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A gut microbial signature for combination 
immune checkpoint blockade across  
cancer types
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Andreas Behren    3, David J. Adams    2,18 & Trevor D. Lawley    1,18 

Immune checkpoint blockade (ICB) targeting programmed cell death 
protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce 
remarkable, yet unpredictable, responses across a variety of cancers. 
Studies suggest that there is a relationship between a cancer patient’s gut 
microbiota composition and clinical response to ICB; however, defining 
microbiome-based biomarkers that generalize across cohorts has been 
challenging. This may relate to previous efforts quantifying microbiota 
to species (or higher taxonomic rank) abundances, whereas microbial 
functions are often strain specific. Here, we performed deep shotgun 
metagenomic sequencing of baseline fecal samples from a unique, richly 
annotated phase 2 trial cohort of patients with diverse rare cancers 
treated with combination ICB (n = 106 discovery cohort). We demonstrate 
that strain-resolved microbial abundances improve machine learning 
predictions of ICB response and 12-month progression-free survival relative 
to models built using species-rank quantifications or comprehensive 
pretreatment clinical factors. Through a meta-analysis of gut metagenomes 
from a further six comparable studies (n = 364 validation cohort), we found 
cross-cancer (and cross-country) validity of strain–response signatures, 
but only when the training and test cohorts used concordant ICB regimens 
(anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). 
This suggests that future development of gut microbiome diagnostics or 
therapeutics should be tailored according to ICB treatment regimen rather 
than according to cancer type.

The past decade has seen an ‘immuno-oncology revolution’ largely 
driven by the rapid uptake of immune checkpoint blockade (ICB) agents 
targeting cytotoxic T lymphocyte protein 4 (CTLA-4), programmed cell 
death protein 1 (PD-1) or programmed death ligand 1 (PD-L1, the ligand 

of PD-1). Combination ICB (CICB) targeting both PD-1 and CTLA-4 has 
demonstrated synergistic antitumor activity preclinically1 and is now an 
approved standard of care for patients with diverse cancers, including 
melanoma2, clear-cell renal cell carcinoma3, non-small cell lung cancer 
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participants (Table 1). No major clinical differences were observed 
between microbiome-evaluable patients and those who were not sam-
pled (Supplementary Table 1).

The clinical efficacy and safety outcomes for subgroups from 
CA209-538 have been published previously23–26. As expected, overall 
survival (OS) significantly differed by histology (Extended Data Fig. 1a);  
however, progression-free survival (PFS) was more consistent 
(Extended Data Fig. 1b). Notably, the percentage of patients with an 
objective response (complete response (CR) or partial response (PR)) 
was remarkably stable across histological cohorts (24–25%) (Fig. 1b),  
with the Response Evaluation Criteria in Solid Tumors (RECIST) 
1.1 best overall response (BOR) being strongly associated with PFS 
and OS (Fig. 1c,d). Using univariable statistical testing, we found a 
strong positive monotonic association between albumin and BOR 
(Kendall P = 0.0056) and a negative monotonic association between 
neutrophil-to-lymphocyte ratio (NLR) and BOR (Kendall P = 0.0033) 
(Extended Data Fig. 1c). This was particularly driven by patients with 
rapid clinical progression (clinical PD (cPD)) having significantly lower 
albumin and higher NLR, both responses to inflammation shown to be 
strongly prognostic across cancer types and treatment settings27,28.

Microbiome profiling of baseline fecal samples
To understand the composition of patient gut microbiomes, we per-
formed deep shotgun metagenomic sequencing of the 106 available 
baseline fecal samples (median 20.4 million paired-end reads per sam-
ple). For precise taxonomic quantification, we used a genome-resolved 
approach of first assembling a study-specific strain reference data-
base using metagenome-assembled genomes (MAGs), supplemented 
with relevant Genome Taxonomy Database (GTDB) species reference 
genomes (SRGs) (Methods). Ultimately, this database included 1,397 
strain genomes covering 904 known species and additionally included 
34 ‘new’ strains that could be taxonomically classified only to the genus 
level. The Bowtie 2 alignment rates to our tailored strain reference 
library were high (median 88.4%), with a median of 10.2 million mapped 
paired-end reads (50%) passing stringent quality control and used for 
precise strain quantification (Supplementary Fig. 1 and Methods).

We first evaluated whether there were gross compositional dif-
ferences based on the patients’ BOR. Notably, we found a positive 
monotonic association between BOR and the fecal Shannon diversity 
index, a common alpha diversity metric (Fig. 1e). Associations between 
alpha diversity and cancer patient outcomes have been found in the 
setting of patients receiving hematopoietic cell transplant29 or cer-
vical cancer chemoradiation30 but not in anti-PD-1 recipients with 
metastatic melanoma16,18; thus, such associations may be treatment 
regimen specific. We then assessed intersample beta diversity using 
the Aitchison distance and also found gross microbial compositional 
differences by BOR group (permutational multivariate analysis of 
variance (PERMANOVA) P = 0.0319) (Fig. 1f). Indeed, among the 23 pre-
treatment clinical and technical metadata tested, BOR group was the 
metadata variable explaining the most microbial variance (Extended 
Data Fig. 1d). By contrast, patient PFS at 12 months (PFS12) or OS at 12 
months was associated with little microbial variance. A PERMANOVA of 
baseline microbial variance versus a moving PFS threshold revealed a 
peak association at <4 months (Extended Data Fig. 1e), indicating that, 
in our cohort, patients with rapid progression had the most distinct 
gross baseline microbial compositions.

Strain–response signatures are valid across cancer types
Given the gross compositional differences, we hypothesized that spe-
cific strains may allow for prediction of CICB efficacy in our cohort. We 
assessed objective response versus progression (RvsP), defined as a 
RECIST BOR of CR or PR versus PD or cPD, as our primary endpoint. 
In doing so, we excluded patients with a BOR of stable disease (SD) 
(n = 29), given its ambiguity in a pan-cancer cohort, in which it may 
represent disease control or simply indolent cancer behavior. As a 

(NSCLC)4, mesothelioma5 and hepatocellular carcinoma6. However, this 
success is tempered by the unpredictable nature of responses (seen 
in only 20–60% of patients across these cancer indications7) and the 
more frequent severe immune-related adverse effects experienced with 
CICB when compared to anti-PD-1 or anti-PD-L1 monotherapy8. Thus, 
despite the promise it offers, the judicious use of CICB is paramount. 
Additionally, predictive biomarkers for tumor response and/or toxicity 
would be highly valuable to guide patient management.

