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Generative models improve fairness of 
medical classifiers under distribution shifts

Ira Ktena    1,4 , Olivia Wiles    1,4 , Isabela Albuquerque    1, 
Sylvestre-Alvise Rebuffi    1, Ryutaro Tanno    1, Abhijit Guha Roy2, 
Shekoofeh Azizi    1, Danielle Belgrave3, Pushmeet Kohli1, Taylan Cemgil    1, 
Alan Karthikesalingam    2,5 & Sven Gowal1,5

Domain generalization is a ubiquitous challenge for machine learning in 
healthcare. Model performance in real-world conditions might be lower 
than expected because of discrepancies between the data encountered 
during deployment and development. Underrepresentation of some 
groups or conditions during model development is a common cause of this 
phenomenon. This challenge is often not readily addressed by targeted data 
acquisition and ‘labeling’ by expert clinicians, which can be prohibitively 
expensive or practically impossible because of the rarity of conditions or 
the available clinical expertise. We hypothesize that advances in generative 
artificial intelligence can help mitigate this unmet need in a steerable 
fashion, enriching our training dataset with synthetic examples that address 
shortfalls of underrepresented conditions or subgroups. We show that 
diffusion models can automatically learn realistic augmentations from data 
in a label-efficient manner. We demonstrate that learned augmentations 
make models more robust and statistically fair in-distribution and out of 
distribution. To evaluate the generality of our approach, we studied three 
distinct medical imaging contexts of varying difficulty: (1) histopathology, 
(2) chest X-ray and (3) dermatology images. Complementing real samples 
with synthetic ones improved the robustness of models in all three medical 
tasks and increased fairness by improving the accuracy of clinical diagnosis 
within underrepresented groups, especially out of distribution.

The advent of machine learning (ML) in healthcare promises advances 
in care in a wide range of applications1–3. Artificial intelligence (AI) 
dermatological tools (for example, refs. 1,4) have the potential to allow 
patients to assess their conditions better and improve diagnostic accu-
racy5. Similarly, ML technologies have unlocked new capabilities in 
computational pathology that have the ability to handle the gigantic 
quantity of data created throughout the patient care lifecycle and 
improve classification, prediction and prognostication of diseases5,6. 
These solutions are often motivated by the global shortage of expert 
clinicians, for example, in the case of radiologists7, and demonstrate 

that ML models can facilitate the detection of conditions8. Despite these 
rapid methodological developments and the promise of transformative 
impact9, few of these approaches (if any) have yet achieved widespread 
adoption and scaled impact on clinical outcomes10. One major barrier 
to adoption is the brittle degradation in performance of medical ML 
systems caused by ‘out-of-distribution’ data: discrepancies between 
the populations, diseases, acquisition technologies or environments 
used to train medical ML systems and those encountered during deploy-
ment. As ref. 11 highlighted, only 24% of published studies evaluate 
the performance of their proposed algorithms on external cohorts 
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distribution shifts. While we do not propose this approach as a replace-
ment for high-quality and representative data collection strategies, we 
posit that, in the absence of additional resources, it allows practitioners 
to make the most of their available labeled and unlabeled data to close 
potentially harmful gaps in diagnostic accuracy between overrepre-
sented and underrepresented populations without penalizing the for-
mer. Finally, we showed that diffusion models can generate high-quality 
images (Fig. 1a) across modalities and performed an in-depth analysis 
to shed light on the mechanisms that improve the generalization capa-
bilities of the downstream classifiers (Methods, ‘In-depth analysis for 
dermatology’). This capability was further validated by an evaluation 
of synthetic images by expert dermatologists, yielding diagnostic 
accuracy comparable to when diagnosing real images.

Results
Overview of the proposed approach and experimental setting
Our proposed approach, illustrated in Fig. 1b, leverages diffusion mod-
els for learning augmentations of the data to improve the robustness 
and fairness of medical ML models. We viewed learned augmentations 
as a means of enriching our training dataset with the goal of making it 
more diverse in a steerable and configurable way. Our approach con-
sisted of three main steps: (1) we train a generative model given the 
available labeled and unlabeled data; we assumed that labeled data 
were available only for a single source domain (for example, a particular 
hospital with a specific scanner or imaging protocol), while additional 
unlabeled data could be from any domain (in-distribution or out of 

or compare this out-of-distribution performance with that of clinical 
experts. Many studies do not validate the efficacy of algorithms in mul-
tiple settings; the ones that do often perform poorly when introduced 
to new environments not represented in the training data.

In addition to this challenge of out-of-distribution generalization, 
underrepresentation of specific groups, conditions or hospitals also 
causes notable challenges of fairness and equity even when systems are 
deployed in datasets mirroring their training environment, with lower 
performance typically seen in rarer groups, conditions, individuals 
or their intersections. Previous work showed that a developed model 
may perform unexpectedly poorly on underrepresented populations 
or population subgroups in radiology12,13, histopathology14 and der-
matology15. However, the issues of robustness to distribution shifts 
and statistical fairness have rarely been tackled together. Building a 
method that is robust across populations and subgroups, such that 
model performance does not degrade and benefits can be transferred 
when applied across groups, is a nontrivial task. This is because of data 
scarcity16, challenges in the acquisition strategies of evaluation datasets 
(for example, different imaging or screening protocols10,17,18) and the 
limitations of evaluation metrics10.

In this work, we leveraged diffusion models19,20 and potentially 
available unlabeled data to capture the underlying data distribution 
and augment real samples when training diagnostic models across 
these three modalities. We showed that combining synthetic and real 
data can lead to significant improvements in diagnostic accuracy, 
while closing the fairness gap with respect to different attributes under 
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Fig. 1 | Generated samples and method overview. a, Samples generated by our 
conditional diffusion model for the different imaging modalities. b, Method 
overview. In the proposed approach, we first trained a diffusion model on both 
labeled and unlabeled data (if available). In a general setting, unlabeled data may 
consist of in-distribution or OOD data (for example, from an unseen hospital) for 
which expert labels are not available. Subsequently, we sampled synthetic images 

from the diffusion model according to particular specifications (for example, 
an image of a female individual with pulmonary edema). Finally, we trained a 
downstream diagnostic model on a combination of the real labeled images and 
the synthetic images sampled from the diffusion model. The dotted outlines 
represent synthetic data, while the dashed outlines represent unlabeled data.
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distribution (OOD), for example, data from multiple hospitals, a subset 
of which was not labeled by experts because of limited resources). We 
either conditioned the generative model only on the diagnostic label 
or on both the diagnostic label and a property (for example, hospital 
ID or sensitive attribute label). We borrowed the term ‘sensitive attrib-
ute’ from the fairness literature to describe demographic attributes 
(for example, sex, ethnicity or age) we wanted the model to be fair 
against. All of the data used in this research were de-identified before 
authors gained access to it. Conditioning the model on either or both 
of these attributes allowed us to configure the synthetic examples that 
we wanted to use to enrich our training set. If high-resolution images are 
required (more than 96 × 96 resolution), we further trained an upsam-
pling diffusion model in a similar manner. It is worth highlighting that 
both the low-resolution generative model and the upsampler were 
trained with the same conditioning vector (that is, either with label 
or label and property conditioning); (2) we sampled from the genera-
tive model according to a sampling strategy. In our experiments, we 
assumed that uniform representation of different values of an attribute 
constitutes a fair strategy, for example, for each condition it is equally 
likely to observe an image of a male and a female individual, or from a 
particular hospital. To do this, we sampled uniformly from the attribute 
distribution and preserved the original diagnostic label distribution to 
preserve the original disease prevalence. Sampling multiple times from 
the generative model allowed us to obtain different augmentations for 
a given condition (and property), consequently increasing the diversity 
of training samples for the downstream classifier; (3) we enriched our 
original training dataset from the source domain with the synthetic 
images sampled from the generative model and trained a diagnostic 
model (potentially for multiple labels, if more than one condition is 
present at once). We provide the exact details of the experimental 
setting for each modality in the Methods (‘Experimental setting for 
each modality’).

Experimental protocol. We evaluated this approach using denois-
ing diffusion probabilistic models (DDPMs) on different medical 
contexts and tracked diagnostic performance (for example, top-1 
accuracy) and fairness in-distribution and OOD. We considered 
in-distribution datasets as consisting of images from the same demo-
graphic and disease distribution and acquired with the same imaging 
protocol as the training set. Out-of-distribution datasets may differ 
from the training set in any or all of those dimensions. Evaluation 
of the out-of-distribution datasets is equivalent to developing an 
ML model on a certain population (for example, from a particular 
hospital or geographical location) and testing its performance on a 
population from an unseen hospital or acquired under new condi-
tions. Across all settings, the diagnostic and diffusion models were 
trained with the same labeled data. We provide more details about 

this and a summary of the setting used for each modality in the 
Methods (‘Overview of methodology’).

Evaluation metrics. To measure the performance of the different 
baselines and the proposed method, we used two sets of metrics: one 
set was more focused on diagnostic accuracy (that is, top-1 accuracy 
for histopathology, receiver operating characteristic (ROC)-area under 
the curve (AUC) for radiology and high-risk sensitivity for derma-
tology), while the second set was more geared toward fairness (see 
summary in Table 1). The performance metrics varied depending on 
the classification task performed for each modality (that is, binary 
versus multiclass versus multilabel) and considered label imbalance. 
High-risk sensitivity captured the true positive rate for the high-risk 
conditions and was deemed the most relevant for the diagnostic tool 
by expert dermatologists. For fairness, we looked at the performance 
gap (depending on the metric of interest) in the binary attribute setting 
and the difference between the worst and best subgroup performance 
for categorical attributes, for example, hospital ID and ethnicity. For 
continuous sensitive attributes, like age, we discretized them into 
appropriate buckets (Methods and Extended Data Table 1).

Clinical tasks and datasets
Histopathology. The first setting we considered is histopathology. Var-
iation in staining procedures in different hospitals leads to distribution 
shifts that can challenge an ML model that has only encountered images 
from a particular hospital. The cancer metastases in lymph nodes 
challenge (CAMELYON17) by Bandi et al.21 aims to improve generaliza-
tion capabilities of automated solutions and reduce the workload on 
pathologists who have to manually label those cases. The correspond-
ing dataset contains images from five different hospitals and the task 
was to predict whether the histological lymph node sections captured 
by the images contain cancerous cells, indicating breast cancer metas-
tases (as posed by the WILDS challenge22). Two of the hospital datasets 
provided by the challenge were held out for out-of-distribution evalu-
ation and three were considered in-distribution datasets because of 
similar staining procedures. We considered this as the simplest setting 
for our experiments because there was no extreme disease preva-
lence or demographic shifts. The labeled dataset contained 455,954 
patches, while the unlabeled dataset contained 1.8 million patches 
from the three training hospitals; full statistics are given in Methods and 
Extended Data Table 1a. The unlabeled dataset contained the hospital 
identifier but not the diagnostic label.

