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Aleading explanation for translational failure in neurodegenerative disease is

that new drugs are evaluated late in the disease course when clinical features
havebecomeirreversible. Here, to address this gap, we cognitively profiled
21,051 people aged 17-85 years as part of the Genes and Cognition cohort
within the National Institute for Health and Care Research BioResource
across England. We describe the cohort, present cognitive trajectories

and show the potential utility. Surprisingly, when studied at scale, the

APOE genotype had negligible impact on cognitive performance. Different
cognitive domains had distinct genetic architectures, with one indicating
brain region-specific activation of microglia and another with glycogen
metabolism. Thus, the molecular and cellular mechanisms underpinning
cognition are distinct from dementiarisk loci, presenting different targets
to slow down age-related cognitive decline. Participants can now be recalled
stratified by genotype and cognitive phenotype for natural history and
interventional studies of neurodegenerative and other disorders.

By 2050, approximately 139 million people are expected to have demen-
tiaworldwide'* Although there has beenrecent therapeutic progress
(lecanemab’® and donanemab®), the vast majority of new treatments
shown to be effective in animal studies do not benefit patients when
evaluated inlarge-scale clinical trials*’. Several explanations have been
proposed for the translational failure, including a limited understand-
ing of the pathophysiology and animal models that do not accurately
reflect the humandisorder. However, acompelling explanationis that

thenew drugs are genuinely effective but have been evaluated too late
inthe disease course to have clinically meaningfulimpact. Therefore,
thereisanurgent need tounderstand the disease mechanisms during
the preclinical and prodromal stages of neurodegenerative diseases
and test new treatments at an early stage®, maximizing the potential to
enhancethe quality of lifeand reduce the societal burden of disease. This
requireslarge cohorts of participants willing to be recalled for clinical
and experimental studies, but despite major international efforts,
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Fig.1|Study flow chart and derivation of two measures of general cognitive
ability (G4 and G6). Diagnoses that affected cognition (N =123) and participants
with missing values in cognitive tests were excluded while measuring G4 and Gé.

studies specifically focused on dementia are typically in the order of
afew thousands with low recallable capability® .

The NationalInstitute for Health and Care Research (NIHR) BioRe-
sourcein England was established to facilitate the recall of volunteers
keen to engage in experimental medicine and clinical trials across the
whole of medicine'. Most of the participants are healthy, are exten-
sively phenotyped and have genome-wide genetic data available. Rec-
ognizing the unmet need to develop treatments for neurodegenerative
disorders, we partnered with patients and carers from the UK Alzhei-
mer’s Society to design and deliver the Genes and Cognition (G&C)
cohort as an open-ended study nested within the NIHR BioResource.
Individuals undertook cognitive profiling and genetic testing mirror-
ing UK Biobank (UKB), enabling targeted recall studies in 21,051 NIHR
BioResource participants from the UK population for both discovery
and experimental validation. This also offers an opportunity to study
the dynamics of cognitive variability across the lifespan and its genetic
underpinnings. In this Article, we report the demographic, cognitive
and genetic data available for participant recall, including educational
status, measures of deprivation, comorbidities and 13 cognitive phe-
notypes. To show the potential power of the resource, we determine
the heritability of each cognitive phenotypes, show phenotypic and
genetic correlation between cognitive phenotypes, and determine
the genetic landscape for two novel measures of cognitive ability,
discovering novel genetic loci influencing cognitive performance
throughout the life course.

Results

Participant data on demographics, cognition and genetics
forrecall

Eleven cognitive tests (Reaction test, RT; Stroop box, SB; Stroop ink,
SI; Symbol digits, SD; Trail making: numeric, TMN; Trail making: alpha
numeric, TMA; Matrices, MX; Quiz, QZ; Vocabulary, VY; Working
memory, WM; Pairing 7, PR) spanning different cognitive domains
were undertaken at the participants’ convenience using downloaded
software (Fig. 1and Methods). The tests were those used in the Air-
wave study” adapted to work onarange of different devices. Data from
21,051 participants were available (Table1). Self-reported clinical infor-
mation is presented in Supplementary Table 1, and a summary of 11
tests (phenotypes) is presented in Supplementary Tables2and 3, and

Table 1| Characteristics of G&C study participants

Characteristics N=21,051 Missing (%)

Age’ (years), mean (s.d.)/median 50.48 (14.81)/52(39,62) —

(IQR)

Age (years) category, n (%)

17-25 1,238 (5.9)

26-35 2,900 (13.8)

36-45 3,439 (16.3)

46-55 4,701(22.3) —

56-65 5,084 (24.2)

66-75 3,322 (15.8)

76+ 367(1.7)

Gender’, female/male/other, n (%) 13,298 (63.2)/7,692 —
(36.5)/61(0.3)

Ethnicity®, n (%)

African 73(0.4)

Asian 148 (0.7)

Mixed 283 (1.4) 54

Other 126 (0.6)

White 19,292 (96.8)

Smoking status®, n (%)

Current smoker 428 (5.4)

Nonsmoker 4,568 (57.4) 62.2

Past smoker 2,959 (37.2)

Alcohol use® (yes), n (%) 7,424 (84.4) 58.2

BMF (kgm™), n (%)

Underweight (<18.5) 122 (1.4)

Healthy weight (18.5-24.9) 3,812 (43.4)

Overweight (25-29.9) 3144 (35.8) 58.3

Obese (>30) 1,709 (19.4)

Multiple deprivation index, n (%)

High (1-3) 3,474 (17.2)

Medium (4-7) 8,334 (41.3) 4.2

Low (8-10) 8,351(41.4)

Education?, n (%)

1 (lowest) 295 (3.9)

2 2,019 (27.0)

3 748 (10.0) 6a4

4 (highest) 4,427 (59.1)

Worked nights 72 h before test® 431(2.0) —

(ves), n (%)

First language is English?, n (%) 20,082 (96.9) 1.5

*Self-reported in response to questionnaire provided either by NIHR BioResource or Cognitive
Test application. IQR, interquartile range.participants will be no different

Extended Data Figs.1and 2. Test scores from QZ (a measure of fluid
intelligence), WM, MX, VY (a measure of crystallized intelligence) and
SD were reversed so that higher scores indicate poorer performance,
facilitating a direct comparison between all cognitive phenotypes.
Those reporting a diagnosis known to affect cognition (n =123) were
excluded from subsequent analyses.

Common variance underlying cognitive tasks is known as general
cognitive ability, general intelligence or g-factor'*. We obtained two
data-driven measures of general cognitive ability (G6 and G4) using
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Fig.2| Cognitive tests and measures of general cognitive ability (G4 and G6) by age and gender. a-1, Cognitive test scores for RT (a), SB (b), Sl (c), SD (d), TMN (e),
TMA (f), MX (g), WM (h), QZ (i), VY (j) and PR (k) and G4 and G6 scores (I) plotted against age. Lines of best fit with standard error are stratified by gender (indicated by

line color). Response time is the average time taken per item.

principal component (PC) analysis across participants based on dis-
joint subsets of the cognitive phenotypes (Methods and Extended
DataFigs. 2,3 and 4).G6 correspondsto the first PC (explaining 66.5%
of variation) derived from RT, SB, SI, SD, TMN and TMA (Methods and
Extended Data Fig. 3a-c). G4 corresponds to the first PC (explaining
46.6% of variation) derived from MX, QZ, VY and WM (Methods and
Extended Data Fig. 4a-c). All 13 cognitive phenotypes (11 cognitive
tests, G4 and G6) were positively correlated with each other except VY,
which was positively correlated with QZ, MX, WM, TMA and G4, and
negatively correlated with the other cognitive phenotypes (Extended
DataFig.5).

The majority of participants used iOS devices (46%), followed by
Android (31%) and Windows (23%) devices to take the tests (Extended
Data Fig. 6). With the exception of WM, there were systematic differ-
ences in test scores between the device types, which remained after
adjusting for age and gender, possibly reflecting differences ininput
interface (touchscreen versus mouse; Extended Data Fig. 7 and Supple-
mentary Table 4). The device type was thus factored into all subsequent
analysis other than WM. Although there were differences in device use
between different age, socioeconomic and educational groups (Sup-
plementary Table 5), potentially influencing some of the cognitive
phenotypes (except WM and PR). However, this should be borne in
mind if participants are recalled on the basis of their cognitive profiles.

Available genome-wide genotype array data (based on UKB Axiom
Array) confirmed the self-reported ethnicity (99.3%) in a subgroup

of participants (N =10,038) representative of the whole G&C cohort
(Supplementary Tables 3, 6 and 7).