Currently approved tumor-agnostic biomarkers for PD-1 blockade 
include tumor mutational burden and mismatch repair deficiency9; 
however, both have limitations and rely on available, contemporaneous 
tumor tissue. A promising ‘tumor-extrinsic’ avenue for predicting ICB 
response and/or toxicity a priori is assessing a patient’s baseline gut 
microbiome composition, referring to the community of microbiota 
(predominantly bacteria) resident within the gastrointestinal tract. 
Culture-free methods to taxonomically profile fecal microbiomes 
have progressed from low-resolution 16S rRNA gene sequencing to 
high-resolution shotgun metagenomics, with studies of clinical cohorts 
finding associations between baseline Akkermansia muciniphila (lung 
cancer)10–13 and Faecalibacterium prausnitzii (melanoma)14–16 fecal 
abundances and tumor responses among anti-PD-1 recipients. Unfor-
tunately, previous meta-analyses across metagenomic studies have 
found limited reproducibility of these candidate microbial biomarkers 
for ICB response17–20. Although this poor reproducibility may be partly 
attributable to methodological or geographic differences between 
studies, we hypothesize that species-level taxonomic biomarkers may 
lack the precision necessary to capture the specific microbial traits 
associated with ICB response or nonresponse. For example, there is 
growing awareness of the diversity of intraspecies (strain) variation 
among commensal bacteria (such as A. muciniphila and F. prausnitzii), 
with diverging functional potentials and differing associations with 
host phenotypes21,22.

Here, we performed deep shotgun metagenomic sequencing 
of baseline fecal samples from patients on the CA209-538 clinical 
trial of ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) for 106 
patients with diverse rare cancers (our discovery cohort). Using a 
bespoke, genome-resolved metagenomics approach, we discovered 
baseline subspecies (strain-level) gut microbial abundance signatures 
of response that reproduce between cancer subtypes and externally to 
published CICB cohorts despite marked cohort heterogeneity. Notably, 
we found that the predictiveness of signatures trained on CICB cohorts 
does not extend to anti-PD-1 monotherapy cohorts. This suggests that, 
although tumor agnostic, different microbiota–host relationships are 
relevant to distinct ICB regimens.

Results
Clinical characteristics of the CA209-538 cohort
The CA209-538 clinical trial, titled ‘A phase 2 trial of ipilimumab and 
nivolumab for the treatment of rare cancers’, is a prospective, multi-
center clinical trial (NCT02923934) that enrolled 120 patients with 
histologically confirmed advanced rare solid-organ cancers across 
five Australian hospital networks (Methods). Notably, patients had 
diverse tumor histologies grouped into three prespecified cohorts: 
upper gastrointestinal and biliary cancers (UGB), neuroendocrine 
neoplasms (NEN) and rare gynecological tumors (GYN). Most patients 
(n = 108) had received prior systemic anticancer therapies (median of 
one line (range 0–6 lines)). All participants were treated on trial with 
combination nivolumab and ipilimumab for up to four doses (induc-
tion), followed by nivolumab maintenance for up to 2 years or until 
progressive disease (PD) or unacceptable toxicity (Fig. 1a). The prespec-
ified secondary endpoint of the trial was to develop ‘tumor-agnostic’ 
biomarkers for CICB response by leveraging the unique clinical trial 
design of CA209-538, which included patients with diverse cancers, but 
with highly standardized clinical and experimental procedures. There-
fore, a pretreatment fecal sample was collected from most (n = 106) 
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Fig. 1 | Clinical and gut microbiome compositional differences between 
responders and nonresponders. a, CA209-538 study and microbiome analysis 
schema (created using BioRender.com). Pretreatment fecal samples were 
collected from n = 106 trial participants and subjected to DNA extraction, 
shotgun metagenomic sequencing, and analysis using a genome-resolved 
metagenomics pipeline, involving quality control (QC), de novo assembly 
of near-complete MAGs (nc-MAGs) and precise read mapping. Further to 
the standard filters, reads mapping to genomes with <50% coverage breadth 
were removed. b, Bar plot of patient RECIST 1.1 BOR by histology cohort for 
microbiome-evaluable patients. The percentages of patients with an objective 
response (PR or CR) are indicated. c, Kaplan–Meier curve of PFS stratified by 
BOR category (cPD n = 21, PD n = 30, SD n = 29, PR n = 22, CR n = 4). Log-rank test 
P = 2.1 × 10−42. d, Kaplan–Meier curve of OS stratified by BOR category (cPD n = 21, 

PD n = 30, SD n = 29, PR n = 22, CR n = 4). Log-rank test P = 1.2 × 10−34.  
e, Boxplots of microbiome alpha diversity, as measured by the Shannon diversity 
index, across BOR categories (cPD n = 21, PD n = 30, SD n = 29, PR n = 22, CR n = 4). 
Boxplot center line indicates the median; box limits indicate the upper and 
lower quartiles; and whiskers indicate 1.5× the interquartile range. The linear 
model (line of best fit) for the Shannon diversity index and BOR (with shaded 
95% confidence interval) is superimposed (in gray). Kendall τ and P values for 
the association between the Shannon diversity index and BOR are indicated. 
f, Principal coordinate 1 (PCo1) versus 2 (PCo2) using the Aitchison distance of 
strain abundances, colored by patient BOR category. Ellipses depict 0.8 of each 
group’s multivariate t distribution. PERMANOVA P value and R2 using 9,999 
permutations are indicated.
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Table 1 | Baseline clinical characteristics by patient BOR category

Characteristics Best response P

cPD (n = 21) PD (n = 30) SD (n = 29) PR (n = 22) CR (n = 4)