To understand the impact of the number of labeled examples 
on fairness and overall performance, we created different variants 
of the labeled training set, where we varied the number of samples 
from two of the three training hospitals (3 and 4). The number of 
labeled examples from one hospital remained constant. We compared 

Table 1 | Summary of the experimental setup and major improvements for each modality

Experimental setup Histopathology Radiology Dermatology

Diffusion model

Conditioning variable Diagnosis and hospital ID Diagnosis Diagnosis and demographic attribute

Access to unlabeled data (additional to the 
diagnostic model’s training data)

Yes No Yes

Using OOD unlabeled data No No Yes

Diagnostic model

Synthetic/real data ratio 50:50 100:0 75:25

Performance metric Top-1 accuracy ROC-AUC High-risk sensitivity

Relative performance improvement with regard 
to baseline without augmentations

48.5% 5.2% 27.3%

Absolute fairness improvement with regard to 
baseline

↓ 30.0% in-distribution ↓ 0.031 OOD ↓ 0.044 OOD

Performance improvements are reported with respect to the respective baseline method, while fairness improvements are reported in absolute terms with respect to the baseline for the 
corresponding performance metric.
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top-level classification accuracy and fairness gap, that is, the accu-
racy gap between the best and worst performing hospital across the 
in-distribution hospitals, to different baselines (more details about the 
baselines are provided in Methods (‘Baselines’)).

We found that using synthetic data outperformed both 
in-distribution baselines in the less skewed (with 1,000 labeled samples 
from hospitals 3 and 4) and more skewed setting (with only 100 labeled 
samples) while closing the fairness gap between hospitals. We obtained 
the best accuracy OOD when using all in-distribution labeled examples 
as shown in Fig. 2b (in the OOD setting, there were one validation and 
one test hospital, so we do not report a performance gap). We found 
that performing color augmentation on top of the generated samples 
generalized best overall, leading to a 48.5% relative improvement 
over the baseline model and 3.2% over the model trained with color 
augmentations on the test hospital, while reducing the performance 
gap between in-domain hospitals by 20 absolute percentage points.

This validated that we can indeed use synthetic data to better 
model the data distribution and outperform variants using real data 
alone. We also observed that this method was most effective in a 
low-data regime (that is, the more skewed setting in Fig. 2a), while 
being able to recover performance that other approaches achieve with 
100× more labeled samples, as shown in Extended Data Fig. 1a. This 
translates to more significant improvements in scenarios where we 
only have access to a few labeled examples from a particular hospital 
or population because of limited resources.

Chest radiology. The second setting we considered is radiology. We 
focused our analysis on two large public radiology datasets, CheXpert23 
and ChestX-ray14 (National Institutes of Health)24. These datasets have 
been widely studied8,12,13 for model development and fairness analyses. 
For these datasets, demographic attributes like sex and age are publicly 
available; classification was performed at a higher resolution, that is, 
224 × 224 as in ref. 25. After training the generative and diagnostic mod-
els on 201,055 examples of chest X-rays from the CheXpert dataset, we 

evaluated on a held-out CheXpert test set (containing 13,332 images), 
which we considered in-distribution, and the test set of ChestX-ray14 
(containing 17,723 images), which we considered OOD because of 
demographic and acquisition shifts. We focused on five conditions 
for which labels existed in common between the two datasets, that is, 
atelectasis, consolidation, cardiomegaly, pleural effusion and pulmo-
nary edema, while each of these datasets contained more conditions 
(not necessarily overlapping), as well as examples with no findings, 
corresponding to healthy controls. Note that the labeling procedures 
for the two datasets were defined and enacted separately, which prob-
ably increased the complexity of the task. In this setting, the model 
backbone was shared across all conditions, while a separate (binary 
classification) head was trained for each condition, given that multiple 
conditions can be present at once. We report the ROC-AUC curve in line 
with the CheXpert leaderboard.

We observed that synthetic images improved the average AUC for 
the five conditions of interest in-distribution, but even more so OOD 
(Fig. 3a). Improvements were particularly striking for cardiomegaly, 
where the model trained purely with synthetic images improved the 
AUC by 21.1% (Fig. 3a). Overall, we observed a relative improvement of 
5.2% on average AUC OOD and a 44.6% improvement in sex fairness gap. 
We also observed a 31.7% decrease in race fairness gap in-distribution 
(Fig. 3b). We show some examples of synthetic images for a model 
conditioned on the diagnostic label in Extended Data Fig. 2c,d.

Dermatology. For the dermatology setting, we considered a dermatol-
ogy dataset of images grouped into 27 labeled conditions ranging from 
low risk (for example, acne, verruca vulgaris) to high risk (for example, 
melanoma). Out of these conditions, three were considered to be high 
risk: basal cell carcinoma; melanoma; and squamous cell carcinoma 
(SCC) and squamous cell carcinoma in situ (SCCIS). For the purposes 
of our experiments, we considered three datasets: the in-distribution 
dataset featuring 16,530 cases from a teledermatology dataset acquired 
from a population in the United States (Hawaii and California); the 
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Fig. 2 | Results on histopathology dataset. a, In-distribution fairness gap 
(in percentage) between the best and worst performing hospital versus 
overall prediction accuracy for the presence of breast cancer metastases in 
histopathology images on n = 33,560 samples. In the less skewed setting,  
we included 1,000 labeled samples from hospitals 3 and 4, while in the more  
skewed setting we included only 100 samples. b, OOD distribution results 
on n = 85,054 samples. Prediction accuracy (x axis) on the validation and test 
hospitals when training the generative model on all in-distribution labeled 
examples is shown. Note that the validation set was used for model selection, 
given that its distribution was more similar to the training distribution.  

We compared the following methods: baseline model with no augmentations; 
‘Color augm.’ for a model that uses color augmentations; ‘Label conditioning’ 
and ‘Label and property conditioning’ for our proposed approach of a generative 
model conditioned on the diagnostic label and both the diagnostic label and  
the hospital ID, respectively; ‘L cond. + color augm.’ and ‘L and P cond. + color 
augm.’ were used to apply color augmentations on the images generated with  
the diffusion models. Combining color augmentation with synthetic data 
performed best across all settings. Data are presented as mean ± s.d. across five 
technical replicates.
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OOD 1 dataset featuring 6,639 images of clinical type focusing mostly 
on high-risk conditions from an Australian population; and OOD 2 fea-
turing 3,900 teledermatology images acquired in Colombia. To train 
the downstream classifier, we used labeled samples from only one of 
these datasets (in-distribution), while we included unlabeled images 
from the other two distributions when training the diffusion model. 
We evaluated on a held-out slice of the in-distribution dataset and 
two OOD sets to investigate how well models generalized. We present 
results for the OOD 2 dataset in Supplementary Information, Additional 
results for dermatology, because it has similar label distribution to the 
in-distribution dataset and is less challenging.

We explored whether the proposed approach can be used to not 
only improve OOD accuracy but also fairness over the different label 
predictions and attributes for the in-distribution dataset. While the 
datasets were already imbalanced with respect to different labels and 
sensitive attributes, we also investigated how the performance varied 
as a dataset becomes more or less skewed along a single one of these 
axes. This allowed us to better understand to what extent conditioning 
generative models on the axis of interest can help alleviate biases with 
regard to the corresponding attribute.

In Fig. 4, we illustrate how different methods compare for a single 
axis of interest with regard to sensitivity for the three high-risk condi-
tions mentioned above and fairness. In the more skewed setting, the 

training dataset contained a maximum of 100 samples from the under-
represented subgroup regardless of the underlying condition, while 
in the less skewed setting it contained a maximum of 1,000 samples. 
We compared all methods in the four different settings: in-distribution 
and OOD, as well as less and more skewed with respect to the sensitive 
attribute of interest, that is, sex. We observed that in all settings, com-
bining heuristic augmentations improved the predictive performance 
across the board, but harmed fairness of the model. Using RandAug-
ment alone was beneficial for high-risk sensitivity in-distribution, but 
not OOD, but it harmed fairness in the OOD setting. Oversampling 
slightly closed the fairness gap across the board while improving per-
formance, as expected. The approaches that leverage synthetic data, 
‘Label conditioning’ and ‘Label and property conditioning’, improved 
on high-risk sensitivity in-distribution without reducing fairness, while 
they yielded a significant improvement in the OOD setting on both axes. 
In the more skewed setting, in particular, ‘Label and property condition-
ing’ led to 27.3% better high-risk sensitivity compared to the baseline 
in-distribution and a striking 63.5% OOD, while closing the fairness 
gap by 7.5× OOD. It is worth noting that the underrepresented group 
in the training set and the ID evaluation set was overrepresented in the 
OOD evaluation set. Our approach showed improvements in accuracy 
and fairness metrics with respect to different sensitive attributes, 
while being able to generalize these improvements OOD as shown 
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Fig. 3 | Results on chest radiology datasets. a,b, Comparison of average AUC 
versus fairness (AUC) gap across different baselines for radiology for sex (a) and 
race (b) for in-distribution (n = 23,261 samples) and OOD (n = 17,723 samples) 
datasets. Race labels are not available for the OOD dataset. For a, we report 
results in-distribution (left) and OOD (right) on CheXpert and ChestX-ray14 
datasets, respectively. We marked the baseline ‘Pretrained on JFT’ with black. 
Label conditioning corresponds to the model that used synthetic images from a 
diffusion model conditioned on only the diagnostic labels. We further compared 

to other strong contenders, that is, a BiT-ResNet model pretrained on ImageNet-
21K (Pretrained on IN-21K), a model pretrained on JFT using RandAugment 
heuristic augmentations (RandAugment), a model trained with RandAugment 
on top of standard ImageNet augmentations (RandAugment + IN Augms) and 
a model trained with focal loss (Focal loss). To ensure a fair comparison, all 
methods were trained and finetuned for the same number of steps and with the 
same batch size. For the fairness gap, smaller values are preferable. Data are 
presented as the mean ± s.d. across five technical replicates.
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in Methods, ‘Additional results’. The strong overall performance and 
reduced fairness gap OOD indicates that the diagnostic model learned 
better generalizable features when leveraging synthetic data.