Cognition, gender, education, deprivation and health

As expected, performance across all cognitive tests decreased with
age, except VY, whichincreased with age (Bonferroni-Holm-adjusted
P<0.05; Fig. 2 and Supplementary Table 8). Previous reports have
shown that VY performance declines beyond age 60 years™'®, but
this was not apparent across 20,777 NIHR BioResource participants.
Males had, on average, higher SD, TMN, TMA and PR scores, and lower
scores in other phenotypes when compared with females (Bonfer-
roni-Holm-adjusted P < 0.05; Fig. 2 and Supplementary Table 8) except
for G6 where there was no clear evidence for a gender difference. A
significant age-by-gender interaction effect was observed for SD, VY
and G4 (Bonferroni-Holm-adjusted P < 0.05; Supplementary Table 8,
modell). Anindication of age-by-gender interaction was observed for
RT, SB and QZ. However, age and gender terms did not make a major
contribution to the variance of WM (1.09%), QZ (1.16%) and G4 (2.53%).
Although several previous studies reported differences in cognition
between males and females, these have beeninconsistent” %2, Here, we
confirmthat the overall pattern of cognitive change between males and
femalesis strikingly similar, with gender only accounting for 0.1-1.33%
of the variation in cognitive phenotypes. Adjusting for deprivation
and ethnicity did not influence this analysis (Supplementary Table 8,
model 2).
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Likewise, in keeping with previous studies®, the lowest two educa-
tiongroups had higher scores (worse performance) across all cognitive
phenotypes when compared with the highest education group (Bonfer-
roni-Holm-adjusted P < 0.05; Supplementary Table 9), and there was
alinear trend between cognitive performance and educational attain-
ment (Bonferroni-Holm-adjusted P< 0.05; Supplementary Table 9). All
cognitive phenotypes except PR correlated with levels of multiple dep-
rivation (Bonferroni-Holm-adjusted P < 0.05; Extended Data Fig. 8 and
Supplementary Table10), withasignificantlinear trendindicating worse
performance with higher levels of multiple deprivation (Bonferroni-
Holm-adjusted P < 0.05). Associations between cognitive profiles and
self-reported health-related issues are presented in Supplementary
Table 11. Given the correlation between all of these parameters and
cognition, these data have been made available for recall, allowing
participants to be matched by potential confounders of cognition.

Cognitive trajectory and APOE genotype
APOE e4 allele status has a major impact on Alzheimer’s disease (AD)
risk?*. APOE genotypeis also thought to influence cognition and brain
activity in healthy individuals, but studies have been small, with incon-
sistent findings® . To show the utility of the NIHR BioResource G&C
cohort, we determined whether APOE genotype influences cognitive
performance throughout adult life.

APOE e4 carriers showed a subtle increase in RT, SB, SI, SD, TMA,
G6, QZ and PR emerging in late middle age (45-64 years) and TMN in

late old age (>65 years) when compared with e3/e3 carriers (Extended
DataFig.9), but this did not withstand adjustment for covariates (Sup-
plementary Table 12). On further inspection of those nine cognitive
phenotypes showing subtleincrease, RT, SB, Sland G6 showed atrend
toward having pointwise higher mean scores for e4 allele carriers after
the age 45 when using categorized age (Extended Data Fig. 10). An
age-by-APOE interaction was observed for SD and G6, where e4 carri-
ers had higher scores than e3/e3 carriers (uncorrected P < 0.05), and
an age?-by-APOE interaction effect was observed for SI, where e2/e3
carriers had higher scores compared with e3/e3 carriers (uncorrected
P <0.05; Supplementary Table 12). Previous studies reported associa-
tions with APOE for specific age groups, including 60-65 years***, and
between 47 and 56 years®, particularly for processing speed (similar
to SD) and visual episodic memory (similar to PR). However, in our
study, none of these associations survived correction for multiple
testing. In conclusion, across the age range studied we saw no compel-
ling evidence that APOE genotype influenced performance of the 11
established cognitive phenotypes in the 9,691 individuals where the
genotype could be unambiguously called (Methods).

Stratification by AD polygenic risk scores

Giventheinterestinpolygenicrisk scores (PRS) in AD risk stratification,
AD-PRS were calculated for participants to facilitate informed recall.
AD-PRS obtained from Lambert et al.”>** were used to test whether AD
genetic risk was associated with cognitive performance across the age
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range. Two PRS were created (Supplementary Table 13), one includ-
ing APOE (AD-PRSp0p) and the other without APOE (AD-PRS,,por) tO
determine the value of non-APOE PRS inrisk prediction. The 11 cogni-
tive scores, G4 and G6 were compared between the top 5th percen-
tile of AD-PRS (‘AD-PRS-high’ group) and the bottom 95th percentile
of AD-PRS (‘AD-PRS-low’ group). For AD-PRS ¢, positive deviation
in RT, SB, SI, SD, TMN, PR, QZ and G6 scores were observed for the
AD-PRS,;o-high group starting between ages 55 and 65. A similar
score deviation was observed around late adulthood (over 65 years)
for TMA (Fig. 3). For AD-PRS, ..o, @ pOsitive score deviationin RT, SB,
TMN and VY was observed for the AD-PRS, ,1por-high group beginning
in either late middle age or late adulthood (Supplementary Fig.1). In
the adjusted analysis, these score deviations did not differ between
the AD-PRS,por (Supplementary Table 14) and AD-PRS,xpor Eroups
(Supplementary Table 15). However, an age-by-AD-PRS ,p risk group
interaction was observed for SB, Sland G6 (Supplementary Table 14),
butonly the Slassociation remained following multiple testing correc-
tions (Bonferroni-Holm-adjusted P= 0.039). Our exploratory analysis
using categorized age showed that mean values for SB, SI, SD and G6
between AD-PRS o groups differed (P < 0.05) for the 60-64-year-old
age category (Supplementary Fig.2). No age-by-AD-PRS, ,po: Fisk group
interactioneffect was observed for RT,SB, TMN and VY (Supplementary
Fig.3). Thus, AD-PRS had aminimalimpact on cognitive performance,
with effects being noticeable only in later life. The use of AD-PRS had
inferior discriminatory ability than the APOE genotype alone to identify
early changes in cognitive ability.

Heritability, genetic and phenotypic correlation

Having annotated the cohort for recall studies based on cognitionand
genotype, we moved on to estimate single-nucleotide polymorphism
(SNP) heritability for each cognitive phenotype, as well as the genetic
and phenotypic correlations between these phenotypes. Based on
individual-level genetic data, the heritability of each cognitive pheno-
typeranged from 0.06 to 0.28 (Methods and Supplementary Tables 16
and17), confirming published findings for QZ*, RT**, TMA* and general
cognitive ability®. The correlations between genetic profiles associ-
ated with cognitive phenotypes were stronger than the correlations
between the cognitive phenotypes themselves (Methods and
Supplementary Fig. 4a,b).

Genome-wide association study of general cognitive ability

Giventhat G4 and G6 explained most of the variation seenin the individ-
ualtests (Extended DataFigs. 3 and 4), we conducted two genome-wide
association studies (GWAS) to identify known or novel genetic loci
determining general cognitive ability. Covariates included in the GWAS
are listed in Supplementary Table 17. G4 and G6 were associated with
distinct genome-wide significantloci (Figs. 4aand 5a and Supplemen-
tary Fig. 5). There was no evidence of confounding due to population
stratification (G4: A;c = 1.0466, linkage disequilibrium score regres-
sion (LDSR)* intercept 0.9974, and G6: A, =1.0466, LDSR intercept
1.0095), indicating that the different cognitive domains probably have
different molecular bases. The strongest association for G4 spanned 75
SNPs (P < 5x107%) including the independent SNP, rs62034351 (intronic
variant, P=9.1x10~%), within CCDCI01 (SGF29) in a gene-dense region
on chromosome 16 (Fig. 4b and Supplementary Tables 18 and 19).
Rs62034351 explained 185-fold more of the variance in G4 (0.37%,
analysis of variance (ANOVA) P=1.38 x10°%) than APOE (0.002%, ANOVA
P=0.93).Four additional loci were suggestive of genome-wide associa-
tionwith G4 (P <1x107% Supplementary Table 20). For G6, the strongest
association was on chromosome 3, with the independent SNP at this
locus (rs11705789; P= 4.5 x 107%) near GBEI (Fig. 5b and Supplementary
Tables 18 and 21). Three additional loci were suggestive of an associa-
tionwith G6 (Supplementary Table 22). Rs11705789 explained 5.5-fold
more variance in G6 (0.11%, ANOVA P=2.52 x107°) than APOE (0.02%,
ANOVA P=0.21). To validate these findings, we reviewed two previous

meta-analyses of intelligence***'. The G4/rs62034351 discovery repli-
cated in the same direction in both studies***, but the G6/rs11705789
discovery did not replicate, possibly reflecting differences in the cog-
nitive profiling and its contribution to G6 (Supplementary Table 23).