Histology cohort

 GYN 6 (28.6%) 12 (40.0%) 9 (31.0%) 7 (31.8%) 2 (50.0%) 0.18

 NEN 5 (23.8%) 5 (16.7%) 14 (48.3%) 6 (27.3%) 2 (50.0%)

 UGB 10 (47.6%) 13 (43.3%) 6 (20.7%) 9 (40.9%) 0 (0%)

No. of prior systemic therapies

 Mean (s.d.) 1.43 (0.811) 1.60 (1.22) 1.97 (1.61) 2.00 (1.23) 1.00 (0.82) 0.32

 Median (min, max) 1 (0, 3) 1 (0, 5) 2 (0, 5) 2 (1, 5) 1 (0, 2)

Measurable tumor (mm)

 Mean (s.d.) 115 (82.3) 72.6 (48.4) 84.1 (53.8) 90.0 (78.2) 70.0 (19.1) 0.49

 Median (min, max) 108 (17.0, 344) 58.0 (24.0, 219) 77.0 (17.0, 220) 64.0 (11.0, 325) 77.5 (42.0, 83.0)

Age (years)

 Mean (s.d.) 59.1 (13.9) 56.5 (15.1) 59.9 (14.3) 56.3 (12.5) 65.3 (9.29) 0.85

 Median (min, max) 65.0 (20.0, 75.0) 62.5 (26.0, 75.0) 60.0 (22.0, 82.0) 53.5 (38.0, 74.0) 64.0 (57.0, 76.0)

Sex

 Female 9 (42.9%) 22 (73.3%) 17 (58.6%) 17 (77.3%) 4 (100%) 0.048

 Male 12 (57.1%) 8 (26.7%) 12 (41.4%) 5 (22.7%) 0 (0%)

Site

 AUS 2 (9.5%) 8 (26.7%) 5 (17.2%) 7 (31.8%) 0 (0%) 0.34

 BLA 2 (9.5%) 7 (23.3%) 4 (13.8%) 3 (13.6%) 0 (0%)

 BMO 4 (19.0%) 1 (3.3%) 3 (10.3%) 1 (4.5%) 0 (0%)

 MON 8 (38.1%) 6 (20.0%) 11 (37.9%) 3 (13.6%) 2 (50.0%)

 PMC 5 (23.8%) 8 (26.7%) 6 (20.7%) 8 (36.4%) 2 (50.0%)

Season

 Autumn 9 (42.9%) 13 (43.3%) 12 (41.4%) 11 (50.0%) 1 (25.0%) 0.8

 Spring 3 (14.3%) 2 (6.7%) 7 (24.1%) 2 (9.1%) 1 (25.0%)

 Summer 5 (23.8%) 10 (33.3%) 5 (17.2%) 5 (22.7%) 2 (50.0%)

 Winter 4 (19.0%) 5 (16.7%) 5 (17.2%) 4 (18.2%) 0 (0%)

BMI (kg m−2)

 Mean (s.d.) 26.1 (5.74) 27.2 (5.30) 28.6 (6.23) 25.7 (5.05) 25.6 (3.49) 0.97

 Median (min, max) 25.1 (19.1, 38.2) 28.2 (18.6, 37.0) 28.2 (18.9, 48.2) 25.0 (18.8, 35.3) 24.6 (22.8, 30.5)

PPIs (<8 weeks)

 Yes 14 (66.7%) 9 (30.0%) 8 (27.6%) 7 (31.8%) 3 (75.0%) 0.017

 No 7 (33.3%) 21 (70.0%) 21 (72.4%) 15 (68.2%) 1 (25.0%)

Antibiotics (<8 weeks)

 Yes 3 (14.3%) 1 (3.3%) 3 (10.3%) 2 (9.1%) 0 (0%) 0.65

 No 18 (85.7%) 29 (96.7%) 26 (89.7%) 20 (90.9%) 4 (100%)

Platelets (×109 l−1)

 Mean (s.d.) 297 (134) 279 (81.1) 224 (97.8) 287 (118) 283 (50.1) 0.32

 Median (min, max) 302 (87.0, 603) 273 (133, 575) 189 (62.0, 431) 276 (144, 559) 300 (211, 321)

Albumin (g l−1)

 Mean (s.d.) 30.9 (5.66) 35.0 (5.34) 36.2 (4.34) 35.7 (3.47) 37.0 (2.16) 0.0056

 Median (min, max) 32.0 (20.0, 38.0) 36.5 (20.0, 44.0) 37.0 (24.0, 44.0) 36.0 (29.0, 41.0) 36.5 (35.0, 40.0)

NLR

 Mean (s.d.) 10.7 (15.8) 3.33 (1.99) 3.24 (2.18) 3.66 (2.57) 2.74 (0.144) 0.0033

 Median (min, max) 5.27 (2.22, 66.0) 2.92 (0.970, 10.7) 2.72 (1.00, 10.0) 3.27 (0.960, 9.80) 2.70 (2.62, 2.95)

LDH (U l−1)

 Mean (s.d.) 380 (208) 277 (155) 264 (143) 480 (696) 283 (59.2) 0.89

 Median (min, max) 296 (149, 945) 215 (162, 898) 219 (128, 912) 302 (140, 3,440) 295 (202, 339)
Clinical characteristics (metadata) are reported stratified by BOR category for microbiome-evaluable participants (n = 106). Numerical metadata are summarized with both means and median 
values, and statistical associations with BOR (an ordinal variable increasing from cPD to CR) were computed using the Kendall τ test. Categorical metadata were analyzed using frequency 
tables, with statistical associations with BOR computed using the chi-squared test. AUS, Austin Hospital (Melbourne); BLA, Blacktown Hospital (Sydney); BMO, Border Medical Oncology 
(Albury); MON, Monash Hospital (Melbourne); PMC, Peter MacCallum Cancer Centre (Melbourne); BMI, body mass index; PPIs, proton-pump inhibitors; LDH, lactate dehydrogenase.
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sensitivity analysis, we also evaluated PFS12, with responders and those 
with PFS12 largely overlapping given the durability of CICB efficacy 
(Extended Data Fig. 2a).