Discussion
In this work, we propose using conditional diffusion models to improve 
the robustness and fairness of ML systems applied to medical imag-
ing. More specifically, we show that diffusion models can produce 
useful synthetic images in three different medical settings of varying 
difficulty, complexity and resolution: histopathology, radiology and 
dermatology. Our experimental evaluation provides extensive evi-
dence that synthetic images can indeed improve statistical fairness, 
balanced accuracy and high-risk sensitivity in a multiclass setting, 
while improving the robustness of models both in-distribution and 
OOD. In fact, we observe that generated data can be more beneficial 
OOD than in-distribution even in the absence of data from the target 
domain during training of the generative model (in the case of radi-
ology). Generative models were label-efficient in both histopathol-
ogy and dermatology settings, where we demonstrate that only a few 
labeled examples are sufficient for the diffusion models to capture the 
underlying data distribution well. This is particularly impactful in the 
medical setting, where data for particular conditions or demographic 
subgroups can be scarce or, even when available, acquiring expert 
labels can be expensive and time-consuming. For the reader that is 
familiar with regularization techniques, we view diffusion models as 

another form of regularization, which can be combined with any other 
architecture or learning method improvements.

Even though we did not make any assumptions when training 
the diffusion model, we found interesting dynamics when combining 
real and synthetic data. In certain settings, that is, histopathology and 
radiology, we observed that we can rely purely on generated data and 
still outperform baselines trained with real labeled data (Methods, 
‘Additional results’). In other settings, like dermatology, we observed 
that real data were more essential for training of the downstream dis-
criminative model. We took this a step further and analyzed the impact 
of generated data and the mechanisms underlying the improvements 
in robustness and fairness that we report. In-depth analysis in one 
of the modalities indicated that synthetic samples from a diffusion 
model yield diverse (Fig. 5), realistic and canonical images deemed 
diagnosable by expert clinicians to a great extent (Methods, ‘In-depth 
analysis for dermatology’). Synthetic samples seem to better align 
distributions of different domains, while at the same time allowing 
models to learn more complex decision boundaries that reduce their 
reliance on spurious correlations. Finally, we highlight some practical 
benefits and discuss a number of potential risks and limitations from 
relying on generated data.

First, synthetic data are reusable. Beyond the analysis and utility 
of synthetic data for the particular tasks that we considered in this 
work, there are many other potential applications for which they can 
be useful. The same synthetic data can be used for data augmentation 
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Fig. 4 | Results on dermatology datasets. Comparison of high-risk sensitivity (for 
basal cell carcinoma, melanoma and SCC/SCCIS) versus fairness gap with regard 
to sex in dermatology across different baselines. We report results in-distribution 
(left) and OOD (right) for OOD 1, as well as for the less skewed (top) and more skewed 
(bottom) setting. We marked the baseline ‘Pretrained on JFT’ with black. ‘Label 
conditioning’ and ‘Label and property conditioning’ correspond to the models that 
used synthetic images sampled from a diffusion model conditioned on only the 
label, and the label and sensitive attribute, respectively. We further compared to 
other strong contenders, that is, a BiT-ResNet model pretrained on ImageNet-21K 
(Pretrained on IN-21K), a model pretrained on JFT using RandAugment heuristic 

augmentations (RandAugment), a model trained with RandAugment on top of 
standard ImageNet augmentations (RandAugment + IN Augms), a model trained 
on a resampled version of the training dataset that is more balanced with regard to 
the sensitive attribute (Oversampling) and a model trained with focal loss (Focal 
loss). To ensure a fair comparison, all methods were trained and finetuned for the 
same number of steps and with the same batch size. For the fairness gap, smaller 
values are preferable. There are n = 1,349 samples in the in-distribution dataset and 
n = 6,639 samples in the OOD dataset. Data are presented as the mean ± s.d. across 
five technical replicates.
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across different models and, potentially, tasks. For example, hand-
crafted augmentations are often used to introduce invariances and 
learn better representations in a self-supervised manner for a variety 
of downstream tasks.

Furthermore, the proposed approach is scalable. As we demon-
strate in the Supplementary Information, if we have a perfect genera-
tive model, then we can perform perfectly under the fair distribution. 
Moreover, the better the generative model, the more our results should 
improve. Thus, as generative modeling improves or as more data are 
available, results should improve accordingly.

Combining this technique with privacy-preserving technologies 
holds significant promise for the medical field. Principles of data  
governance, confidentiality, privacy and consent are vital in health-
care, but may be associated with relative limitations of data avail-
ability for the training of ML models in underrepresented groups.  
There is preliminary evidence that federated learning can be used  
to learn classification models from multiple institutions26; if it were 
possible to generate private synthetic data, these synthetic data 
could be used for data augmentation along with a smaller, public 
dataset to improve performance. This could have practical ben-
efits when data sharing to protect personally identifiable informa-
tion while achieving high-quality performance. Such an approach 
would of course be associated with its own risks, some of which are  
discussed in ref. 27.

Even though we showed that diffusion models can be particularly 
label-efficient, this should not encourage practitioners to abandon 
their data and label acquisition efforts; nor does it imply that generated 
data can replace real data under any circumstances. What this research 
demonstrates is that, when labeled data and resources are limited, 
there are ways to make more of the available labeled and unlabeled 
data. There is also the potential that using generative models may 
lead to overconfidence in an AI system because images look realistic 
to a nonexpert. Additional data collection will always be important, 
along with comprehensive analysis of the underlying data and their 
caveats. Synthetic data from a generative model should only be used 
as a complement to additional data collection and accompanied by rig-
orous evaluation on real data, ideally outside the main source domain 
to understand the generalization capabilities of the models. In other 
words, synthetic data are one solution to increase diversity, but not a 
substitution of efforts to increase data representation for underrep-
resented conditions and populations.

If the generative model is of poor quality or biased, then we may 
end up exacerbating problems of bias or structural inequities in the 
downstream model. The generative model may be unable to generate 
images of a certain label and sensitive attribute. In other settings, the 
model may always generate a specific part of the distribution for a 

certain label and sensitive attribute instead of capturing the true image 
distribution. The generative model may also create incorrect images of 
a given label and sensitive attribute, leading the classification model to 
make mistakes confidently in those regions. Medical training datasets 
can also encode structural inequities in the delivery of healthcare, 
which could be propagated by generative models in ways that might 
not be immediately apparent on inspection of the synthetic examples 
being created. Therefore, it is particularly important that evaluation 
data remain unbiased and that multiple safeguards are implemented 
to assess model fairness and mitigate the multifaceted nontechnical 
health inequities that cannot be addressed solely by data curation and 
model development.

Another important risk to be mindful of is that the insights that 
we obtain by analyzing the model are only as good as our evaluation 
setup. If the evaluation datasets are not diverse enough, do not capture 
high-risk conditions well or are not representative of the population, 
then any conclusions we draw from these results will be limited. There-
fore, care needs to be taken to report and understand what each of the 
evaluation setups is capturing. For example, as Varoquaux et al.10 high-
light, clinician-level performance is often overstated without validating 
models OOD. Moreover, clinical applicability of patch-level evaluation 
for the histopathology setting can be limited and whole-slide image 
analysis should be investigated further.

In terms of limitations, sensitive attributes are not always observed 
or explicitly tracked and reported28, often to protect people’s privacy. 
At the same time, the way labels are assigned may have its own limita-
tions. For example, using binary gender and sex attributes (or using 
the two interchangeably) does not represent people that identify as 
nonbinary. Similarly, researchers have criticized the Fitzpatrick skin 
type because it is less accurate on shades of darker skin tones, which 
could cause models to misidentify or misrepresent people with darker 
skin. Similarly, there are other unobserved characteristics that can 
influence disease and are not accounted for in a visual image of skin, 
for example, social determinants of health. One instance of this is how 
dermatitis in a person who lives in a communal setting could have a 
different differential diagnosis than dermatitis in a high-income set-
ting on a high-income individual. These are important considerations 
when relying on such attributes to condition learned augmentations 
or to perform fairness analyses.

Finally, synthetic images should be handled with caution and 
transparency because they may perpetuate biases in the original train-
ing data. It is important to tag and identify when a synthetic image has 
been added to a database, especially when considering reusing the 
dataset in a different setting or by different practitioners.

We see potential for future work that improves fairness and OOD 
generalization by leveraging powerful generative models but without 

a

Cyst, melanocytic nevus, seborrheic dermatitis

b

Folliculitis, hidradenitis suppurativa alopecia areata

Fig. 5 | Generated images in the dermatology setting. Each row of images corresponds to a different condition. a, Generated images for cyst, melanocytic nevus and 
seborrheic dermatitis. b, Generated images for folliculitis, hidradenitis and alopecia areata.
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explicitly relying on predefined categorical labels. When we consider 
synthetic images as an option for addressing performance gaps across 
subgroups, the following challenges still need to be addressed: reduc-
ing memorization for rare attributes and conditions; providing privacy 
guarantees; and accounting for unobserved characteristics.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-024-02838-6.

References
1. Esteva, A. et al. Dermatologist-level classification of  

skin cancer with deep neural networks. Nature 542,  
115–118 (2017).

2. Ardila, D. et al. End-to-end lung cancer screening with 
three-dimensional deep learning on low-dose chest computed 
tomography. Nat. Med. 25, 954–961 (2019).

3. De Fauw, J. et al. Clinically applicable deep learning for  
diagnosis and referral in retinal disease. Nat. Med. 24,  
1342–1350 (2018).

4. Liu, Y. et al. A deep learning system for differential diagnosis of 
skin diseases. Nat. Med. 26, 900–908 (2020).

5. Jain, A. et al. Development and assessment of an artificial 
intelligence-based tool for skin condition diagnosis by primary 
care physicians and nurse practitioners in teledermatology 
practices. JAMA Netw. Open 4, e217249 (2021).

6. Cui, M. & Zhang, D. Y. Artificial intelligence and computational 
pathology. Lab. Invest. 101, 412–422 (2021).

7. Rimmer, A. Radiologist shortage leaves patient care at risk, warns 
royal college. BMJ 359, j4683 (2017).

8. Rajpurkar, P. et al. CheXNet: radiologist-level pneumonia 
detection on chest X-rays with deep learning. Preprint at  
https://arxiv.org/abs/1711.05225 (2017).