Functional mapping of the G4 locus

SNPs in linkage disequilibrium (LD) with G4/rs62034351 were anno-
tated using ANNOVAR (n = 423). The majority of SNPs were intronic
(44.3%) or intergenic (36.1%), but 14 lay within exons of which 7 were
predicted to change the amino acid sequence (Fig.4c and Supplemen-
tary Table 24). Thirteen SNPs (3.7%) were predicted to be deleterious
(combined annotation-dependent depletion (CADD)* score >12.37),
17 (4%) were likely to regulate gene expression (Regulome DB** (RDB)
score <2) and 385 (91.25%) had regulatory potential (minimum chroma-
tin state <8). Genome-wide gene-based association (GWGBA) analysis
identified 16 genes associated with G4 (CLN3 was the highest ranked;
Supplementary Fig. 6). Collectively, GWGBA, positional, expression
quantitative trait loci (eQTL) and chromatin interaction mappingidenti-
fied128 genes for G4, including NUPRI,ATXN2L, CCDC101 and SULTIA1
observed through all mapping strategies (Supplementary Table 25
and Supplementary Fig. 7).

To cast light onthe mechanisms underpinning G4 we investigated
tissue-specific expression of the mapped gene set for 53 specific GTEx
(v8)** tissue types. Most of the implicated genes were downregulated
across multiple tissues, particularly in the brain (Supplementary Fig. 8).
The majority of the top 10 enriched terms identified by pathway and
process analysis were immunological, with microglial response to
y-interferon being the highest ranked (Fig. 4d and Supplementary
Table 26) and INTERFERON_GAMMA_RESPONSE being the top hall-
mark gene set (P=3.68 x 10%; Supplementary Fig. 9). In keeping with
this, SNPs associated with G4 also influenced the expression of TUFM,
SULT1A1and SULTIA2inmicroglia (microglial eQTLs*; Fig.4e). Toinves-
tigate whether the effects of G4 were restricted to different anatomical
locationsin the brain, we performed summary-based Mendelian rand-
omization (SMR) analysis using GTEx (v8) eQTL on G4-GWAS summary
statistics on tissue from 12 brain regions. This indicated a potential
causal link between SNVsin11genes (seven protein coding), including
TUFM (seven brainregions), SULT1AI (eight brainregions) and SULTIA2
(eight brainregions), and G4-cognitive phenotype through differential
microglial gene expression (Fig. 4f). Statistical fine mappingidentified
rs3743963, rs11074904, rs62031607 and rs2411453 as most plausible
causal variants (Supplementary Fig.10).

Functional mapping of the G6 locus

Atotal of 186 SNPs in LD were annotated for the G6/rs11705789 locus.
The majority of the SNPs were intergenic (Fig. 5c). Nine SNPs (4.83%)
were predicted tobe deleterious, and 152 SNPs (81.72%) were identified
withregulatory potential. GWGBA analysis identified GBEI as the only
associated gene (Fig. 5d). The overall expression of GBEI was lowerinall
bulkbraintissues than the other tissue types (Fig. 5e). Independently,
positional, eQTL and chromatin interaction mapping also prioritized
CYPS1A1P1,RP11-359D24.1 and RP11-142L1.1, none of which are protein
coding. G6/rs11705789 is an expression quantitative locus for GBE1
(Fig. 5f). There was no instrumental variable available for GBEI locus
precluding SMR analysis. Statistical fine mapping showed rs12635671,
rs820270 and rs2691073to be the likely causal variant regulating GBE1
expression.

Correlation of general cognitive ability and related
phenotypes

Toassessthelife course stability of general cognitive ability, we exam-
ined the association of G4 and G6 with childhood* and adulthood***
intelligence quotient using GWAS summary statistics. Childhood
and adulthood intelligence quotient had a high genetic correlation
(GC) with G4 and G6, and the estimate for G4 was higher than Gé6
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Fig.4|Genetic associations with G4 and likely functional relevance.

a, AManhattan plot of the genome-wide association analysis of G4. The x axis
shows SNP chromosome positions, and the y axis shows the corresponding —log,,
two-tailed Pvalues from the two-sided BOLT infinitesimal model. The horizontal
red line indicates the genome-wide significance threshold at P=5x1075. The
horizontal blue line indicates the suggestive genome-wide significance threshold
at P=1x10"%. The nearest gene or top SNP is highlighted for loci associated at
P<1x107°. b, Regional association and LD plots for G4-associated genome-wide
significant locus. The x axis shows the SNP position on the chromosome, and the
yaxis shows the -log,,(Pvalue). The independent SNP is indicated by the purple
diamond. The circles show other SNPs in pairwise LD with theindependent SNP,
with color indicating the strength of LD (r%). The strength of LD () is presented in
the upper left corner of the plot. The dashed horizontal line indicates genome-
wide significant threshold. Estimated recombination rates are marked in light
blue. Bottom: genes within +200 kb of the independent SNP. ¢, A pie chart
showing the proportion of the functional consequences of the G4-associated

independent SNP and its proxies as annotated with ANNOVAR. d, Pathway and
process enrichment analysis of genes mapped for G4 locus. The figure presents
the top ten clusters along with their respective enriched terms (one per cluster).
Pvalues (-log,, transformed) are computed using the cumulative hypergeometric
distribution, and the most statistically significant term within each cluster is
selected to represent it. e, Colocalization of G4-associated signals with microglia
eQTLs at SULT1A1 (i), SULT1A2 (ii), TUFM (iii) and long noncoding RNA (IncRNA)
(iv). Each colored point indicates the strength of LD (red, >0.8; orange, 0.6-0.8;
green, 0.4-0.6; light blue, 0.2-0.4; dark blue, <0.2) with candidate SNP (purple
diamond labeled with rsID). PPH4 values indicate PP in support of shared single
causal variants between the traits. PPH3 values indicate PP in support of sharing
different causal variants between traits. f, A bar graph showing evidence from SMR
between G4-GWAS and GTEx (v8) Brain eQTLs (cis) for G4-associated locus. The

x axis represents coefficients from SMR for associated brain tissues (indicated by
color), and the y axis represents prioritized genes.
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(Supplementary Table 27), suggesting that fluid and crystallized intel-
ligence domains mightbe less variable within anindividual across the
life course than processing speed and executive function. We assessed
the relevance of G4 and G6 in educational attainment*” using GC. G4
had a 2.4 times higher GC estimate with educational attainment than
G6 (Supplementary Table 27), indicating that fluid and crystallized
intelligence domains might predict better educational attainment
than processing speed and executive function. We also looked for a
GCbetweensummary measures of cognitive abilities (G4 and G6) and
AD?**. Astrong GC would imply a shared biological processes between
two phenotypes*® (in thisinstance, cognitionin healthy people and AD).
However, our analysis only revealed a very weak correlation between
the genetic factors associated with normal cognition and genetic fac-
torsassociated with AD (Supplementary Table 27), implying different
underlying biological mechanisms.

Discussion

Here, we report cross-sectional data for 11 cognitive tests and two
summary statistics (G4 and G6) in 20,928 healthy individuals aged
17-85 yearswho participated in the newly established NIHR BioResource
G&C cohort. Analyzing data at this scale confirmed well-established
determinants of cognition, including age, socioeconomic status and
educational status, and showed negligible differences in cognitive
performance between males and females across the life course. Con-
trary to previous reports from smaller studies, genetic risk factors
for dementia, including APOE genotype and AD-PRS, have a minimal
impact on cognition in healthy individuals. However, a small effect of
e4 and AD-PRS on cognitive performancein certain domains emerges
in mid-life, potentially reflecting the presence of patients with early
AD neuropathological changes or demographic characteristics of the
study influencing the e4-mediated effect on cognition. On the other
hand, our unbiased genome-wide approachidentified novel risk factors
for different cognitive parameters. Thus, the genetic and biological
basis of cognitionin healthy individuals appears to be distinct from the
pathogenesis of neurodegenerative dementia, and characterizing the
different molecular pathways has the potential to uncover new targets
to prevent age-related cognitive decline.