We used a supervised machine learning (ML) workflow (Fig. 2a). 
As input features (predictors), we tested the 15 potentially relevant 
clinical factors (Methods) and the microbial factors (centered log 
ratio (CLR)-transformed strain abundances) separately and combined 
to assess their relative and synergistic performance, respectively. In 
addition to strain-level rank, we tested microbial abundances aggre-
gated to higher taxonomic ranks (species, genus and family levels) 
to determine the influence of taxonomic resolution on predictive 
performance. For each feature set, we performed a thorough random 
hyperparameter search across 1,000 iterations of a 20 times repeated 
fivefold cross-validation (Methods). For predictions, we used a random 
forest (RF) classifier, previously shown to generally outperform other 
classical ML algorithms for microbiome–host predictions31.

Interestingly, we found that clinical factors alone were poorly 
predictive of RvsP (mean receiver operating characteristic (ROC) area 
under the curve (AUC) = 0.56) (Fig. 2b). This was despite the previously 
observed relationship between low blood albumin, high NLR and cPD, 
suggesting that these factors are more useful for delineating patients 
with the worst prognosis rather than distinguishing responders and 
nonresponders. Furthermore, it affirms the current difficulty of pre-
dicting clinical activity using routinely available factors and emphasizes 
the need for further technical innovation. In contrast, clinical factors 
were more predictive of PFS12 (AUC = 0.65; Extended Data Fig. 2b),  
inferring that these are more prognostic markers than predictors of 
antitumor activity.

When microbiome features were used, there was a positive 
monotonic association between the mean AUC score and taxonomic 
resolution for both endpoints (increasing from family to strain level) 
(Kendall P = 1.1 × 10−11 for RvsP, P = 7.1 × 10−15 for PFS12). In particular, 
strain-resolved abundances provided the best predictive performance 
(AUC = 0.73 for RvsP, AUC = 0.70 for PFS12), significantly outperform-
ing the more common species-level abundances. Consistent with 
their poor standalone performance, clinical factors failed to augment 
microbiome predictors. Overall, these data suggest that microbial 
abundances, especially at strain-level resolution, are more valuable 
in predicting tumor response or landmark PFS than higher taxonomic 
aggregations or clinical features.

We subsequently focused on strain–RvsP classifiers, given their 
superior performance and larger incremental benefit over routine 
clinical factors. We were particularly interested in assessing the con-
cordance of strain–RvsP predictions from the entire cohort (n = 77 
evaluable) with actual patient BOR outcomes. Notably, despite being 
trained on binary RvsP, the predicted probabilities of patients were 
correctly ranked by their actual BOR category (Kendall P < 2.2 × 10−16), 
including (on average) central predictions for the SD group that 
were ‘unseen’ during model training (n = 29) (Extended Data Fig. 2c). 
Intrigued, we assessed whether RvsP predictions could distinguish a 
‘better’ or ‘worse’ SD group. Indeed, we found a nonsignificant improve-
ment in the OS of patients with SD with an above-median RvsP predic-
tion, although this analysis was likely underpowered (log-rank P = 0.17; 
Extended Data Fig. 2d).

Finally, a key priority was to identify whether microbial signatures 
are tumor agnostic; that is, whether they generalize from one distinct 
tumor type to another. As our study naturally has three distinct cancer 
cohorts (GYN, NEN and UGB), we performed a leave-one-group-out 
cross-validation (training strain–RvsP classifiers using two groups 
and then testing on the left-out group). Notably, the mean AUC of the 
left-out group was consistently superior to that of a random model 
(overall mean AUC = 0.75) (Fig. 2c). Although the small sample size 
limits its interpretability, the particularly good performance for the 
UGB and GYN groups may reflect the specific relevance of the gut 
microbiome in these cancers.

Our ML analysis of our discovery cohort demonstrates that 
strain-level gut microbial predictors of CICB response may be relatively 
robust across diverse cancer types and are superior to ML predictors 
built using routine clinically available data. Furthermore, predictions 
trained on binary RvsP appear to capture the RECIST BOR biologically 
and may have utility for predicting the durability of SD.

Faecalibacterium strains are positively implicated
We next sought to understand which features (strain abundances) 
were most important in driving the strain–RvsP model predictions. 
To do this, we used the SHapley Additive exPlanations (SHAP) ‘Tree-
Explainer’ algorithm32 (Methods). We first noted that, although most 
strains contributed little to predictions, a few were disproportionately 
important (Extended Data Fig. 3a). Twenty-two strains were within 
half as impactful as the most important strain (a strain of Faecalibac-
terium sp900539885, an uncultured species), which we opted to focus 
on subsequently. Interestingly, these strains were neither rare (<5% 
prevalent) nor core (>50% prevalent) taxa within our cohort (Extended 
Data Fig. 3b).

To visualize the phylogenetic relationships of these ‘top 22’ strains 
in the context of all study-specific bacterial strains, we constructed an 
approximately maximum-likelihood phylogenetic tree using the GTDB 
toolkit (GTDB-tk) (Methods and Fig. 3a). This demonstrated that 20 of 
the 22 strains were gram positives, with most (18 of 20) belonging to 
the Firmicutes (Bacillota) phylum. The most ‘beneficial’ strains (that 
is, higher strain abundances shifted predictions toward ‘response’) 
clustered in one clade of the Ruminococcaceae family, with four being 
strains within the Faecalibacterium genus. Until recently, the National 
Center for Biotechnology Information taxonomy database recognized 
only one species within the genus Faecalibacterium (F. prausnitzii)33, 
and its fecal abundance has been associated with good general health34 
and response to anti-PD-1 monotherapy in patients with melanoma16 or 
hepatobiliary cancers15. However, more recent analyses have revealed 
considerable phylogenetic and functional diversity within the F. praus-
nitzii species complex22. In keeping with this, at the 98% genomic iden-
tity threshold, our custom strain reference library included n = 35 
distinct Faecalibacterium strains (from n = 13 distinct species), with 
the most important (and prevalent) clustering near the F. prausnitzii 
D phylogenetic clade (Supplementary Fig. 2).