9. Liu, X. et al. A comparison of deep learning performance against 
health-care professionals in detecting diseases from medical 
imaging: a systematic review and meta-analysis. Lancet Digit. 
Health 1, e271–e297 (2019).

10. Varoquaux, G. & Cheplygina, V. Machine learning for medical 
imaging: methodological failures and recommendations for the 
future. NPJ Digit. Med. 5, 48 (2022).

11. Wilkinson, J. et al. Time to reality check the promises of machine 
learning-powered precision medicine. Lancet Digit. Health 2, 
e677–e680 (2020).

12. Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H. & Ferrante, E. 
Gender imbalance in medical imaging datasets produces biased 
classifiers for computer-aided diagnosis. Proc. Natl Acad. Sci. USA 
117, 12592–12594 (2020).

13. Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A.,  
Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial 
intelligence algorithms applied to chest radiographs in 
under-served patient populations. Nat. Med. 27, 2176–2182 
(2021).

14. Yu, X., Zheng, H., Liu, C., Huang, Y. & Ding, X. Classify 
epithelium-stroma in histopathological images based on deep 
transferable network. J. Microsc. 271, 164–173 (2018).

15. Abbasi-Sureshjani, S., et al.) In Proc. Interpretable and Annotation- 
Efficient Learning for Medical Image Computing (eds. Cardoso,  
J. et al.) 183–192 (Springer, 2020).

16. Castro, D. C., Walker, I. & Glocker, B. Causality matters in medical 
imaging. Nat. Commun. 11, 3673 (2020).

17. Dockès, J., Varoquaux, G. & Poline, J.-B. Preventing dataset shift 
from breaking machine-learning biomarkers. Gigascience 10, 
giab055 (2021).

18. Schrouff, J. et al. Diagnosing failures of fairness transfer across 
distribution shift in real-world medical settings. In Advances in 
Neural Information Processing Systems (eds. Koyejo, S. et al.) 
19304–19318 (Curran Associates, Inc., 2022).

19. Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic 
models. Adv. Neural Inf. Process. Syst. 33, 6840–6851 (2020).

20. Ho, J. & Salimans, T. Classifier-free diffusion guidance. Preprint at 
https://arxiv.org/abs/2207.12598 (2022).

21. Bandi, P. et al. From detection of individual metastases to 
classification of lymph node status at the patient level: 
the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38, 
550–560 (2019).

22. Koh, P. W. et al. WILDS: a benchmark of in-the-wild distribution 
shifts. In Proc. International Conference on Machine Learning  
(eds. Meila, M. & Zhang, T.) 5637–5664 (PMLR, 2021).

23. Irvin, J. et al. Proc. AAAI Conference on Artificial Intelligence  
(AAAI, 2019).

24. Wang, X. et al. Proc. IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) (IEEE, 2017).

25. Azizi, S. et al. Robust and data-efficient generalization of 
self-supervised machine learning for diagnostic imaging.  
Nat. Biomed. Eng. 7, 756–779 (2023).

26. Kaissis, G. et al. End-to-end privacy preserving deep learning on 
multi-institutional medical imaging. Nat. Mach. Intell. 3, 473–484 
(2021).

27. Cheng, V., Suriyakumar, V. M., Dullerud, N., Joshi, S. & Ghassemi, M.  
Proc. 2021 ACM Conference on Fairness, Accountability, and 
Transparency (Association for Computing Machinery, 2021).

28. Tomasev, N., McKee, K. R., Kay, J. & Mohamed, S. Proc. 2021 
AAAI/ACM Conference on AI, Ethics, and Society (Association for 
Computing Machinery, 2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-024-02838-6
https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/2207.12598
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02838-6

Methods
Our research complies with all relevant ethical regulations. We only 
repurposed existing assets and datasets and did not collect new assets 
for the purposes of our study, beyond annotations by dermatology 
experts for the generated images. The non-accessible data used in the 
study can be used for research purposes without further scrutiny or 
collection of consent from the source individuals.

Datasets
In this section, we describe the datasets we used to train the down-
stream classifiers and diffusion models across the different modalities 
and medical contexts. Three different datasets were used, all of which 
are de-identified; informed consent was obtained from the participants 
in the original studies that collected these data.

Histopathology. We used data from the CAMELYON17 challenge21 that 
include labeled and unlabeled data from three different hospitals for 
training, as well as one in-distribution and one OOD validation hospi-
tals. Data from the different hospitals differ because of the staining 
procedure used. The task was to estimate the presence of breast cancer 
metastases in the images, which are patches of whole-slide images of 
histological lymph node sections. The number of samples per hospi-
tal is given in Extended Data Table 1a; all subsets were approximately 
evenly split into those containing tumors and those that did not. We 
used the training data (302,436 examples) and the unlabeled data 
(1.8 million examples) to train the diffusion model. We performed 
patch-based instead of whole-slide classification to align with the 
WILDS challenge22 and follow-up works that evaluated methods on 
the same setup.

In terms of label distribution, there were 151,046 patches of healthy 
tissue in the training set and 151,390 patches of cancerous tissue. For the 
ID (validation) dataset, these statistics are 16,952 and 16,608, respec-
tively, while in the OOD (validation) and OOD (test) splits there were 
17,452 and 42,527 patches corresponding to each class, respectively 
(that is, both OOD datasets were perfectly balanced).

Chest radiology. We trained the cascaded diffusion and downstream 
discriminative model on a total of 201,055 samples from the CheXpert 
database23, with 119,352 individuals annotated as male and 81,703 as 
female (the dataset only contained binary gender labels). We show 
the age and original label distribution in Extended Data Fig. 3a,b. The 
original CheXpert training set contained positive, negative, uncertain 
and unmentioned labels. The uncertain samples were not considered 
when learning the diagnostic model, but they were used to train the 
diffusion model. The unmentioned label was considered a negative 
(that is, the condition was not present), which yielded a highly imbal-
anced dataset. The evaluation National Institutes of Health dataset24 
denoted as OOD consisted of 17,723 individuals, out of which 10,228 
were male and 7,495 were female.

Extended Data Fig. 3c,d illustrates how often different conditions 
co-occurred in the training and evaluation samples. Capturing the 
characteristics of a single condition can be challenging because they 
frequently coexist with other conditions in a single case. One charac-
teristic example is pleural effusion, which was included in the diagnosis 
of atelectasis, consolidation and edema in approximately 50% of cases. 
However, the scenario is slightly different for the OOD ChestX-ray14 
dataset, where for most pairs of conditions the corresponding ratio 
was much lower.

Dermatology. The imaging samples in the dermatology dataset were 
often accompanied with metadata that include attributes like bio-
logical sex, age and skin tone. Skin tone was labeled according to the 
Fitzpatrick scale, giving rise to six categories (plus unknown). The 
ground truth labels for the condition were the result of aggregation of 
clinical assessments by multiple experts, who provided a list of top-3 

conditions along with a confidence score (between 1 and 5). A weighted 
aggregate of these labels gave rise to soft labels that we used for training 
the generative and diagnostic models. The dermatology datasets were 
characterized by complex shifts with respect to each other as the label 
distribution, demographic distribution and capture process may all 
vary across them. To demonstrate the severity of the prevalence shift 
across locations, we visualized the distribution of conditions in the 
evaluation datasets in Extended Data Fig. 4.

To disentangle the effect of each of those shifts, we artificially 
skewed the source dataset along three sensitive attribute axes: sex, 
skin tone and age. Skewing the dataset allowed us to understand which 
methods performed better as the distribution shifts became more 
severe. For example, if our original dataset was skewed toward younger 
age groups, conditioning the generative model on age and (over)sam-
pling from older ages could potentially help close the performance 
gap between younger and older populations. To study this aspect, we 
could not rebalance our datasets because we had too few samples from 
the long tail of our distribution with regard to the label or sensitive 
attribute. We skewed the training labeled dataset to make it progres-
sively more biased (by removing instances from the least represented 
subgroups) and investigate how performance suffered because of 
skewing. For each sensitive attribute, we created new versions of the 
in-distribution dataset progressively more skewed to the high-data 
regions. We show how the resulting training dataset was skewed with 
respect to each of the sensitive attributes in Extended Data Table 1b–d. 
We also report similar demographic statistics for the three evaluation 
datasets in Extended Data Table 1e–g. The cascaded diffusion model 
was always trained on the union of the labeled training data and the 
total of unlabeled data across the three available domains. The dis-
criminative model was always evaluated on the same three evaluation 
datasets (one in-distribution held-out dataset and two OOD datasets) 
for consistency.

Related work
Learning augmentations with generative models in health. Gen-
erative models, especially generative adversarial networks (GANs)29, 
have been used by several studies to improve performance in different 
medical imaging tasks30–34 and, in particular, for underrepresented 
conditions35. Data obtained by exploring different latent image attrib-
utes through a generative model have also been shown to improve 
adversarial robustness of image classifiers36. In the clinical setting, 
GANs have been used by several studies to improve performance in 
different tasks, for example, disease diagnosis, in scenarios where few 
labeled samples were available. Such models have been used to aug-
ment medical images for liver lesion classification30, classification of 
diabetic retinopathy from fundus images31 and breast mass diagnosis in 
mammography32. In dermoscopic imaging33, a progressive generative 
model was introduced to produce realistic high-resolution synthetic 
images, while34 focused on improving balanced multiclass accuracy 
and, in particular, sensitivity for high-risk underrepresented diagnos-
tic labels like melanoma37. It focused on a similar approach for chest 
X-rays by combining real and synthetic images generated with GANs to 
improve classifier accuracy for rare diseases35. It used conditional image 
generation in scenarios where the conditioning vector was not always 
available to disentangle image content and image style information. 
They applied the method to dermoscopic images (HAM10000 data-
set) corresponding to seven types of skin lesions and lung computed 
tomography scans from the Lung Image Database Consortium-Image 
Database Resource Initiative.

Apart from whole-image downstream tasks, GAN-based augmenta-
tion techniques have been used to improve performance on pixel-wise 
classification tasks, for example, vessel contour segmentation on 
fundus images38 and brain lesion segmentation39. Given that pixel-wise 
downstream tasks were not within the scope of our study, we refer the 
reader to a more thorough review of GAN-based methods in medical 
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image augmentation by Chen et al.40; Bissoto et al.41, in turn, provide 
an overview of GAN-based augmentation techniques with a main focus 
on skin lesion augmentation and anonymization.