For G4, which summarizes short-term memory, fluid and
crystallized intelligence, our functional annotation implicated
microglial-mediated immunological processes in the age-related cog-
nitive trajectory, supporting previous circulating cytokine measure-
ments*>*°, Multiple lines of evidence implicated three plausible genes
(TUFM, SULT1AI and SULT1A2) with G4. TUFM encodes the mitochon-
drial elongation factor Tu, whichisinvolved in mitochondrial protein
synthesis and has been implicated with cognitive trajectory and
AD pathology®. SULTI1AI (sulfotransferase family 1A member 1) and
SULTIA2 (sulfotransferase family 1A member 2) encode sulfotransferase

enzymesresponsible for the metabolism of hormones, and xenobiot-
ics>. While the functional roles of SULTIAI and SUKTIAZ2 in the brain
remain largely unexplored, both genes are expressed in the adult brain
and are implicated in the local metabolism of catecholamines and
toxin clearance® . However, the region is genetically complex, rais-
ingthe possibility that other genes play a critical role through LD with
the four likely causal SNVs: rs3743963, rs11074904, rs62031607 and
rs2411453. Thelocus also contains /L27 coding for interleukin 27, which
canbeboth pro-inflammatory and anti-inflammatory*® and influence
microglial activation®. In addition, several proximal candidates have
been implicated with brain function and cognition such as CLN3*,
KIF22%°, ALDOA, SEZ61.2 and TAOK2°°°' Functional studies are required
to clarify whether these genes play a role in general cognition, but
this will be very challenging because phenotypes in cellular or animal
models are unlikely to closely reflect cognitive function in healthy
humans as they age.

For G6, which summarizes reaction time, attention, processing
speed and executive functioning, only one protein-coding gene
was associated with cognition: GBE1, which codes for 1,4-a-glucan-
branching enzyme and plays a critical role in glycogen synthesis
and glucose storage. Rare recessive mutations in GBEI cause adult
polyglucosan body disease, which often affects cognition including
executive function®®*, and in a recent GWAS, GBEI was implicated in
musical beat synchronization®, which is closely related to attention
and executive function (planning, organizing and controlling action).
Theseindependent observations supportour findingsindicating that
GBEI—-and more broadly, glycogen metabolism—probably play arolein
general cognitive ability. Glycogen’s presence in the brain has not been
considered to be as important as glucose, but its role in cognition
has attracted recent interest®*®, warranting further investigation.

The strengths of this resource include online cognitive assessment
allowing rapid data collection of thousands of individuals, cognitive
phenotyping covering various domains, and genotyping mirroring
the UKB. However, unlike UKB, the NIHR BioResource is designed
specifically for participant recall, which is now possible based on both
cognitive and genetic profiles. Several limitations also require consid-
eration. So far, the cognitive data are cross-sectional, and measure-
ment error may have diluted associations. The cognitive tests were
also device dependent. Although this was taken into account in our
analysis, this could confound recall studies unless factored into sub-
sequent designs. It is important to note that our choice of cognitive
tests does not represent all possible cognitive domains, suchas verbal
episodic memory and visuospatial skills. In addition, our findings are
based on an analysis of participants of white European background,
with the majority having benefited from higher education. Thus, our
findings cannot be generalized across all ethnicities with confidence
atthisstage. Finally, itisimportant to note that, other than genetic and

Fig. 5| Genetic associatons with G6 and likely functional relevance.

a, AManhattan plot of the genome-wide association analysis of G6. The x axis
shows SNP chromosome positions, and the y axis shows the corresponding —log;,
two-tailed Pvalues from the two-sided BOLT infinitesimal model. The horizontal
red line indicates the genome-wide significance thresholdat P=5x107%. The
horizontal blue line indicates the suggestive genome-wide significance threshold
at P=1x10"°. The nearest gene or top SNP is highlighted for loci associated at
P<1x107°. b, Regional associationand LD plots for Gé6-associated genome-wide
significantlocus. The x axis shows SNP position on the chromosome, and the y axis
shows -log,,(Pvalue). Tick marks at the top of the plot indicate SNP position.
Theindependent SNPisindicated by the purple diamond. The circles show other
SNPs in pairwise LD with the independent SNP, with color indicating the strength
of LD (r?). The strength of LD (r?) is presented in the upper left corner of the plot.
Estimated recombination rates are marked in light blue. Bottom: genes within
+500 kb of the independent SNP. ¢, A pie chart showing the proportion of the
functional consequences of G4-associated independent SNP and its proxies as
annotated with ANNOVAR. d, A Manhattan plot for the GWGBA analysis of G6.
The yaxis shows the —log;,-transformed two-tailed Pvalue of each gene froma

linear model, and the x axis shows the chromosomal position. The dotted red line
indicates the Bonferroni-corrected threshold (P=2.614 x 10™) for the
genome-wide significance of the gene-based test. The gene with the lowest
Pvalueis highlighted. e, Bulk tissue expression of the GBE1 gene across tissue
types from GTEx v8. The y axis represents transcripts per million (TPM), and
the x axis represents the GTEx (V.8) tissues. Box plots feature the median, 25th
and 75th percentiles. Points are displayed as outliersif they fall beyond 1.5 times
theinterquartile range. The figure was adapted from the GTEx Portal (https://
www.gtexportal.org/home/gene/GBEL). f, A circos plot displaying chromatin
interactions (Ci) and eQTLs for rs11705789. The outermost layer shows the
Manhattan plot with -log,,(Pvalue) for the G6-associated locus, and SNPs

with P<0.05are displayed. The LD relationship between rs11705789 and other
SNPsisindicated withred (r* > 0.8), orange (* > 0.6) and green (r* > 0.4) colors.
Gray SNPs show minimal LD with 2 < 0.20. The second circle represents the
chromosome ring with coordinates, where the genomic risk locus is highlighted
inblue. The third circle shows the same chromosome ring, but with Ci-and
eQTL-mapped genes represented by orange and green lines, respectively. Genes
mapped by both approaches are colored red.
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cognitive characterization, we have not yet measured any biomarkers
specific for neurodegenerative diseases. It is therefore possible that
recalled participants will be no different from the background popula-
tion for specificneurodegeneration biomarkers such as brainimaging.
On the other hand, this emphasizes the potential utility of the NIHR
BioResource for a wide range of studies beyond neurodegeneration,
including age-related cognitive decline and other common human
disorders.

Our analyses of APOE genotypes and AD-PRS and G4 and G6
were chosen to illustrate the potential use of the data generated
through the NIHR G&C study. However, the potential for further
analysis extends way beyond what has been explored so far. The
participants of the NIHR BioResource G&C cohort have consented to
be recalled for clinical studies and clinical data linkage from across
England. Defining the principal demographic and genetic factors
that explain why any two individuals differ allows careful matching
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of participantsin early proof-of-concept clinical trials, thus reducing
the risk of confounding variables influencing experimental studies.
It is also possible to recall specific genetic subgroups to optimize
the chance of observing a specific treatment effect based on known
mechanisms of action. We are currently repeating the cognitive pro-
filing of all participants to determine cognitive trajectories over
time, expanding to include more diverse ethnic groups and carrying
out long-read genome sequencing to enrich the recall potential for
bothacademicandindustry researchers. The dataaccess procedure
for the NIHR BioResource is described at https://bioresource.nihr.
ac.uk/using-our-bioresource/apply-for-bioresource-data-access/,
and the participant recall process for the NIHR BioResource is
explained at https://bioresource.nihr.ac.uk/using-our-bioresource/
apply-for-recall/.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-024-02960-5.
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Methods

Study population and data collection

The G&C study is a prospective open cohort nested within the NIHR
BioResource, which recruits participants from the general population
and National Health Service organizationsin England. The G&C study
participants were recruited via NIHR BioResource with the objective
of gaining insights into brain and cognitive function within healthy
populations and facilitating early experimental studies in people at
risk of neurodegenerative diseases such as dementia.