Conversely, 15 of the 22 strains appeared to have a negative asso-
ciation with response in our discovery cohort. As before, most were 
Firmicutes, with 6, 3 and 2 (of the 15) strains belonging to the Lachno-
spiraceae, Oscillospiraceae and Ruminococcaceae families, respec-
tively. Notably, eight of these strains belonged to thus far uncultivated 
(and thus unnamed) species. The remaining four ‘negative’ strains 
belonged to the species Bifidobacterium dentium, A. muciniphila B and 
Spyradocola merdavium. It should be noted that A. muciniphila B is a 
distinct species from A. muciniphila; although the latter was positively 
implicated in anti-PD-1 efficacy in NSCLC13 (also positive in our study 
but not within the top 22 strains), recent analyses have revealed that 
it is phylogenetically and phenotypically distinct from A. muciniphila 
B (known as Akkermansia SGB9228 by MetaPhlAn4 taxonomy)21. The 
juxtaposition of Bifidobacterium longum 1 and B. dentium 1 as positive 
and negative, respectively, also highlights how closely related taxa can 
have discordant relationships with host phenotypes. Indeed, while the 
species B. longum has been linked to positive health outcomes, such as 
protection from inflammatory bowel disease35, protection from child-
hood malnutrition36, and anti-PD-1 responses37, B. dentium is a known 
oral opportunistic pathogen linked to tooth decay38.

We next aimed to interrogate the genomes of the top 22 strains 
to understand functional potentials that may underpin their strong 
(positive and negative) response associations. We first evaluated them 
for virulence factors and found that they harbored none, suggesting 
that even the negative strains are not prototypical ‘pathogens’. To look 
more broadly at strain functional potential, we queried the presence 

http://www.nature.com/naturemedicine


802Nature Medicine | Volume 30 | March 2024 | 797–809

Article https://doi.org/10.1038/s41591-024-02823-z

20× repeated
fivefold CV

Feature sets

Family

Genus

Species

Strain

Clinical

Clinical + family

Clinical + genus

Clinical + species

Clinical + strain Standard
scaling

Random
oversampling

One-hot
encoding

Standard
scaling

One-hot
encoding

Preprocessing Model training

Model testing

Random
forest

ROC AUC

a

b

c

1 − specificity

RvsP

0.75

0.67 0.660.66

0.58 0.560.56

τ = 0.26, P = 1.1 × 10−11

0.4

1.0

0.8

0.6

Se
ns

iti
vi

ty

0.4

0.2

0

0 0.2 0.4 0.6 0.8

Left-out test group
GYN (n = 27, AUC = 0.81)

NEN (n = 18, AUC = 0.64)

UGB (n = 32, AUC = 0.81)

Mean ROC (AUC = 0.75)

Chance

1.0

0.5

0.6

0.7

0.8

0.9

1.0

Clinical Family Genus Species Strain

M
ea

n 
RO

C
 A

U
C

 (±
1 s

.d
.)

0.73

0.64

P = 0.5
P = 0.0004

Fig. 2 | Strain-resolution gut microbial signatures outperform clinical 
predictors and cross-validate across tumor histology types. a, Schematic of 
the supervised ML framework. Input features (clinical, microbiome or combined) 
and the target variables (RvsP or PFS12) were split into five folds (four training 
folds, one testing fold). The process was repeated 20 times per iteration, with the 
AUC score used to select the best hyperparameters. CV, cross-validation. b, AUC 
scores for the best iteration of RvsP classifiers for each feature set combination 
during 20 times repeated fivefold cross-validation (100 folds each): clinical 
(yellow), microbiome (blue) and combined (green), at different taxonomic 
resolutions. Data represent the mean (circle) and s.d. (error bars) over the 

100 folds. The linear model (line of best fit) for the AUC score and taxonomic 
rank of microbiome-only feature sets (with shaded 95% confidence interval) 
is superimposed. Kendall τ and P values for the association between the AUC 
score and taxonomic rank of microbiome-only feature sets are indicated. The 
Mann–Whitney U test P value for comparing the AUCs of specific pairwise feature 
sets (depicted by calipers) is also indicated. c, ROC curves for the strain–RvsP 
classifiers retrained using leave-one-histology-cohort-out cross-validation. 
Model training and testing were repeated 100 times, with predictions averaged to 
account for model stochasticity.
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or absence of metabolic pathways using the tool gapseq (Methods). As 
expected, we observed clustering of metabolic potential by phylogeny; 
however, the two negative Ruminococcaceae (strains of the Rutheni-
bacterium lactatiformans and Avimicrobium caecorum species) were 
quite distinct from the five ‘positive’ strains (Extended Data Fig. 3c).

We hypothesized that specific metabolic functions may distin-
guish these negative and positive Ruminococcaceae. One metabolite 
of particular interest was butyrate, given that it has been implicated 
in anticancer cytotoxic T cell activation preclinically39–41, and fecal 
butyrate has been positively associated with ICB efficacy in clinical 
cohorts42,43. Additionally, although butyrate-producing potential has 
previously been broadly ascribed to Ruminococacceae, more recent 
analyses have revealed marked strain-level variation within this fam-
ily44. Indeed, the acetyl-CoA butyrate pathway (which dominates among 
Firmicutes bacteria) was complete in all (five of five) positive but no 
negative (none of two) top 22 Ruminococacceae (Fig. 3b). In contrast, 
taking a ‘strain-agnostic’ approach of quantifying the abundance of 
the acetyl-CoA butyrate terminal enzymes (but + buk) in metagenomic 
samples did not reveal a significant enrichment in responders (Fig. 3c),  
highlighting the need for strain-aware approaches to develop 
context-specific functional hypotheses.