Despite the wide variety of health applications that have adopted 
GAN-based generative models to produce learned augmentations of 
images, these are often characterized by limited diversity and qual-
ity42. More recently, DDPMs19,20,43–45 presented an outstanding perfor-
mance in image generation tasks and have been probed for medical 
knowledge by Kather et al.46 in different medical domains. Other works 
extended diffusion models to three-dimensional magnetic resonance 
and computed tomography images47 and demonstrated that they can 
be conditioned on text prompts for chest X-ray generation48. Given 
the ethical questions around the use of synthetic images in medi-
cine and healthcare46,49, it is important to make a distinction between 
using generative models to augment the original training dataset and 
replacing real images with synthetic ones, especially in the absence of 
privacy guarantees. None of these works claimed that the latter would 
be preferable, but rather came to the rescue when obtaining more 
abundant real data is either expensive or not feasible (for example, 
in the case of rare conditions), even if this solution is not a panacea42. 
While some studies view generative models as a means of replacing real 
data with ‘anonymized’ synthetic data, we abstain from such claims 
because greater care needs to be taken to ensure that generative models 
are trained with privacy guarantees, as shown by Carlini et al.50 and 
Somepalli et al.51.

Exploring fairness in health. Many scholars recently scrutinized ML 
systems and surfaced different types of biases that emerge through 
the ML pipeline, including problems due to data acquisition protocols, 
flawed human decision-making, missing features and label scarcity52. 
They identified and characterized various biases that can emerge 
during model development and are exacerbated during model deploy-
ment, and in clinical interactions, while they argued that ensuring 
fairness in those contexts is essential to advance health equity. The 
relevant literature discussed below was inspired by the realization 
that, if we break down performance of automated systems that rely on 
ML algorithms (for example, computer vision, judicial systems) based 
on certain demographic or socioeconomic traits, there can be vast 
discrepancies in predictive accuracy across these subgroups. This is 
alarming for applications influencing human life and it is particularly 
concerning in the context of computer-aided diagnosis and clinical 
decision-making.

One of the first studies to dive into the effect of training data com-
position on model performance across the sexes when using chest 
X-rays to diagnose thoracic diseases was the one led by Larrazabal 
et al.12. They found that the prevalence of a particular sex in the train-
ing set is directly linked to the predictive accuracy of the model for 
the same group at the test time. In other words, a model trained on a 
set highly skewed toward female patients would demonstrate higher 
accuracy for female patients at test time compared to a counterpart 
trained on a male-dominated set of images. Even though this find-
ing might not come as a surprise, one would expect that a ML model 
used in clinical practice across geographical locations be robust to 
demographic shifts of this kind. In a similar vein, Seyyed-Kalantari 
et al.13 further explored how differences in age, race or ethnicity, and 
insurance type (as a proxy of socioeconomic status) are manifested 
in the performance of a classifier operating on chest radiographs. 
A crucial finding was that the algorithm would exhibit a higher false 
positive rate, that is, underdiagnose ethnic minorities. These effects 
were compounded for intersectional identities (that is, the false posi-
tive rate was higher for Black female patients compared to Black male 
patients). Similar findings were reported by Puyol-Antón et al.53 in a 
cardiac segmentation task with respect to sex and racial biases, and by 
Gianfrancesco et al.54 in a different modality (electronic health records) 
for patients with low socioeconomic status.

Overview of methodology
The method is illustrated in Fig. 1b and leverages diffusion models to 
learn augmentations of the data. The approach consists of three main 
steps: (1) we trained a generative model given the available labeled and 
unlabeled data; (2) we sampled from the generative model according 
to a sampling strategy; (3) we enriched our original training dataset 
from the source (also called in-distribution) domain with the synthetic 
images sampled from the generative model and trained a diagnostic 
model (potentially for multiple labels, if more than one condition 
can be present at once). We treated the mixing ratio between real and 
synthetic as a hyperparameter in all three settings and we selected 
the best value based on model performance on the validation set. 
We provide more specific details about the experimental setting for 
each modality in the following section and the pseudocode for our 
method in Fig. 1a.

Algorithm 1: pseudocode of proposed method
Input: modality
 if Modality == "histopathology" then
   Num_labels ← 2
   A ∈ {"hospital_id"}
 else if Modality == "radiology" then
   Num_labels ← 5
   A ∈ {"sex", "race"}
 else if Modality == "dermatology" then
   Num_labels ← 27
   A ∈ {"sex", "age", "skin_tone"}
 end if
Input: X∈ℝBatch×Height×Width×Channels;Y∈ℝBatch×Num_labels
 Train diffusion model ̂p ∼ DDPM(X,Y,A)
 if Modality ∈ {"radiology", "dermatology"} then
   Train upsampler diffusion model ̂pupsampler ∼ DDPM(X,Y,A)
 end if
 Sample X′ from ̂p, ̂pupsampler according to a fair distribution ̂p(Y,A)
 We assume: ̂p(A) ∼ uniform, ̂p(Y) = p(Y)
 Output: X’∈ℝSamples×Height×Width×Channels;Y′∈ℝSamples×Num_labels synthetic 
samples
 Sample random number rng ∈ [0, 1]
   Train diagnostic model d(Y|X) = ResNet(X) using xd, yd and mixing 

ratio a
 if rng < a then
   xd, yd ∈ (X,Y)
 else
   xd, yd ∈ (X’,Y′)
 end if

Experimental setting for each modality. Histopathology. For histo-
pathology, we trained a diffusion model to generate images at 96 × 96 
resolution, which is the smallest in comparison to the other imaging 
modalities. The data used to train the diffusion model consisted of 
labeled and unlabeled data only from the in-distribution hospitals. 
To condition the diffusion model, we considered either the diagnostic 
label (that is, cancer or no cancer) or the diagnostic label and hospital 
ID together. For the unlabeled data, which did not contain the diag-
nostic label, we padded the corresponding conditioning vector with 
zeros. We then sampled from the diffusion model assuming a uniform 
distribution across hospital IDs and preserving the diagnostic label 
distribution. The synthetic-to-real data ratio used in histopathology 
is 50:50, meaning that 50% of the total training samples corresponded 
to real patches and 50% to synthetic samples from the diffusion model. 
For the diagnostic model, we focused on a patch-based classification 
setup instead of whole-slide image classification. Both experimental 
design decisions, that is, the image resolution and the classification 
setup, were made to align with the WILDS challenge22 and the wealth of 
literature that evaluates ML methods on in-the-wild distribution shifts 
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using the same setting55. We evaluated on the held-out in-distribution 
and OOD hospitals (results shown in Fig. 2).

Chest radiology. For chest radiology, we trained two diffusion models 
(one generating images at 64 × 64 resolution and one upsampling 
those generated images to 224 × 224 resolution) on labeled images 
from the in-distribution dataset. Therefore, in this scenario, we did 
not have access to any unlabeled data or data from the OOD dataset. 
This holds for both the diffusion models and the diagnostic model, 
that is, the OOD dataset was only used for evaluation. We conditioned 
both generative models on the diagnostic label only. While treating 
the synthetic-to-real data ratio as a hyperparameter, we found that 
training the downstream diagnostic model purely on synthetic data 
led to the best accuracy and fairness trade-off. We did not alter the 
diagnostic label distribution, that is, we used the labels of the real data 
to condition the diffusion models and yield a synthetic sample. In this 
setting, the model backbone was shared across all conditions, while a 
separate (binary classification) head was trained for each condition, 
given that multiple conditions can be present at once.

Dermatology. For dermatology, we trained two diffusion models (one 
generating images at 64 × 64 resolution and one upsampling those 
generated images to 256 × 256 resolution) on labeled images from the 
in-distribution dataset and unlabeled images from the in-distribution 
and OOD datasets. At no stage of training did we have access to labeled 
samples from the OOD datasets. We conditioned both generative 
models on the diagnostic label (padded with zeros for the unlabeled 
samples) or the diagnostic label and a demographic attribute. While 
treating the ratio of synthetic-to-real data as a hyperparameter, we 
found that training the downstream diagnostic model on 75% synthetic 
images and 25% real images yielded the best results. When we artifi-
cially skewed the dataset against certain demographic subgroups, we 
ensured that both the generative models and the diagnostic model 
had access to the same labeled examples (that is, we trained a different 
diffusion model for each skewed setting). When we sampled from the 
diffusion model, we preserved the diagnostic label distribution and 
assumed a uniform demographic attribute distribution.

Theoretical motivation. We motivated the use of generated data and 
demonstrated its utility in several toy settings, which simulate the 
problem of having only a few number of samples from the underlying 
distribution or parts of the underlying distribution. We wished to have 
high performance despite this lack of data. We demonstrated that even 
in these toy settings, synthetic data were useful.

We assumed we had a dataset Dtrain = {(xi, yi,ai)}
N
i=1 where xi, yi is an 

image and label pair, ai is a list of attributes about the datapoint and  
𝑁 is the number of training samples. The attributes may include attrib-
utes such as sex, skin type and age, or the hospital ID (in the case of 
histopathology). We had an additional dataset Du = { ̂xj}

M
j=1 of unlabeled 

images, 𝑀 being the number of samples, that could be used as desired. 
We had a generative model ̂p trained with Dtrain and Du (we make θ̃ 
implicit in the following). We dropped the subscripts in the following 
for simplicity where obvious.

To achieve fairness, we assumed we had a ‘fair’ dataset 
Df = {(xi, yi,ai)}

F
i=1 with 𝐹 datapoints that consisted of samples from the 

‘fair’ distribution pf  over which we aimed to minimize the expectation 
of the loss. fθ(x) was the classifier and L the loss function (for example, 
binary cross-entropy). We aimed to optimize the following objective:

min
θ

𝔼𝔼
Df
(L ( fθ(x), y,a)) (1)

We can decompose the data generating process into 
pf(x|a, y)pf(a|y)pf( y) . For example, we may have created Df  by sampling 
uniformly over an attribute (such as sex) and labels. We assumed that 
the training dataset Dtrain⊂ Df  was sampled from a distribution ptrain 

where ptrain(x|a, y)= pf(x|a, y). When ptrain( y,a)≠ pf( y,a), then we have a 
distribution shift between the training and fair distribution (for exam-
ple, the training distribution is more likely to generate images of a 
particular attribute or combinations of label and attribute than the fair 
distribution).

