G4 and G6 scores plotted against age. Lines of best fit with standard error are stratified by APOE allele status (indicated by line colour). Response Time is the average 
time taken per item.
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Extended Data Fig. 10 | (A-I) Mean and standard error for nine cognitive 
phenotypes across age categories stratified by APOE alleles. In each of the 
plots, mean score differences for APOE allele carriers across different age groups 
were assessed using analysis of variance (ANOVA). The x-axis represents age 
categories and y-axis indicate scores for the corresponding cognitive phenotype. 

Bars are aligned based on age category and indicates standard error for the mean. 
The red, green, and blue lines across plots represent APOE allele status, specified 
in the right side of the plot with colour coded legend. Response Time is the 
average time taken per item.
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	Dynamics of cognitive variability with age and its genetic underpinning in NIHR BioResource Genes and Cognition cohort part ...
	Results

	Participant data on demographics, cognition and genetics for recall

	Cognition, gender, education, deprivation and health

	Cognitive trajectory and APOE genotype

	Stratification by AD polygenic risk scores

	Heritability, genetic and phenotypic correlation

	Genome-wide association study of general cognitive ability

	Functional mapping of the G4 locus

	Functional mapping of the G6 locus

	Correlation of general cognitive ability and related phenotypes


	Discussion

	Online content

	Fig. 1 Study flow chart and derivation of two measures of general cognitive ability (G4 and G6).
	Fig. 2 Cognitive tests and measures of general cognitive ability (G4 and G6) by age and gender.
	Fig. 3 11 Cognitive tests and measures of general cognitive ability (G4 and G6) stratified by AD-PRS (including APOE region AD-PRSAPOE) group.
	Fig. 4 Genetic associations with G4 and likely functional relevance.
	Fig. 5 Genetic associatons with G6 and likely functional relevance.
	Extended Data Fig. 1 Proportion of missing values in cognitive test scores.
	Extended Data Fig. 2 Distribution of cognitive test scores and two summary scores (G4 and G6).
	Extended Data Fig. 3 (A) Percentage of variance explained by principal components (PCs) derived from six cognitive tests (SB: Stroop Box, SI: Stroop Ink, SD: Symbols Digit, TMN: Trail Making Numeric, TMA: Trail Making Alpha Numeric, RT: Reaction Test), (B
	Extended Data Fig. 4 (A) Percentage of variance explained by principal components (PCs) derived from four cognitive tests (QZ: Quiz, VY: Vocabulary, MX: Matrices, WM: Working Memory), (B) Contribution of each of the four cognitive tests to PC1.
	Extended Data Fig. 5 Phenotypic correlation for 11 cognitive test scores and two measures of general cognitive ability (G4 and G6).
	Extended Data Fig. 6 Devices used to take the cognitive tests.
	Extended Data Fig. 7 (A-K) Cognitive tests Scores by devices used to take the test and (L-M) Measures of general cognitive ability (G4 and G6) by device used to complete all cognitive tests.
	Extended Data Fig. 8 (A-K) Cognitive tests Scores by groups of multiple deprivation and (L-M) Measures of general cognitive ability (G4 and G6) by groups of multiple deprivation.
	Extended Data Fig. 9 Cognitive tests and two measures of general cognitive ability (G4 and G6) stratified by APOE alleles status.
	Extended Data Fig. 10 (A-I) Mean and standard error for nine cognitive phenotypes across age categories stratified by APOE alleles.
	Table 1 Characteristics of G&C study participants.