Microbial signatures may be ICB regimen specific
To evaluate the external generalizability of our strain–RvsP signature, 
we reanalyzed all comparable shotgun metagenomic cohorts (Meth-
ods and Supplementary Fig. 3). We included cohorts that analyzed 
baseline (±15 days of ICB commencement) fecal samples, performed 
Illumina paired-end shotgun metagenomic sequencing, and provided 
either RECIST BOR (five studies) or pathological response (one study) 
metadata. Including our discovery cohort (CA209-538 cohort), the 
seven studies recruited participants from 11 cities across five countries 
(United States, United Kingdom, Netherlands, Spain and Australia) 
(Fig. 4a) and represent n = 470 total patients (n = 383 after excluding 
patients with a BOR of SD). Quality-controlled reads were mapped to 
the same reference library to estimate abundances for the same 1,397 
strains. Although we were mindful that the reference library derived 
from the CA209-538 cohort might not represent all bacterial strains 
in external studies, we were reassured by both the high overall Bowtie 
2 alignment rates (median 79.2–87.6% across external studies) and 
the high proportion of quality-controlled reads used for abundance 
estimation after stringent filtering (median 50.7–62.1% across external 
studies) (Extended Data Fig. 4a).

A summary of the key characteristics of the included studies is 
provided in Table 2. Given that all external studies evaluated patients 
with melanoma, known to be particularly amenable to ICB, it is not 
surprising that their objective response rates trended higher than 
those in our study that evaluated patients with diverse rare cancer 
types (38–84% versus 25%; Fig. 4a). This highlights that tumor type is an 
important variable in determining ICB response but does not preclude 
the existence of universal gut microbiota that may enhance or detract 
from an individual’s likelihood of showing an antitumor ICB response.

A PERMANOVA of individual metadata variables revealed that the 
leading sources of microbial variance across the meta-cohort were 
study site (city) (9.3%) and DNA extraction kit (8.0%) (Extended Data 

Fig. 4b). However, these two factors were also strongly associated 
with one another (chi-squared test P < 2.2 × 10−16), with distinct stud-
ies recruiting participants from specific cities but also using distinct 
DNA extraction kits (Extended Data Fig. 4c,d). Although it would be 
desirable to ‘correct’ for DNA extraction kit (which has a well-described 
influence on downstream microbial quantifications45), this would likely 
also mitigate the true biological variance caused by patient geogra-
phy46 (which is important when evaluating the cross-country validity 
of a biomarker). Furthermore, a recent reanalysis of an intratumoral 
microbiome meta-analysis raised concerns that statistical batch cor-
rection may artificially inflate cross-cohort predictions due to data 
leakage47. Therefore, to evaluate the performance of our strain–RvsP 
classifier as robustly as possible, we opted not to adjust abundances 
beyond CLR transformation.

Given their distinct mechanisms of action, we were particularly 
interested in differentially evaluating performance on CICB and 
anti-PD-1 monotherapy cohorts. Of the six external studies, two com-
prised only anti-PD-1 recipients, two comprised only CICB recipients 
and two comprised both and were split based on regimen, creating 
eight external validation cohorts (four CICB, four anti-PD-1). Notably, 
there was a marked difference in the performance of the CA209-538 
strain–RvsP signature between these groups, with overall modest 
external generalizability to CICB cohorts (mean AUC = 0.65; Fig. 4b) 
but no generalizability to anti-PD-1 cohorts (mean AUC = 0.51; Fig. 4c).

Intrigued, we sought to use our meta-cohort to evaluate whether 
this difference could also be seen more generally. We thus trained 
and tested strain–RvsP RF classifiers using all strain abundances 
and every pairwise combination of cohorts (nine cohorts, keeping 
2017_Frankel and 2022_Lee split by ICB regimen) and evaluated AUCs. 
Consistent with our previous observation, we found that the predic-
tive performance was better when training and testing on ‘concordant’ 
cohorts—that is, when the training and test cohorts received the same 
ICB regimen—rather than ‘discordant’ cohorts (Fig. 4d). Importantly, 
this was also true for strain–RvsP signatures trained on anti-PD-1 mon-
otherapy cohorts. Taken together, the results showed a significant 
improvement in the cross-study strain–RvsP predictive performance 
in concordant rather than discordant regimen cohorts (Mann–Whitney 
U test P = 2.8 × 10−7).

Discussion
In this study, we used strain-resolved metagenomic classification to 
discover a signature of 22 gut microbial strains associated with response 
to combination ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) 
in a phase 2 trial cohort of Australian patients with diverse rare cancers 
(n = 106). To our knowledge, this represents the largest gut microbiome 
study of patients treated with CICB published to date. Using supervised 
ML, we demonstrate the value that precise, strain-level gut microbial 
quantifications provide in predicting clinical response or PFS12, exceed-
ing the value of routinely available clinical information or that of higher 
taxonomic rank abundances. Furthermore, we show the external gen-
eralizability of strain-level response signatures across cancer histol-
ogy types and countries, both within the trial (comparing across the 
predetermined histology cohorts) and externally (to metastatic mela-
noma cohorts from other industrialized countries). This was despite a 

Fig. 3 | Firmicutes bacteria dominate the gut microbiome strain–response 
signature. a, Phylogenetic tree of bacterial strains in our custom reference 
library (n = 1,391 strains, excluding n = 6 archaea), highlighting the top 22 strains 
(labels are colored by impact (that is, feature importance) on RvsP predictions). 
Four main phyla are shown by the colored ring, with the Ruminococcaceae, 
Oscillospiraceae and Lachnospiraceae families highlighted. The scale for 
phylogenetic distance is shown in the center of the tree. b, Phylogenetic tree 
of the top 22 strains, with the tips colored by strain impact and sized by strain 
prevalence. The adjacent heat map depicts the presence or absence of genes 
within the primary butyrate-producing (acetyl-CoA) pathway. Full enzyme 