We aimed to combine the training dataset Dtrain and synthetic data 
sampled from the generative model ̂p to mimic most closely the fair 
distribution and improve fairness. We constructed a new dataset ̂D 
according to a distribution ̂p from these distributions using some 
probability parameter α:

(x,a, y) ∼ p′ {
(x,a, y) ∼ Dtrain ∶ α

(x,a, y) , x ∼ ̂p (x|y,a) , (a, y) ∼ ̂p(a,y) ∶ (1 − α)
(2)

So instead of minimizing equation (1), we minimized the following 
sum of expectations:

min
θ
α 𝔼𝔼
(x,a,y)∼Dtrain

(L ( fθ(x),a, y)) + (1 − α) 𝔼𝔼
(x,a,y)∼ ̂p

(L ( fθ(x),a, y)) (3)

The question is then how to choose α and ̂p(a, y). For all settings in 
the main article, we maintained the label distribution ̂p( y) = p( y) but 
sampled uniformly over the attribute α. We validated this choice on 
dermatology in the Supplementary Information. We treated α  as a 
hyperparameter in all settings.

Models
Upsampler preprocessing. Whenever we required an upsampler 
(that is, in radiology and dermatology), we trained it by preprocessing 
the original images using the following steps: (1) upsampled images 
from the 64 × 64 input resolution to the desired output resolution 
with bilinear interpolation and used an anti-alias with 0.5 probability; 
(2) added random Gaussian noise with 0.2 probability and σ = 4.0 (in 
the (0–255) range); (3) applied random Gaussian blurring with a 7 × 7 
kernel and σmean = 0, σs.d. = 0.2; (4) quantized the image to 256 bins; and 
(5) normalized the image to the (−1 to 1) range.

Dealing with missing labels. For both the generative model and the 
upsampler, we filled the conditioning vectors with zeros (indicat-
ing an invalid vector) for the unlabeled data. This allowed us to use 
classifier-free guidance20 to make images more ‘canonical’ with respect 
to a given label or property.

In this section, we describe the exact model architecture used 
for the trained diffusion models and classifiers, as well as the hyper-
parameters used for the presented results. Hyperparameters were 
selected based on the baseline model performance on the respective 
in-distribution validation sets and held constant for the remaining 
methods. This meant that we did not finetune hyperparameters for 
each method (other than the baseline) separately. We use the DDPM as 
presented by refs. 19,20,43 for the generation and the upsampler (only 
the radiology and dermatology datasets required higher-resolution 
images). The backbone model was always a UNet architecture. The 
hyperparameters used for the cascaded diffusion models were based 
on the standard values mentioned in the literature with minimal modi-
fications. We present all hyperparameters in Extended Data Table 2.

Standard augmentations. Histopathology. For this modality, aug-
mentations included brightness, contrast, saturation and hue jitter. 
Hue and saturation were sufficient to achieve the high-quality results 
described by Tellez et al.56.

Chest radiology. The heuristic augmentations considered for this 
modality included: random horizontal flipping; random cropping to 
202 × 202 resolution; resizing to 224 × 224 with bilinear interpolation 
and anti-alias; random rotation by 15 degrees, shifting luminance by 
a value sampled uniformly from the (−0.1 to 0.1) range; and shifting 
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contrast using a value uniformly sampled from the (0.8 to 1.2) range 
(that is, pixel values were multiplied by the shift value and clipped to 
remain within the (0 to 1) range).

Dermatology. For this modality, we used the following heuristic aug-
mentations: random horizontal and vertical flipping; adjusting image 
brightness by a random factor (maximum δ = 0.1); adjusting image 
saturation by a random factor (within the (0.8 to 1.2) range); adjusting 
the hue by a random factor (maximum δ = 0.02); adjusting image 
contrast by a random factor (within the (0.8 to 1.2) range); random 
rotation within the (−150 to 150) range; and random Gaussian blurring 
with standard deviation uniformly sampled from the following values: 
{0.001, 0.01, 0.1, 1.0, 3.0, 5.0, 7.0}.

Baselines. In all contexts, we considered the strongest heuristic aug-
mentations as a baseline. These augmentations (heuristic or learned) 
can be combined with any alternative learning algorithm that aims to 
improve model generalization. For the sake of our experiments, we 
used empirical risk minimization57 because there is no single method 
that consistently outperforms it under distribution shifts55. Even 
though our experiments and analysis focus on DDPMs for generation, 
any conditional generative model that produces high-quality and 
diverse samples can be used. In general, the risk, that is, how well the 
algorithm will fit the data, cannot be computed on the true data distri-
bution P(x, y) because it is unknown to the learning algorithm. However, 
we could compute an approximation, called empirical risk, by averag-
ing the loss function on the training set samples.

Histopathology. For this modality, all models used the same ResNet-152 
backbone. We compared (1) a baseline using no augmentation (Base-
line) and (2) one using standard color augmentations (Color augm.) as 
applied in standard ImageNet training. This augmentation included 
brightness, contrast, saturation and hue jitter. Hue and saturation 
were sufficient augmentations to achieve the highest-quality results 
by Tellez et al.56; hence, we did not evaluate other heuristic augmenta-
tions. Our baseline did not use pretraining because it previously did 
not yield any benefits on this particular dataset as reported by Wiles 
et al.55. We also compared the models to those applying heuristic color 
augmentations on top of the synthetic data.

Chest radiology. All models used the same BiT-ResNet-152 backbone58. 
We considered baselines that use (1) different pretraining, (2) differ-
ent heuristic augmentations and combinations thereof, and (3) focal 
loss. We investigated using JFT59 and ImageNet-21K60 for pretraining 
to explore how much different pretraining datasets impacted the final 
results. We investigated using RandAugment61, ImageNet Augmenta-
tions as described above, and RandAugment + ImageNet Augmenta-
tions to determine how much performance we could gain by using 
heuristic augmentations. Finally, we considered using focal loss62, 
which was developed to improve performance on imbalanced datasets.

Dermatology. All models used the same BiT-ResNet backbone58. We 
considered baselines that (1) used different pretraining, (2) used differ-
ent heuristic augmentations, (3) resampled the dataset and (4) used the 
focal loss. We investigated using JFT59 and ImageNet-21K60 for pretrain-
ing. We investigated using RandAugment61, ImageNet Augmentations 
and RandAugment + ImageNet Augmentations. We then resampled the 
dataset so that the distribution over attributes was even (we upsampled 
samples from low-data regions so that they occurred more frequently 
in the dataset). Finally, we considered using focal loss62, which was 
developed to improve performance on imbalanced datasets.

Evaluation details
Experimental setup. To account for potential variations with respect 
to model initialization, we evaluated all versions of our model and 

baselines with five different initialization seeds and report the aver-
age and standard deviation across those runs for all metrics. We ran 
all experiments on tensor processing units.

Fairness metrics. Different definitions of fairness have been pro-
posed in the literature, which are often at odds with each other63. In 
this section we discuss our choice of fairness metrics for each modal-
ity. In histopathology, we used the gap between the best and worst 
performance among the in-distribution hospitals. For radiology, we 
considered AUC parity, namely the parity of the area under the ROC 
for different demographic subgroups identified by the sensitive 
attribute A, which can be seen as the analog of equality of accuracy64. 
Therefore, for this modality, we report the AUC gap between males 
and females in Fig. 3a. We considered this most relevant given that 
the positive and negative ratio of samples across all conditions was 
very imbalanced.

In dermatology, we report the gap between the best and worst 
subgroup performance, where subgroups are defined based on the 
sensitive attribute axis under consideration in Fig. 4. We also report the 
central best estimate for the a posteriori estimate of performance (that 
is, top-3) difference between a group and its outgroup. The steps to 
obtain the values plotted in Supplementary Fig. 7 are the following: (1) 
we defined a group (and its matching outgroup) as the set of instances 
characterized with a particular value of a sensitive attribute A = α, that 
is, group = {(xi,ci)|ai = α} and group = {(xi,ci)|ai ≠ α}. Here A ⊆ {sex, skin 
type, age}; (2) we assumed a uniform Beta distribution Beta(1,1) as a 
prior for the performance difference between top3

group and top3
outgroup 

and fitted this to the observed data; (3) we sampled n = 100,000 sam-
ples from the estimated posterior differences between tôp3

group and 
tôp3

outgroup and report the spread, that is, the standard deviation of 
the maximum a posteriori estimates, which can be interpreted as the 
central best estimate for fairness.

Setup for distribution shift estimation. We computed domain mis-
matches considering the space where decisions are performed, that 
is, the output of the penultimate layer of each model. Thus, we pro-
jected each data point from the input space of size ℜ64x64 to a represen-
tation of size ℜ6144 and then computed the maximum mean discrepancy 
(MMD) between two distributions (that is, datasets). Given two distri-
butions U  and Z , their respective samples ̂U = {u1,… ,uN}  and 
̂Z = {z1,… , zN}, and a kernel K , we considered the MMD empirical esti-

mate as defined below:

M̂MD
2
(u, 𝒵𝒵) = 1

N(N−1)

N
∑
i, j=1

K(ui,uj) +
1

N(N−1)

N
∑
i, j=1

K(zi, zj)

− 2
N2

N
∑
i, j=1

K(ui, zj)
(4)

We used a cubic polynomial kernel to minimize the number of 
hyperparameters to be selected and to capture mismatches between 
up to the third-order moments of each distribution. We computed 
S = 30 estimates of MMD between all pairs of domains using representa-
tions from the different models considering samples of size n = 300. 
A Mann–Whitney U-test under a significance level of 95% was then 
carried out to test for the hypothesis that, for a fixed pair of distribu-
tions, the data augmentation strategy had a significant effect on the 
estimated MMD values. Importantly, we highlight that models were 
trained under the same experimental conditions so that our analysis 
was capable of isolating the effect of the data augmentation protocol 
on the estimated pairwise distribution shifts.

In-depth analysis for dermatology
In this section, our analysis focuses on the modality of dermatology 
and puts forward several properties of our synthetic data that may be 
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important for our experimental results, which demonstrate the utility 
of synthetic data for improving performance.

Generated images are diverse. First, we show images generated at 
high resolution for this challenging natural setting and several der-
matological conditions in Fig. 5. Our conditional generative model 
captured the characteristics well for multiple, diverse conditions, 
even for cases that are more scarce in the dataset, such as seborrheic 
dermatitis, alopecia areata and hidradenitis.