The NIHR BioResource operates under two separate set of ethics:
astudy for the recruitment of patients with rare disease (REC REF: 13/
EE/0325) and aresearchtissue bank for the recruitment of all other par-
ticipants (RECREF:17/EE/0025). All participants of NIHR BioResource
wereinvited to take partinthe G&Cstudyintwo phases: (1) pilot phase
(-June 2020 to ~August 2020) and (2) main phase (-November 2020 to
~November 2021). Atotal of 315 participants took partin the pilot study,
and 20,869 participants participated in the main study. Combining
both phases (excluding those who withdrew their consent or were
missing vital information), 21,052 participants served as the study
base. These participants were considered cognitively healthy at the
time of recruitment for the G&C study. They donated their DNA via a
blood sample and completed a questionnaire containing basic lifestyle
and health-related information, including self-reported height and
weight, ethnicity, current smoking status, alcohol consumption and
diagnosis of certain diseases (for example, diabetes, stroke and mental
healthissues), all at recruitment to NIHR BioResource. Ethical approval
for the G&C study was obtained from the North of Scotland Research
Ethics Committee (REC REF: 19/NS/0118). All participants consented
to be part of NIHR BioResource and to be recalled for future studies.

Cognitive tests and measures of general cognitive ability

The G&C study participants were invited to take online cognitive tests
using the ‘Cognitive Test (v4.4.7-v5.6.7)" application that was down-
loadable onto a compatible device. The ‘Cognitive Test’ application
was composed of ashort pretest questionnaire and ten cognitive tests
(RT;SB; SI; SD; Trail making: TMN and TMA; MX; WM; QZ; VY; and PR).
The total time to complete all these tests was approximately 30 min.
We reversed some test scores to make the direction of all tests similar.
In this work, a higher score across cognitive tests signifies poorer
performance. The majority of these tests are similar to cognitive tests
performedin UKB. The 4-week test-retest reliability of the UKB cogni-
tive tests was moderate to high (range 0.40-0.83), with most showing
amodest to good correlation with reference datasets®. A brief discus-
sion of each testand measures of general cognitive ability (G4 and G6)
is presented in Supplementary Note.

Other covariates

Information on age, gender, body mass index (BMI), self-reported
ethnicity, smoking status, alcohol use and multiple deprivationindex
was collected centrally by NIHR BioResource. Age reflects the age
at the time of cognitive testing. In this work, we used age as both a
continuous and categorical variable. For the continuous use, age was
centered by subtracting off the mean age in the G&C cohort, which was
used to create asecond-degree polynomial term. Self-reported gender
was categorized as male, female and other. We categorized BMI into
underweight (<18.5 kg m™), healthy weight (18.5-24.9 kg m), over-
weight (25-29.9 kg m™) and obese (=30 kg m™2), following the criteria
of the World Health Organization’®. The multiple deprivation indexis
arelative measure of deprivation assigned to each participant on the
basis of post codes’’. Deprivation indices were available in deciles,
where higher score correspond to lesser deprivation. In this study,
we categorized deciles of multiple deprivations into three groups:
(1) high (first three deciles), (2) medium (fourth to seventh deciles) and
(3) low deprivation (eighth to tenth deciles). Information oneducation
and participants’ first language was collected using the ‘Cognitive

Test’ application. We categorized education into four groups, where
the first category represents the lowest level of education and covers
certificates of secondary education (CSEs)/equivalent/equivalent or
other professional degrees/not specified. The second category covers
A-level/O-level/national vocational qualification (NVQ)/higher national
diploma (HND)/higher national certificate (HNC)/equivalent edu-
cation, while the third category covers A-level/O-level/NVQ/HND/
HNC/equivalent education with a professional degree and the fourth
category covers college/university/equivalent professional degree.

Self-reported diagnosis

Several self-reported diagnoses were available for G&C study par-
ticipants. Information on arthritis, diabetes, the presence of autism,
attention-deficit/hyperactivity disorder, any heart condition, high
blood pressure, mental healthissues and stroke or related conditions
was collected using a questionnaire centrally by NIHR BioResource.
Information on color blindness, learning disability and conditions
that participants thought would interfere with their cognition was
collected viathe ‘Cognitive Test’ application before cognitive testing.

Genotyping, imputation and quality control

DNA was extracted fromwholeblood and/or saliva. Aliquoted samples
were sent to Affymetrix for genotyping and processing with the stand-
ard pipeline. Participants were genotyped using either Affymetrix v1.0
orv2.1array by ThermoFisher Scientific’”. Samples on the vl.0 and v2.1
chipswere genotyped onthe genome build hg37 and hg38, respectively.
Before the imputation, we lifted variants on the genome build hg38 to
hg37 using Liftover” and 708,654 variants commoninboth chips were
used for pre-imputation quality control. Genotyped markers were
used to infer genetic sex and determine European ancestry (EU) using
the 1000 Genomes dataset. The multidimensional scaling approach
incorporatingthe 1000 Genomes dataset was used to infer the genetic
ethnicity of the samples. Plink 1.9 (ref. 74) was used for multidimensional
scaling analysis”. Only genetically inferred EU participants were used
for imputation. We applied the following filters before the imputa-
tion: minor allele frequency (<0.01), marker missingness (>0.01), indi-
vidual missingness (>0.01), Hardy-Weinberg equilibrium (P <1x107),
exclusion of individuals with extreme heterozygosity (+3 standard
deviations (s.d.) from the mean heterozygosity rate) and exclusion of
mono-morphic variants and those who had an allelic mismatch with
Haplotype Reference Consortium (HRC)”. Atotal of 518,164 high-quality
autosomal markers (genotyping rate 99.6%) were used forimputation
using the HRC reference panel on the Michigan imputation server””.
HRC consisted of whole-genome sequence data from cohorts of EU
ancestry, providing large coverage for the common genetic variants
in European ancestry population. To analyze the samples with genetic
data, we excluded participants for whom there was amismatch between
geneticallyinferred sex and self-reported gender. To account for popula-
tion stratification, 20 genetic PCs were created using post-imputation
quality-controlled data, implemented on Plink 1.9 (ref. 74).

Identification of APOE alleles

We use rs429358 and rs7412 to determine APOE alleles’®. Both SNPs
were imputed in our data. We used the method specified at GitHub
(https://github.com/neurogenetics/APOE_genotypes). There were 279
participants for whomthe APOE allele was ambiguous or unknown, and
these were therefore excluded. In the remaining sample, the propor-
tion of e2/e2, e2/e3, e3/e3, e3/e4 and e4/e4 carriers was 0.01 (n = 69),
0.13 (n=1,238), 0.61 (n=5,931), 0.24 (n=2,304) and 0.02 (n =218),
respectively. We combined e4 carriers into one group (e3/e4and e4/e4,
n=2,522)and e2carriersintoanother group (e2/e2and e2/e3,n=1,307).

Derivation of AD-PRS
The PRS provides an individual-level estimate of genetic liability for
any given phenotype. The PRS is measured by combining weighted
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effect sizes (odds ratios or ) of multiple SNPs into one score, where
weights are obtained from previous GWAS performed for that pheno-
type of interest”. The most widely used PRS for AD is obtained from
Lambert et al.>* study, which included EU ancestry participants. We
used previously created PRS based on Lambert et al.>* from the poly-
genic score (PGS) catalog. The PGS ID PGS002289 included 23 SNPs,
of which rs11218343, rs670139 and rs8093731 were not available for
G&C study participants. Of the 20 available SNPs, rs429358 and rs7412
represent APOE. We created two PRS using PGS ID PGS002289 (refs.
32,33), (1) AD-PRSpq;: including 20 SNPs (2 APOE SNPs included) and
(2) AD-PRS,,por: including 18 SNPs (without APOE SNPs). Assuming
anadditive model, both PRS were computed using PRSice-2 (v2.3.3)%
with the --score std’ and ‘--missing MEAN_IMPUTE’ settings. For both
PRS (AD-PRS,por and AD-PRS, . 4p0r), We categorized participants into
high-risk (values >95th percentile) and low-risk (values <95th percen-
tile) groups (AD-PRS-high and AD-PRS-low).