(encoding gene) names: acetyl-CoA acetyltransferase (thl), β-hydroxybutyryl-
CoA dehydrogenase (bhbd), crotonase (cro), butyryl-CoA dehydrogenase (bcd), 
and the alternative terminal enzymes butyryl-CoA:acetate CoA transferase (but) 
and butyrate kinase (buk). c, Boxplots of the sample-wise abundance of butyrate 
acetyl-CoA terminal enzymes (but + buk), split by patient response (progression 
(P) n = 51, response (R) n = 26). Boxplot center line indicates the median; box 
limits indicate the upper and lower quartiles; and whiskers indicate 1.5× the 
interquartile range. Abundance is normalized as reads per million (RPM). P value 
by the Mann–Whitney U test is indicated.
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strong heterogeneity in microbiome composition across cohorts, likely 
influenced by divergent fecal collection and DNA extraction methods. 
Finally, we observed a striking difference in the cross-study performance 

of response classifiers trained and tested on concordant versus discord-
ant ICB cohorts, implying that different microbial relationships likely 
underlie these distinct treatment regimens.
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Given the success of combination anti-PD-1 and anti-CTLA-4 
ICB across diverse cancers, there is great interest in defining 
tumor-agnostic pretreatment biomarkers, including through using 
gut microbial abundance signatures. A recent review by Thomas et al.20 
defined cross-cancer ICB response (‘Gut OncoMicrobiome Signature’) 
implemented using species-level abundances. This study differs, first, 
in using strain-level signatures and, second, by deliberately splitting 
cohorts into those receiving anti-PD-1 monotherapy and those receiv-
ing anti-PD-1 plus anti-CTLA-4 CICB. Of note, although Thomas et al. 
found good left-out performance for the exclusively anti-PD-1-treated 

NSCLC and renal cell carcinoma cohorts, performance was poor among 
left-out melanoma cohorts, potentially due to patients receiving mono-
therapy and those receiving CICB being admixed.

Although the external performance of the CA209-538 strain–
response signature fell short of what is required for clinical use, its 
performance was remarkably better in CICB (AUC = 0.67, 0.40, 0.78 
and 0.75) than anti-PD-1 (AUC = 0.46, 0.44, 0.58 and 0.54) melanoma 
cohorts from other industrialized countries. Consistent with this, 
strain–response signatures trained on external cohorts were also 
superior when tested on concordant rather than discordant regimen 
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Fig. 4 | Meta-analysis reveals that gut microbiome strain–response 
signatures are ICB regimen specific. a, World map showing the studies included 
in our meta-analysis. Bordered circles depict the coordinates of recruiting 
sites (cities). Pie charts depict the proportion of patients with tumor response, 
progression or SD. The area of the pie charts depicts the sample size. a2022_
Simpson studied neoadjuvant ipilimumab + nivolumab for stage III melanoma 
and thus used pathological response criteria (International Neoadjuvant 
Melanoma Consortium criteria); all other studies used the RECIST 1.1 criteria. 

bFor this study, only the subset of patients (n = 37) with stool collected within 15 
days of the start of ICB therapy was included in the meta-analysis. b, ROC curve of 
strain–RvsP classifiers trained on the discovery cohort (CA209-538) and tested 
on external CICB cohorts separately. c, ROC curve of strain–RvsP classifiers 
trained on the discovery cohort (CA209-538) and tested on external anti-PD-1 
monotherapy cohorts separately. d, Heat map denoting the AUC scores for 
strain–RvsP classifiers trained on one dataset (column) and tested on another 
(rows). Panels are faceted by ICB regimen (CICB or anti-PD-1 monotherapy).
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cohorts. Thus, we believe that this work makes a strong case for dis-
tinct microbial consortia underpinning response or nonresponse to 
each regimen. This is biologically plausible, given that we know that 
CICB has a distinct mechanism of action compared to anti-PD-1 mono-
therapy48 and distinct baseline tumor immune microenvironment 
signatures49. Furthermore, the addition of anti-CTLA-4 has a profound 
effect on gut barrier permeability50,51, potentially changing the influ-
ence of the gut microbiome on ICB response. Nevertheless, the poor 
generalizability of the CA209-538 strain–RvsP signature to anti-PD-1 
cohorts is still intriguing, given the similarity in key positive strains 
and those species or genera previously associated with response. For 
example, Faecalibacterium has been linked to the efficacy of anti-PD-1 
monotherapy in patients with melanoma16 or hepatobiliary15 cancers, 
and B. longum has been linked to anti-PD-1 efficacy in patients with 
melanoma37 and NSCLC52. Therefore, we postulate that the distinction 
may lie in the negative taxa, with many of the top negative strains in 
our signature being members of the Lachnospiraceae family (pre-
viously broadly associated with anti-PD-1 response in melanoma 
cohorts19). This is also conceptually consistent with the observation 
of more discrepancies in the pretreatment tumor immunotranscrip-
tomic landscape of anti-PD-1 and CICB nonresponders compared  
to responders49.

This work has several limitations that should be addressed in 
the future. First, despite our relatively large discovery cohort and 
meta-analysis, the individual cohort and total sample sizes are 
still small, limiting the statistical power of our signature. Future 
meta-analyses will benefit from larger, more geographically diverse 
cohorts, ideally with standardized, best-practice approaches to fecal 
collection and DNA extraction methods45. Moreover, although we used 
a state-of-the-art bioinformatics pipeline to generate and quality con-
trol MAGs to represent study-specific strains (many of which are new or 
uncultivated), they still potentially harbor errors (such as fragmenta-
tion, assembly breaks and contamination)53. Although not possible due 
to the collection medium used in this study, our group has previously 
demonstrated large-scale fecal strain-culturing methods54, which, when 
coupled with whole-genome sequencing, have allowed us to build com-
prehensive, context-specific genome reference libraries that improve 
the accuracy of reference-based metagenomic taxonomic classifica-
tion55. Finally, such patient-specific culturing is necessary to perform 
in vitro and in vivo testing of microbial strains or consortia to derive 
precise mechanistic insights into their associations with response or 
nonresponse to ICB and to confirm the direction of causality.