Generated images are realistic. We further evaluated how realistic 
the generated images were as determined by expert dermatologists to 
validate that these images did contain properties of the disease used 
for conditioning. Synthetic images did not need to be perfect, as we 
were interested in the downstream diagnostic performance. However, 
being able to generate realistic images validates that the generative 
model captures the relevant features of the conditions. To evaluate 
this, we asked dermatologists to rate a total of 488 synthetic images 
each, evenly sampled from the four most common classes (eczema, 
psoriasis, acne, seborrheic keratosis/irritated seborrheic keratosis) 
and four high-risk classes (melanoma, basal cell carcinoma, urticaria, 
SCC/SCCIS). They were tasked to first determine if the image was of a 
sufficient quality to provide a diagnosis. They were then asked to pro-
vide up to three diagnoses from over 20,000 common conditions with 
an associated confidence score (out of 5, where 5 was most confident). 
These 20,000 conditions were mapped to the 27 classes we used in this 
paper (one class, Other, encompasses all conditions not represented in 
the other 26 classes). We report the mean and standard deviation for 
all metrics across the three raters; 50.0 ± 12.6% of those images were 
of a sufficient quality for diagnosis, while dermatologists had an aver-
age confidence of 4.13 ± 0.43 out of 5 for their top diagnosis. They had 
a top-1 accuracy of 56.0 ± 11.9% on the generated images and a top-3 
accuracy of 67.7 ± 12.5%.

We compared these numbers to a set of real images of the same 
eight conditions considered above (for the images considered, most 
raters considered the diagnosis of this disease as the most prevalent in 
the image). Among 101 board-certified dermatologists rating 789 real 
images in total, we found that their top-1 accuracy was 54.0 ± 21.1% and 
top-3 accuracy 67.1 ± 22.7%; a slightly higher performance in terms of 
top-1 (63%) and top-3 (75%) accuracy was shown by Liu et al.4 across a 
more diverse set of dermatological conditions. For this latter analysis, 
if an image was rated by n dermatologists, we considered a single rater’s 
accuracy with respect to the aggregated diagnosis of the remaining n − 1 
raters. This demonstrates that, when diagnosable as per the experts’ 
evaluation, synthetic images are indeed representative of the condition 
they are expected to capture and similarly so to the real images. Even 
though not all generated images were diagnosable, this can also be the 
case for real samples, given that the images used to train the genera-
tive model did not necessarily include the body part or view that best 
reflected the condition.

Generated images are canonical. We hypothesized that the reason 
why models are more robust to prevalence shifts is because of synthetic 
images being more canonical examples of the conditions. To under-
stand how canonical ground truth images for a particular condition 
were, we investigated cases with a high degree of concordance in  
raters’ assessments and compared those to synthetic images for the 
same condition. More specifically, we thresholded the aggregated 
ground truth values to filter the images within the training data that 
experts were most confident about presenting as a condition. The 
aggregation function operates as follows: assume we have a set of  
four conditions {A,B,C,D}; if rater R1 provides the following sequence 
of (condition, confidence)  diagnosis tuples {(A,4), (B, 3)}  and rater R2 
provides {(A, 3), (D,4)} , then we obtained the following soft labels 
{0.5,0.167,0,0.333} (after weighting each condition with the inverse of 

its rank for each labeler, summing across labelers and normalizing their 
scores to 1). If we looked for instances for which there is consensus 
among raters and high confidence that a condition is present, we could 
threshold the corresponding soft label for that condition with a strict 
threshold, for example, t = 0.9. In our example, this did not hold for 
any of the four conditions; however, if we lowered the threshold to 0.5, 
then it would hold for condition A. In Extended Data Fig. 5 we show an 
example for melanoma. For this particular diagnostic class, we gener-
ated multiple synthetic instances of the condition, while we recovered 
only five images (out of more than 15,000) that clinicians rated with 
high confidence, that is, tmelanoma = 0.9. The nearest neighbors from the 
training dataset identified based on an l2-norm are also shown in 
Extended Data Fig. 5.

Generated images are better at aligning feature distributions. 
Previous work on OOD generalization65–67 pointed out that several 
factors can affect the performance of a model on samples from 
domains beyond the training data. In this analysis, we investigated 
the models trained with our proposed learned augmentations in 
terms of changes in distribution alignment between all pairs of distri-
butions measured using MMD68. We computed domain mismatches 
considering the space where decisions are performed and projected 
each data point from the input space to a representation. We found 
that learned augmentations yielded on average 18.6% lower MMD 
compared to heuristic augmentations (for more details, refer to 
Methods, ‘Distribution shift estimation’) which leads to the follow-
ing conclusions: (1) data augmentation has a significant effect on 
distribution alignment. Improvement on OOD performance sug-
gests this is happening via learning better predictive features rather 
than capturing spurious correlations; (2) the generated data help 
the model to better match different domains by attenuating the 
overall discrepancy between domains; (3) given the minor decline 
in performance when adding generated data in the less skewed set-
ting, as shown in Fig. 4, these findings suggest that learning such 
features might conflict with learning spurious correlations that were 
helpful for in-distribution performance. In other words, introduc-
ing synthetic data allowed the diagnostic model to allocate more 
capacity for disease-specific features rather than domain-specific 
(for example, hospital) features.

Synthetic images reduce spurious correlations. To further com-
pare the effect of different augmentation schemes on the features 
learned by the diagnostic model, we investigated the representa-
tion space occupied by all considered datasets, including samples 
obtained from the generative model. In practice, we projected n 
randomly sampled instances from each dataset to the feature space 
learned by each model and applied the principal component analysis 
algorithm69 to identify the most significant modes of variation. We 
then extracted the number of principal components required to 
represent different fractions of the variance across all instances. We 
observed that for a fixed dataset, features from models trained with 
synthetic data require 5.4% fewer principal components to retain 90% 
of the variance in the latent feature space (results for different frac-
tions are provided in Supplementary Fig. 3). This indicates that using 
synthetic data induces more compressed representations compared 
to augmenting the training data in a heuristic manner. Considering 
this finding in the context of the results in Extended Data Table 3, we 
posit that the observed effect is due to domain-specific information 
being attenuated in the feature space learned by models trained 
with synthetic data. This suggests that our proposed approach is 
capable of reducing the model’s reliance on correlations between 
inputs and labels that do not generalize OOD. For example, if most 
images of melanoma in the training set correspond to individuals 
with light skin tones, the model could learn to predict skin tone 
instead of the condition.
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Additional results
Histopathology. Generated samples. Extended Data Fig. 2 presents 
some examples of generated images by the class-conditioned diffusion 
models for healthy and abnormal whole-slide images of histological 
lymph node sections.

Label efficiency. The histopathology dataset was balanced, so it did 
not demonstrate whether synthetic data were useful in the presence 
of data imbalance. To understand the impact of the number of labeled 
examples on both in-distribution and OOD generalization, we cre-
ated different variants of the labeled training set, where we varied the 
number n of samples from two of the training hospitals. The number of 
labeled examples from one hospital was constant. For each value of n, 
we trained a diffusion model using the labeled and unlabeled dataset. 
We considered two settings when conditioning the diffusion model: 
(1) we used only the diagnostic label when available; and (2) we used 
the diagnostic label together with the hospital ID.

We subsequently sampled synthetic samples from the diffusion 
model and trained a downstream classifier that we evaluated on the 
held-out in-distribution and OOD datasets.

We trained the downstream classifier with five seeds and plotted 
the mean and standard deviation in Extended Data Fig. 1a. We found that 
using synthetic data outperformed both baselines consistently over 
varying n in-distribution. The same holds for the low-data regime in the 
OOD setting. Using our approach can achieve the performance that the 
baseline model achieves with 1,000 labeled samples in-distribution 
using only 1–10 samples (yielding 3× better label efficiency in terms of 
the low-data regions). We also performed color augmentation on top 
of the generated samples and found that this generalized best overall, 
leading to approximately 5% improvement OOD over the model trained 
with color augmentations in the high-data regime (1,000–10,000 
samples) and approximately 4.3% in the low-data regime (one labeled 
sample).

Chest radiology. Generated samples. Extended Data Fig. 2 presents 
examples of the images generated by the class-conditioned diffusion 
models for healthy chest X-rays and those with thoracic conditions. 
Higher-resolution images were generated for chest X-rays (224 × 224) 
compared to histopathology (96 × 96), which requires training a sepa-
rate upsampler diffusion model in the former case.

Results per condition. We show the model’s AUC values across method 
in-distribution and OOD in Extended Data Fig. 1b. Some conditions, 
that is, cardiomegaly, benefited significantly from synthetic data, 
while others, for example, effusion, benefited more from OOD than 
in-distribution. Finally, for atelectasis, synthetic images were only 
marginally beneficial to OOD.

Results for race. We use the primary race labels obtained from 
https://stanfordaimi.azurewebsites.net/datasets/192ada7c-4d43-
466e-b8bb-b81992bb80cf for the in-distribution CheXpert dataset. We 
plotted the difference between the best and worst performing group 
in terms of ROC-AUC against overall performance across conditions 
in Fig. 3b. The number of individuals associated with each racial label 
was as follows: white, 6,047; other, 1,623; white, non-Hispanic, 1,359; 
Asian, 1,254; unknown, 1,019; Black or African American, 557; race and 
ethnicity unknown, 513; other, Hispanic, 239; native Hawaiian or other 
Pacific Islander, 177; Asian, non-Hispanic, 166; Black, non-Hispanic, 
133; white, Hispanic, 63; other, non-Hispanic, 39; patient refused, 31; 
American Indian or Alaska native, 30.

Dermatology. Multiple metrics across datasets. For each sensitive 
attribute and distribution shift, we ran all baselines with five random 
seeds. We then trained a diffusion model at 64 × 64 (for faster itera-
tion) using the labeled and unlabeled data for that specific shift and 

combined synthetic and real data. We considered conditioning either 
only on the label or on the label and sensitive attribute. We plot the 
top-3 accuracy, balanced accuracy, fairness metric and high-risk sen-
sitivity on the in-distribution and OOD datasets in Supplementary 
Figs. 5–8. For both accuracy and fairness, we plotted the normalized 
metric. (We plotted the improvement over the baseline, where we use 
Pretrained on JFT as the baseline.)

First, we discuss the results on the accuracy metrics. Across all dis-
tribution shifts and all datasets, using generated data either improved 
or maintained the accuracy metrics on dermatology. In particular, 
generated data seemed to help most on the OOD, which had a stronger 
prevalence shift with respect to the training set and on the balanced 
accuracy metric.

Using heuristic augmentation helped, in particular RandAugment, 
which consistently improved over the baseline. The other methods 
(oversampling and focal loss) gave minimal improvements.