Statistical Analysis
Demographics, clinical characteristics and scores for 13 cognitive
phenotypes (11 cognitive tests, G4 and G6) are presented for both the
wholesample and asubset with available genetic data. Categorical data
were presented as proportions, while continuous data were summa-
rized using mean, median, s.d. or interquartile range. A small number
ofindividuals (n =123 out 0of 21,051) were excluded because they had a
medical disorder or disability that could bias the effect estimates. The
phenotypiccorrelation between cognitive phenotypes was measured
using Pearson correlation (the whole sample and asubset with available
genetic data). The association between 13 cognitive phenotypes and
devicesused (i0S device user served as reference category) to take cog-
nitive tests was examined using alinear regression model with further
adjustment for age and gender. Age and gender effects on cognitive
phenotypes were measured, excluding those who self-identified as
‘other’ (V= 61). Trajectories of each cognitive phenotype (11 tests, G4
and G6) were plotted across age, stratified by gender, using the ‘geom_
smooth’ function from the ggplot2 package in R with the ‘method’
argument set to ‘loess’. The associations of cognitive phenotypes were
assessedinrelationtoage and gender. While testing associations, age
(centered), age?, gender, an interaction term for age-by-gender and
age’-by-gender, and devices used to take cognitive tests (except WM)
were considered as covariates in a stepwise linear regression model
using the ‘stepAIC’ function with both forward and backward selec-
tion implemented with MASS package in R to choose the best model
for each cognitive phenotype. Henceforth, variables selected using
stepwise regression (base model) remained consistent for each cogni-
tive phenotype while testing association in relation to other factors,
unless stated otherwise. Additionally, base models were adjusted for
self-reported ethnicity and multiple deprivation. Since self-reported
ethnicity and multiple deprivation had negligible effects on the cog-
nitive phenotypes, none of the associations tested from this point
onwardincluded those factors. We assessed the association for cogni-
tive phenotypes with education and multiple deprivation using linear
regression model adjusting for the cognitive phenotype-specific base
model. Alinear trend in the association between cognitive phenotypes
and both education and multiple deprivation was also examined. The
association between cognitive phenotypes and self-reported diagnosis
was explored using the linear regression model, which was adjusted
for age terms, gender and device used to take the test. The associa-
tion of cognitive phenotypes with age, gender, education, multiple
deprivation and the self-reported diagnosis was corrected using the
Bonferroni-Holm correction for 13 tests (considering the 13 cognitive
phenotypes). The terms age?, age-by-gender, or age’-by-gender were
corrected (Bonferroni-Holm) inaccordance with the number of times
they were subjected to testing against cognitive phenotypes.

Each cognitive phenotype was plotted against age, with the
smooth line fitted and stratified by the APOE allele. Following visual

inspection, nine cognitive phenotypes were selected to undergo test-
ing for their association with age term(s) and APOE utilizing the lin-
ear mixed-effects model adjusting for sex (genetically determined),
devices used for cognitive tests, genotyping batch asarandom effect,
genotyping array and first five genomic PCs. We used e3/e3 carriers as
areference while assessing the association between cognitive phe-
notypes and APOE. The model also examined the interaction effect
between age term(s) and APOE on cognitive phenotypes. The results of
thelinear mixed-effects model were corrected using Bonferroni-Holm
correction for nine tests. Furthermore, the mean differenceinall nine
cognitive phenotypes across different age groups was explored using
the ANOVA test.

The correlation between PRSs was measured using Pearson corre-
lation. Cognitive phenotype trajectories across the age continuum (fit-
ted smoothline) wereinspected for anindication of score deviationin
the AD-PRS-high group compared with the AD-PRS-low group. Based on
the observations, the association for candidate cognitive phenotypes
inrelationtoage term(s) and AD-PRS group (high versus low) was exam-
ined using the linear mixed-effects model adjusting for sex, devices
used for cognitive tests, genotyping batch asarandom effect, genotyp-
ing array and the first five genomic PCs. The model also assessed the
interaction effect of age term(s) and AD-PRS group for each cognitive
phenotype. The findings were presented following the Bonferroni-
Holm correction. Based on the outcome of linear mixed-effects models,
the mean difference in four cognitive phenotypes (for each PRS) were
explored across age groups between AD-PRS-high and AD-PRS-low
groups (based on AD-PRSpor and AD-PRS,,4por) USiNg -tests.

Heritability and GC analysis

We used individual-level genetic data to estimate SNP heritability and
GCfor13 cognitive phenotypes. SNP heritability for cognitive pheno-
types was estimated using BOLT-REML (V.2.4)%%2, Covariates adjusted
inthe heritability analysis are specified in Supplementary Table 17. GC
between cognitive phenotypes was measured using Bivariate GREML
analysis on GCTA (v1.94.1)®. Before the analysis, we removed related
individuals using the ‘--grm-cutoff’ value of 0.125. For each cognitive
phenotype, residuals were obtained fromthe separate linear regression
model adjusted for covariates (except batch, genotyping chips and
genetic PCs) specified in Supplementary Table 17. These residuals were
used for GC analysis, which was adjusted for batch, genotyping chips
and the first ten genomic PCs as covariates. Moreover, we measured
summary statistics based GC for G4 and G6 in relation to childhood*®
and adulthood*** intelligence, educational attainment* and AD**
using LDSR (v1.0.1)*. Precomputed LD scores based on 1000 Genomes
Europeandatarestricted to HapMap release-3 SNPs (n =1,217,311) were
used to calculate SNP heritability and GCs. Precomputed LD scores
and the list of HapMap3 SNPs were obtained from https://data.broad-
institute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2 and https://
data.broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2.

GWAS of general cognitive ability

We performed GWAS on G6 and G4 using the linear mixed model
implemented in BOLT-LMM (V.2.3.6)®, which accounts for popula-
tionstructure and cryptic relatedness. These analyses were performed
assuming an additive SNP effect on both phenotypes. Covariates
adjusted forin the genome-wide association analysis of G4 and G6 are
specified in Supplementary Table 17. We applied the following filters
for the genome-wide association analysis of G4 and G6: minor allele
frequency >0.05, imputation quality scores (INFO) >0.50, and HWE
threshold Pvalue <1 x 107, A P-value threshold of 5 x 1078 (for sugges-
tive significance, Pvalue <1 x 107®) was used to determine genome-wide
significance. LDSR (v1.0.1)* was used to assess inflation (A¢c) and to
distinguish confounding from polygenicity in GWAS summary statis-
tics. SNPs with Pvalue <1 x 10~ at each genome-wide significant locus
were considered to identify independent SNP at 2> 0.4 using the
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publicly available web-based application FUMA (functional mapping
and annotation)®". We measured the percentage of variance explained
in G4 by the rs62034351 and APOE using linear regression models that
included age, age?, sex, age-by-sex interaction, batch, array and first
five genomic PCs as covariates. Likewise, the variance explained in G6
by rs11705789 and APOE was measured using linear regression models
thatincluded age, age?, sex, batch, array and first five genomic PCs as
covariates. Model significances were examined by comparing with the
model thatincluded all relevant covariates using ANOVA.

Replication of G&Clocusin UKB

Forthe replication of the G4- and Gé-associated locus (SNP with lowest
Pvalue considered), we used previously published GWAS studies by
Sniekers et al.* and Savage et al.*’. Sniekers and colleagues* performed
agenome-wide association meta-analysis on humanintelligence using
78,308 European descentindividuals from13 cohorts where phenotype
was either Spearman’s g or a measure of fluid intelligence. The major-
ity of the study participants (N =54,119) were from UKB. For these
participants, only fluid intelligence (either touchscreen or web-based)
test score was used, which was considered to correlate highly with
g (ref. 85). We obtained summary statistics for Sniekers et al.* from
http://ctg.cncr.nl/software/summary statistics. The Savage et al.*°
study performed agenome-wide association meta-analysisin 269,867
European descent individuals from 14 cohorts where various cogni-
tive phenotypes were used to measure intelligence. Most of the study
participants (72.5%) were obtained from UKB (N =195,653), for which
either touchscreen or web-based fluid intelligence test scores were
used. Savage et al.*° summary statistics were obtained from https://
ctg.cncr.nl/. In both intelligence GWAS studies**®, the imputation of
participating cohorts varied. However, the authors provided no details
regarding the direction of test scores across participating cohorts.
Giventhat UKB forms the large majority of their participants and fluid
intelligence measures were used for UKB-GWAS, we can assume that,
overall, ahigherscore for the phenotype in both studies meant better
performance. In contrast, we performed GWAS on G4 and G6, where
a higher score meant poor performance. To resolve confusion, we
reported replication findings from Sniekers et al.”’ and Savage et al.*°,
harmonizing the summary statistics in line with the G&C study.

Functional annotation

FUMA3* was used to annotate genome-wide significant loci for G4
and G6. SNP2GENE function in FUMA was used to annotate SNPs and
prioritize genes at each locus using gene-based association analysis
(implemented in MAGMA®®) and three gene mapping strategies (posi-
tional, eQTLand chromatin interaction). ANNOVAR¥ implementedin
FUMA®* annotated SNPs (minimum minor allele frequency threshold
set at 0.0001) in LD with independent SNP within a 250 kb window
based on the 1000 Genome Phase3 reference panel. SNPs with CADD
scores >12.37 are predicted to be pathogenic, RDB scores <2 are pre-
dicted to have aregulatory function and chromatin state >7 indicates
open chromatinregion.