Next, we investigated results on the fairness metrics in Supple-
mentary Fig. 7. Using heuristic augmentation led to no consistent 
improvement over the baseline. However, for sex, skin tone and age, 
our approach of using generated data consistently improved on or 
maintained the performance of the baseline model. This was true 
even on the OOD datasets, but more so for those characterized by 
stronger shifts in comparison to the in-distribution dataset (that is, 
OOD 2 was much more similar to the in-distribution dataset compared 
to OOD 1, where we observed the strongest improvements). This is 
impressive as Schrouff et al.18 demonstrated that improving fairness 
on in-distribution datasets does not guarantee performance improve-
ments on OOD datasets. (Note that there were no skin tone labels for 
the OOD datasets, so for skin tone we only report the results on the 
in-distribution dataset.)

Finally, we investigated how using synthetic data impacts 
high-risk sensitivity in Supplementary Fig. 8. In the diagnostics, it 
is imperative not to miss someone with a high-risk condition. Thus, 
we investigated whether using synthetic data negatively or posi-
tively impacted the model’s ability to correctly identify the images 
of a high-risk condition. Of the 27 classes, three were identified as 
high-risk conditions: basal cell carcinoma, melanoma and SCC/SCCIS. 
By adding additional data, we wanted to improve (or at least not harm) 
high-risk sensitivity. We investigated high-risk sensitivity on both the 
training dataset (held out part of it) and the two OOD datasets. We 
found that across distribution shifts and datasets, using the additional 
synthetic data either maintained or improved high-risk sensitivity, 
most notably on the most OOD dataset. Moreover, synthetic data 
were consistently similar or better than heuristic augmentation on 
this metric.

We found that in dermatology, using synthetic data had a host of 
benefits. While it can to some extent improve balanced accuracy while 
maintaining overall accuracy, additional synthetic data can improve 
fairness metrics both in-distribution and OOD and high-risk sensitiv-
ity for both in-distribution and OOD datasets. This demonstrates that 
using synthetic data as an augmentation tool has promise for improving 
fairness and the diagnosis of high-risk conditions.

Distribution shift estimation. We computed domain mismatches con-
sidering the space where decisions are performed, that is, the output 
of the penultimate layer of each model. Thus, we projected each data 
point from the input space to a representation. We computed multiple 
estimates (S) of MMD between all pairs of domains using representa-
tions from the different models considering samples of size n. Models 
were trained under the same experimental conditions so that our 
analysis was capable of isolating the effect of data augmentation on 
the estimated pairwise distribution shifts. In addition to the heuristic 
augmentation discussed in the main text, we further included models 
trained with RandAugment in this analysis. All findings are summarized 
in Extended Data Table 3.
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From the three considered augmentation schemata, RandAug-
ment yielded representations that were more aligned in comparison 
to the learned and heuristic augmentations for all pairs of domains. 
We hypothesized this augmentation strategy would promote bet-
ter in-distribution generalization by allowing domain-specific cues 
to be removed at the expense of learning spurious correlations. 
Evidence to support this hypothesis can be found in Supplemen-
tary Fig. 7, which shows that models trained with RandAugment 
yielded improved performance in-distribution and in the OOD 2 
domain, which is more similar to the training distribution than OOD 1  
(Extended Data Fig. 4).

Individuals underserved by models. Inspired by a recent study by 
Bommasani et al.70 that looked at how often the same individuals 
are underserved by ML models that have been trained on the same 
data, we investigated whether the same individuals with high-risk 
conditions were consistently misclassified. In Extended Data Fig. 6, 
we illustrate for all sample IDs across the in-distribution and OOD 
evaluation datasets whether there were particular individuals within 
each demographic subgroup (male or female) who benefited more 
from the generated data than from other augmentation techniques. 
For each of the three setups, that is, (1) standard ImageNet augmenta-
tions, (2) RandAugment and (3) generated data, we performed five 
training runs and considered a test sample as incorrectly classified 
for a setup if it had been consistently misclassified by its five trained 
models. For better comparison, we reordered the sample indices such 
as to form contiguous blocks of correctly and incorrectly classified 
samples. While most of the individual predictions were the same 
between setups, each setup enabled some samples to be correctly 
classified, which the other setups could not. Particularly, in Extended 
Data Fig. 6a, d, training with generated data significantly reduced the 
number of consistently misclassified samples compared to standard 
ImageNet augmentations or RandAugment. Even though the training 
dataset was more skewed toward females, OOD males with high-risk 
conditions in panel d were more often correctly classified for a model 
trained with the generated data. Hence, using generated data reduced 
the number of underserved individuals compared to standard aug-
mentation techniques, which only applied basic transforms to the 
original data. Finally, we observed that these training setups were 
complementary as each of them had its own set of well-classified 
samples. This could open new research directions for model ensem-
bling to create new models that would benefit from this diversity in 
individual predictions.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The de-identified teledermatology data used in this study are not 
publicly available due to restrictions in the data sharing agreement. 
The data are available for noncommercial purposes for an admin-
istrative fee, provided that the requesting entity can comply with 
applicable laws and the privacy policy of the data provider. Contact 
dermatology-research@google.com, who can help forward any 
requests to the source, with a maximum response time frame of 2 
weeks. Data used in the training and evaluation of chest radiology clas-
sification, including CheXpert and ChestX-ray14, are publicly available. 
Data used for in-distribution fine-tuning and evaluation of pathology 
metastasis detection are publicly available on the CAMELYON challenge 
website. Moreover, ImageNet-21K71 and JFT-300M59 have been used 
to pretrain the baseline supervised models. ImageNet-21K is publicly 
available at the ImageNet website (https://www.image-net.org/), but 
the JFT-300M dataset is not publicly available due to restrictions in the 
data sharing agreement.

Code availability
Several major components of our work are available in open source 
repositories, such as the Haiku library. The codebase and pretrained 
weights for the BiT models are available at the Big Transfer GitHub 
(https://github.com/google-research/big_transfer)72. The guided 
diffusion implementation is based on the Diffusion Github reposi-
tory (https://github.com/hojonathanho/diffusion/blob/1e0dceb3b
3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.
py)73. All experiments and implementation details are described in 
sufficient detail in the Methods to support replication with nonpro-
prietary libraries. We have provided model weights for generative 
models trained on the public CAMELYON dataset at https://github.com/
google-deepmind/augmentations_medical_images (ref. 74), along with 
an inference code to reproduce the final results using these models. 
Other components used and developed for this study cannot be shared 
publicly because of their proprietary nature.
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Extended Data Fig. 1 | Additional results for histopathology and radiology. 
(a) Prediction accuracy for the presence of breast cancer metastases in whole-
slide images of histological lymph node sections. In these experiments we 
vary the number of labeled samples N used to train the diffusion model from 
in-distribution datasets on in-distribution and out-of-distribution hospitals. 

Performance improvements are particularly striking in the low data regime 
(that is, small values of N). Combining color augmentation with synthetic data 
performs best across all settings (in and out-of-distribution). (b) Additional 
results for chest radiology. Data are presented as mean values ± SD across 5 
technical replicates.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Generated images in simple settings. (a) Synthetic 
images for healthy cells in histopathology. (b) Synthetic images for cancerous 
cells in histopathology. (c) Synthetic images of chest X-rays for healthy 

individuals. (d) Synthetic images of chest X-rays with the following conditions: 
atelectasis, cardiomegaly, consolidation, pleural effusion, pulmonary edema 
(one condition per row).

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-02838-6

Extended Data Fig. 3 | Chest radiology data statistics. Age histogram (a) 
and normalized label distributions (b) for the five conditions we consider in 
the CheXpert training dataset. Normalized co-occurrence of conditions in the 
CheXpert training (c) and the ChestX-ray14 evaluation (d) datasets. For each 

condition on the row r of each plot, the corresponding column c indicates the 
ratio of all samples with condition r that also have condition c. Note that more 
than two conditions can be present at once. We observe that in the training set it 
is much more common that more than one condition is present simultaneously.
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Extended Data Fig. 4 | Dermatology data statistics. Condition distributions 
for in-distribution and out-of-distribution dermatology datasets. In-domain and 
OOD 2 distributions are much more similar in comparison to OOD 1. In particular, 
3 out of 4 of the most prevalent conditions (that is acne, eczema and other) in 
the in-distribution dataset are also the most prevalent in OOD 2. However, there 

are only few examples of high-risk conditions like basal cell carcinoma and SCC/
SCCIS, which are the two most prevalent conditions in OOD 1. We can see that 
overall the right-most dataset has a similar label distribution to the training 
dataset and, hence, is ‘less’ out-of-distribution than the other one.
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Extended Data Fig. 5 | Generated images in dermatology are canonical 
examples of the condition. (Left) The diffusion model can produce an infinite 
amount of synthetic images for a particular condition that is inherently more 
scarce (we have fewer than 50 samples of melanoma in our training dataset). 

(Middle) The images that experts have identified with melanoma with high 
confidence (a combination of individual’s confidence in diagnosis and expert 
consensus). (Right) The nearest neighbours from the training samples identified 
for each of the synthetic images based on l-norm in pixel space.
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Extended Data Fig. 6 | Misclassification rates for different subgroups.  
Mis-classification analysis on individuals with high-risk conditions depending on 
their sex attribute. We investigate the impact of a skewed training dataset with 
respect to the underrepresented sex on correctly detecting high-risk conditions 
for that subgroup in- and out-of-distribution. In each plot, we show the test 

sample index on the x-axis to investigate which individuals are consistently 
misclassified by all approaches. Sample indices are re-ordered such as to form 
contiguous blocks of correctly and incorrectly classified samples. It is worth 
noting that the source domain is more skewed towards females (see Table A1  
for details).
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Extended Data Table 1 | Dataset statistics for histopathology and dermatology

a, CAMELYON17 dataset statistics. For all hospitals, the labeled data are approximately evenly split between tumorous and nontumorous images. b–g, Number of training (b–d) and evaluation 
(e–g) samples annotated with the corresponding sensitive attribute label across the different splits.
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Extended Data Table 2 | Model hyperparameters

Model hyperparameters for classifier and generative (low-resolution and upsampler) models.
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Extended Data Table 3 | Distribution shift estimation

Maximum mean discrepancy values between pairs of domain distributions with learned and heuristic augmentations. ID, in-distribution; OOD, out of distribution. Differences for all 
comparisons are statistically significant based on a Mann–Whitney U-test with a significance level of 95%.
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