Gene mapping strategies

ANNOVAR¥-annotated SNPs were used to prioritize genes on the basis
of positional, eQTL and chromatin interaction mapping. Positional
mapping considered a10 kb window from the human reference assem-
bly GRCh37/hg19 to map each SNP to genes. For eQTL mapping, SNPs
were mapped toeQTL datarepositories available by default to annotate
SNP effect on gene expression at a false discovery rate threshold <0.05.
For chromatin interaction mapping, SNPs were linked to chromatin
interaction data available by default to map SNP to gene promoter
regions (250 bp upstream and 500 bp downstream of the transcrip-
tion start site). Also, we opted for annotating enhancer/promoter
regions based on Roadmap 111 epigenomes and filtered SNPs over-
lapping with those regions. A false discovery rate threshold <1 x107¢

was used to detect significant interaction. In addition, we performed
GWGBA analysis implemented with MAGMA®® to prioritize genes for
each genome-wide significant locus where all SNPs from GWAS sum-
mary datawere mapped to19,128 protein-coding genes. Genome-wide
significance was defined at Pvalue of 0.05/19,128 = 2.614 x 107,

Tissue specificity and gene expression

Genes prioritized using all mapping strategies (positional, eQTL, chro-
matininteractionand GWGBA) were used for tissue specificity analysis
using the GENE2FUNC option on FUMA®*. For G4, tissue specificity
analysis was performed using predefined differentially expressed gene
(DEG) sets for GTEx v8 54 tissue**. The gene set was characterized as
(1) upregulated DEG, (2) downregulated DEG and (3) DEG, both sides. All
FUMA-mapped genes were used asinput to test each DEG using default
parameters. For G6, bulk tissue gene expression for GBEI across GTEx
v8 (ref. 44) tissues were visualized using GTEx Portal (https://www.
gtexportal.org/home/gene/GBE1).

Gene-set enrichment

FUMA®**-mapped genes for G4 were used for pathway and process
enrichment analysis using ‘Metascape’ (http:/metascape.org/)®®
with input and analysis species set to Homo sapiens. Of the 128 genes,
Metascape considered 106 genes for the enrichment analysis. The
following ontology sources were used in the analysis: KEGG Pathway,
GO Molecular Functions, GO Cellular Components, GO Biological
Processes, Immunologic Signatures, Oncogenic Signatures, Reactome
Gene Sets, Hallmark Gene Sets, Canonical Pathways, Chemical and
GeneticPerturbations, BioCarta Gene Sets, CORUM and WikiPathways.
We used default Metascape settings. Allgenes in the genome were used
asbackground for the enrichmentin Metascape®. Metascape findings
were validated using GENE2FUNCTION option on FUMA®*,

Colocalization

We examined evidence of shared colocalization between microglia
eQTLand G4-associated significantlocus at the level of individual genes
withinal MB window around GWAS-independent SNP. Meta-analyzed
(random effects) eQTL summary statistics (out_mfg_stg svz_tha.
metasoft.gz) of four microglial brain regions (medial frontal gyrus,
superior temporal gyrus, thalamus and subventricular zone) with
random effects were used for colocalization and downloaded from
Zenodo (https://doi.org/10.5281/zenod0.4118676). We used a Bayesian
colocalization method (COLOC®) assuming one single causal variant
underlying the locus. A total of five hypotheses were tested to evalu-
ate colocalization: HO, there is no causal variant for both traits (PPO);
H1 or H2, causal variant associated with either trait 1 or trait 2 (PP1 or
PP2); H3, two independent causal variants for trait 1 and trait 2 (PP3);
H4, one single causal variant associated with both traits (PP4). COLOC
generates a posterior probability (PP) for each hypothesis, with higher
values indicating the degree to which we favor a hypothesis. A higher
PP for H3 (PP3) supports the presence of two independent variants for
both traits. A higher PP for H4 (PP4) supports the presence of single
independent variants affecting both traits. We considered thresholds of
PP H4 (PP4) >0.5 for suggestive, >0.7 for moderate and >0.8 for strong
colocalization, respectively.

SMR and HEIDI analysis

The SMR method uses principals of Mendelian randomization tointe-
grate summary-level data of an exposure (for example, gene expres-
sion) and outcome (that is, intelligence) to test for an association
between the two due to a shared and potentially causal variant at a
locus®. We used SMR to prioritize brain regions and genes associ-
ated with G4. We retained 2 Mb regions around GWAS independent
SNPs for the analysis where cis-eQTLs from 12 GTEx (version 8) brain
regions were used as the instrumental variable, gene expression of
each brainregion as exposure and G4 as the outcome. For each gene,
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heterogeneity in dependentinstruments (HEIDI)* test was performed,
which distinguishes pleiotropy (that is, gene expression and G4 are
associated owingto asingle shared genetic variant) from linkage (that
is, twovariantsin LD independently affecting gene expression and G4).
We performed SMR and HEIDI analysis on the Complex-Traits Genet-
ics Virtual Lab” platform. Threshold levels of significance for SMR
tests were adjusted for multiple comparisons by Bonferroni correc-
tion (Psyr < 0.05/number of genes in each eQTL analysis). Genes with
Pyeps < 0.05 were considered as linkage and removed.

Statistical fine mapping

We performed statistical fine mapping of G4- and G6-associated locus.
First, GWAS-associated regions were analyzed using GCTA-COJO
(v1.94.1)* to identify conditionally independent lead variants. All
variants within al MB window of the lead variant were analyzed using
FINEMAP (v1.4.2)”, a Bayesian fine-mapping method, to identify
high-confidence putative causal SNPs for G4 and G6. We allowed for a
maximum number of five causal variants for fine mapping. FINEMAP
calculates PPs and assigns a Bayes factor to each variant. We considered
variants with PP >0.95 and log,, Bayes factor >2 as plausibly causal.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Summary statistics for G4 and G6 GWAS were deposited in Zenodo
at https://doi.org/10.5281/zenod0.10836380 (ref. 94). Other datarel-
evant to the study are included in the article or uploaded as online
supplementary information. NIHR BioResource holds individual-level
genetic and phenotypic data for genes and cognitive study partici-
pants that can be accessed through https://bioresource.nihr.ac.uk/
using-our-bioresource/.

Code availability
All software used in this study is publicly available. The codes used
for cognitive data cleaning are available on GitHub (https://github.
com/shafignoa/Genes-and-Cognition-Phase-1/tree/main/Phasel_
Cognitive_Data_Clean).
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Extended Data Fig. 7 | (A-K) Cognitive tests Scores by devices used to take

the test and (L-M) Measures of general cognitive ability (G4 and G6) by device
used to complete all cognitive tests. Across all plots, the x-axis represents
types of devices used to take cognitive test and the y-axis represents score for
the corresponding test or measures of general cognitive ability. Response Time

isthe average time taken per item. In each box plot (A-L), the box represents
theinterquartile range, with the center line denoting the median. The edges of
the box indicate the first and third quartiles, while the whiskers extend to spana
range of 1.5 interquartile distances from the edges. Individual data points that fall
beyond the whiskers are presented as circles.

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-024-02960-5

A B Cc D
Reaction Time, n=19973 Stroop Box, n=19959 Stroop Ink, n=19924 Symbol Digits, n=19799
_ 36 . . 38 N . R 5 '
= ° ° S ° S £
233 . o 234 83580 3 40
£ 30 F 32 =325 3
P Py Py
i
g27 g30 2 3.00 §
o (] o o :
24 . ’ J 28 : : . § o . r -
High Intermediate Low High Intermediate Low ngh Imermedlate Luw High Intermediate Low
Indices of Multiple Deprivation Indices of Multiple Deprivation Indices of Multiple Deprivation Indices of Multiple Deprivation
E # " x F i . . G N Ho .
Trail Maklng' Numeric, 19826 Trail Maklng: Alpha Numeric, n=19826 Matrices, n=19921 9] Working Memory, n=20001
42 . . . g .
5 ) 8 2
B36 %38 g 12 <pa . . .
e ° g 8
32 E34 ¢ 8 g 0.6
3 H B ]
g g £ 303
% 2.8 gr'; 3.0 g 4 s 7 ’
o o - £
2 00 [ ]
ngh Imermedlate Low ngh Intermedlate ngh Intermedlate § High Intermediate Low
Indices of Multiple Deprivation Indices of Multiple Deprlvatlon Indices of Multiple Depnvallon Indices of Multiple Deprivation
I J K {5
Vocabulary. n=19902 Quiz, n=20005 Pairing 7, n=19992 G4, n=19705
20
8 8 o
2 15 2 10 s 150
2 g = 25
g 13 2 8
€ 10 4 2125 8
g s R0
S S o
g 8 g 1.00 25
L] L] L]
0 0 . . o 5.0 . - -
ngh Intermedlate High Intermediate Low ngh Intermedlate High Intermediate Low
Indices of Multiple Depnvatlon Indices of Multiple Deprivation Indices of Multiple Depnvallon Indices of Multiple Deprivation
M
G6, n=19705
10
g 5
5
3
]
5
ngh Intermedlate
Indices of Multiple Depnvatlon
Extended Data Fig. 8 | (A-K) Cognitive tests Scores by groups of multiple taken per item. In each box plot (A-L), the box represents the interquartile range,
deprivation and (L-M) Measures of general cognitive ability (G4 and G6) by with the center line denoting the median. The edges of the box indicate the first
groups of multiple deprivation. Across all plots, the x-axis represents groups and third quartiles, while the whiskers extend to span arange of 1.5 interquartile
of multiple deprivation, and the y-axis represents score for the corresponding distances from the edges. Individual data points that fall beyond the whiskers are
test or measures of general cognitive ability. Response Time is the average time presented as circles.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-02960-5

A
Reaction Test
APOE
— e2e3
~ 2.9 = e3e3
S
:ga —— edledjedles
Y
£
= 2.8
o
2
2
é
271
25 35 45 55 65 75
Age
E
Trail Making: Alpha Numeric
APOE
367 — o
e — e3le3
S 3.51
2 e e3ledjedled
2344
=
o
2 3.3
2
8
324
311
25 35 45 55 65 75
Age
! B
Quiz
APOE
9.07 — czes
— e3le3
» 851
3 — eledjeties
§
% 8.0
o
o
8754
5
£
7.0
6.5

25 35 45 55 65 75
Age

Response Time (log10) Response Time (log10)

Incorrect Responses

C D
Stroop Box Stroop Ink Symbols Digit
3.30 - ApoE 3.40 4 APOE APOE
— e2le3 — e2le3 — e2le3
3.25 i 4 40
— e3e3 — 3359 e3led & — e3le3
S e
3201 — caeqenes :8‘ 3.30q — edvedetres '8 35 —— cdlededres
3.151 2 3251 8
= » 30
310 £ 3209 =
. §
3.051 8 3154 2251
=
3
3.00- 3.10 2 504
25 35 45 55 65 75 25 35 45 55 65 75 25 35 45 55 65 75
Age Age Age
G H
Trail Making: Numeric Working Memory Matrices
3.3 APOE s APOE APOE
—— e2le3 ‘em 0.6007 —— czes —— e2le3
o 1
321 — e = — e 71— e
2 0.5754 @
—— clledledies < —— clledledies b —— e3ledjediod
3.11 5 g
g
3 0.550 1 g 6
g 4
3.01 s =
g 0.525 g
2.9+ E 2 5
8 0.500
2.8 3
© 04754 44
25 35 45 55 65 75 25 35 45 55 65 75 25 35 45 55 65 75
Age Age Age
K B i
Vocabulary Pairing 7 G4 & G6
APOE APOE ‘G4/G6-APOE
— e2e3 —— e2le3 10 — ceezes
12 - Ghetied
e e3le3 — e3le3
131 — = Ghededjedied
e elledled/ed e elled|edled
104 = 5 =  Goezes "
g s 3 N ... s -
% 121 s
g 3 -~ Geededjedies _
81 I3 0] e e
1.1 tepmi =
6
-5
25 35 45 55 65 75 25 35 45 55 65 75 30 50 70
Age Age Age

Extended Data Fig. 9 | Cognitive tests and two measures of general cognitive ability (G4 and G6) stratified by APOE alleles status. (A-K) Cognitive test scores and
(L) G4 and Gé6 scores plotted against age. Lines of best fit with standard error are stratified by APOE allele status (indicated by line colour). Response Time is the average

time taken peritem.

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-024-02960-5

A B G
Reaction Test, n=9660 Stroop Box, n=9653 Stroop Ink, n=9637
2.85 1
3.15 1 ]
g & 5%
B 20 B E
o 2 3101 2 320
= = =
o 2.75 1 [} ()
2 2 2
3 g 3051 S 3.151
3 ] ]
o 2704 [1'4 ['4
3.00 1 3.10
g ¥ 8 I % 3 8 ¥ o ¥ 8 I % 3 8 ¥ o ¥ 8 F % 3 8 3 o
° 8 8 g ¢ 8 3 8 © ° 8 8 % ¢ 8 3 8 8 °© 8 8 % ¢ 3 3 8 ©
Age Category Age Category Age Category
D E F
Symbols Digit, n=9578 Trail Making: Numeric, n=9587 Trail Making: Alpha Numeric, n=9587
. 3.1 341
2
< == =
£ e S
8§ 31 B . B APOE
a o 07 5 331
g £ £ - e2le3
M = =
8 25 8 8 - e3le3
o . o
g g g 021 - e3led|edled
: ['4 (15
&8 201
g3 8 3 8 3 8 8 o g3 8 3 8 8 8 3 4 g 3 8 3 % 8 8 3 o
°© 8 8 9 ¢€ 8 8 8 ¢ °© 8 8 ¢ € 8 8 8 © S 8 8 ¢ & 8 8B 8 ©
Age Category Age Category Age Category
G H |
G6, n=9536 Quiz, n=9675 Pairing 7, n=9666
7.754
2
0 7.50
[0 o
19 & s 1.20
s =]
@ 2 7.25 1 g
g 01 [ @ 1.15 1
bt 173
@ 8 7.001 9
S o
-1 o
£ 6.75 4 1.10 1
24
g3 8 3 % 3 8 3 o 23 8 I % 3 8 3 o 3 8 F % 3 8 3 4
°© 8 8 8% & 8 8 8 © °© 8 8 8 & 8 8 8 © °© 8 8 %8 & 8 8 8 ©
Age Category Age Category Age Category
Extended Data Fig. 10 | (A-1) Mean and standard error for nine cognitive Bars are aligned based on age category and indicates standard error for the mean.
phenotypes across age categories stratified by APOE alleles. In each of the Thered, green, and blue lines across plots represent APOE allele status, specified
plots, mean score differences for APOE allele carriers across different age groups inthe right side of the plot with colour coded legend. Response Time is the
were assessed using analysis of variance (ANOVA). The x-axis represents age average time taken peritem.

categories and y-axis indicate scores for the corresponding cognitive phenotype.

Nature Medicine


http://www.nature.com/naturemedicine

nature portfolio

Corresponding author(s):  Brian D.M. Tom and Patrick F. Chinnery

Last updated by author(s): Jan 29, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 000F%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Cognitive data was collected using "Cognitive Test (v4.4.7-v.5.6.7)" application and a questionnaire asking for basic lifestyle and health-
related information

Data analysis Analyses were undertaken using R and various standard publicly available statistical genetics software packages. Any tools used for data
analysis are reported clearly in the paper and referenced. The packages we used included: R (v4.2.0 and v4.2.2); BOLT-LMM (V.2.3.6); BOLT-
REML (v.2.4); PRSice-2 (v2.3.3); GCTA (v1.94.1); LDSR (v1.0.1); FUMA (v1.5.2); Metascape 3.5; CTG-VL (https://vl.genoma.io/); COLOC (v5);
FINEMAP (v1.4.2), LDmatrix tool (https://Idlink.nih.gov/?tab=Idmatrix), and GTEx portal (https://www.gtexportal.org/). The codes used for
cognitive data cleaning are available on GitHub (https://github.com/shafignoa/Genes-and-Cognition-Phase-1/tree/main/
Phasel_Cognitive_Data_Clean).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A

Lc0c Y21o




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Summary statistics for G4 and G6 GWAS were deposited at Zenodo (10.5281/zenodo.10836380). Other data relevant to the study are included in the article or
uploaded as online supplementary information. NIHR Bioresource holds individual-level genetic and phenotypic data for genes and cognitive study participants
which can be accessed through https://bioresource.nihr.ac.uk/using-our-bioresource/.
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Data exclusions A small number of individuals (n=123 out of 21,051) were excluded because they had a medical disorder or disability which could bias the
effect estimates.

Replication To validate GWAS findings, we reviewed two previous meta-analyses of intelligence (N=78,308-269,867). The G4-associated locus was
associated in both meta-analyses. However, the G6-associated locus was not associated in either meta-analysis.
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