Until then, we believe that this work provides a number of readily 
implementable insights to help future research and development in this 

Table 2 | Characteristics of studies included in the meta-analysis

Characteristics Study

CA209-538 
(n = 106)

2022_Simpson43 
(n = 38)

2021_McCulloch19 
(n = 37)a

2022_Lee18 
(n = 165)

2021_Andrews59 
(n = 46)

2018_Matson37 
(n = 39)

2017_Frankel60 
(n = 39)

Country Australia Australia USA UK,
Netherlands,
Spain

USA USA USA

Cancer type (%) UGB (36%),
GYN (34%),
NEN (30%)

MEL (100%) MEL (100%) MEL (100%) MEL (100%) MEL (100%) MEL (100%)

ICB regimen (%) CICB (100%) CICB (100%) Anti-PD-1 (100%) CICB (33%),
anti-PD-1 (61%),
anti-CTLA-4 (7%)

CICB (100%) Anti-PD-1 
(100%)

CICB (62%),
anti-PD-1 (36%),
anti-CTLA-4 (3%)

Response criteria RECIST 1.1 Pathological (INMC) RECIST 1.1 RECIST 1.1 RECIST 1.1 RECIST 1.1 RECIST 1.1

Response

 CR 3.8% PathR: 84% 5.4% 13% 11% 5.1% 13%

 PR 21% 51% 26% 52% 33% 36%

 SD 27% 22% 17% 11% 31% 13%

 PD 28% Non-pathR: 16% 22% 42% 26% 31% 39%

 cPD 20% 0% 1.8% 0% 0% 0%

Stool collection kit OMR-200 EasySampler EasySampler LO—TF kits,
MA—plain tube,
NL—plain tube,
LD—OMR-200,
BL—OMR-200

OMR-200 EasySampler NR

DNA extraction kit FastDNA soil FastDNA feces PowerSoil LO—TF MagMAX,
MA—TF MagMAX,
LD—TF MagMAX,
NL—TF MagMAX,
BL—PowerFecal

PowerSoil PowerFecal Other

Sequencer (bases 
per read)

NovaSeq 
(2 × 151)

NovaSeq  
(2 × 151)

NovaSeq  
(2 × 151)

NovaSeq  
(2 × 151)

NextSeq  
(2 × 151)

NextSeq 
(2 × 151)

HiSeq  
(2 × 100)

Clean PE reads (millions)

 Minimum 9.10 5.05 2.72 4.38 12.8 19.3 18.1

 Median 20.4 22.5 30.5 20.7 40.0 35.6 45.4

 Maximum 53.8 34.5 72.2 104 69.8 77.7 59.9

The clinical and technical characteristics of the studies included in the meta-analysis are summarized. Published studies are denoted by ‘year_author’. USA, United States of America; UK, 
United Kingdom; MEL, melanoma; INMC, International Neoadjuvant Melanoma Consortium; LO, London; MA, Manchester; NL, Netherlands; LD, Leeds; BL, Barcelona; TF, Thermo Fisher 
Scientific; PathR, pathologic response; NR, not reported; PE, paired-end. aOf the original ‘Pittsburgh early cohort’ (n = 63), n = 37 had their analyzed stool sample collected between day −15 and 
day 15 of starting ICB and were therefore deemed eligible.
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field. First, it highlights the added value of strain resolution in developing 
gut microbial ICB biomarkers. There is now ample evidence that intraspe-
cies variation of gut microbiota can substantially change their effect on 
hosts, first described for enteric pathogens (for example, Escherichia 
coli56) but more recently demonstrated for immunomodulatory com-
mensals57,58, providing further conceptual support for this notion. Sec-
ond, it suggests that strain signatures may be generalizable across cancer 
types and geographic locations, supporting investment in developing 
‘pan-cancer’ gut microbial diagnostics and/or therapeutic ICB adjuncts. 
Lastly, the distinct performance of CICB and anti-PD-1 gut microbial sig-
natures suggests that we should disaggregate these regimens in future 
analyses to define the relationships between gut microbiota and ICB 
more precisely in a regimen-specific fashion and, eventually, to use this 
information in personalizing the care of cancer patients.
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Methods
CA209-538: clinical trial procedures
CA209-538, titled ‘A phase 2 trial of ipilimumab and nivolumab for the 
treatment of rare cancers’, is an investigator-initiated, prospective, 
multicenter, single-arm clinical trial (NCT02923934). The study was 
approved by the Austin Health (Melbourne, Australia) Human Research 
Ethics Committee (approval: HREC/16/Austin/152).

Between October 2017 and February 2020, 120 adult patients with 
rare cancers were recruited across five sites in southeastern Australia 
(Austin Health, Peter MacCallum Cancer Centre, Monash Health, Black-
town Hospital and Albury Wodonga Health/Border Medical Oncology). 
Patients were recruited into three prespecified ‘histology cohorts’ of 
approximately equal sizes: (1) UGB, comprising cholangiocarcinomas, 
gallbladder cancers, duodenal cancers and gastrointestinal stromal 
tumors; (2) NEN, including neuroendocrine tumors or carcinoma of 
any primary organ (except small cell lung carcinoma) or adrenocorti-
cal carcinoma; and (3) GYN, comprising diverse histologies including 
carcinosarcoma, low-grade serous carcinoma and clear-cell carcinoma 
of gynecological organs.

Patients were eligible if they had a histologically confirmed diagno-
sis of a target rare cancer (UGB, NEN or GYN cancers) that was advanced 
or metastatic, an Eastern Cooperative Oncology Group (ECOG) perfor-
mance status of 0–1, a measurable tumor lesion per RECIST 1.1 criteria61 
and screening blood laboratory values largely within normal limits. 
Prior systemic therapy or radiotherapy was permitted if completed 
at least 4 or 2 weeks, respectively, of the first administration of the 
study drugs and all related adverse events had stabilized or returned to 
baseline. The exclusion criteria included active central nervous system 
metastases (brain or leptomeningeal); prior CICB (monotherapy was 
permitted); prior malignancy active in the previous 3 years; active, 
known or suspected autoimmune conditions; and requirement for 
systemic corticosteroids >10 mg prednisolone daily or equivalent. 
Participants provided fully informed written consent, including for 
the collection and analysis of biospecimens (including fecal samples) 
and sharing of anonymized data as part of research collaborations. 
The data cutoff was May 7, 2022, providing a minimum of 26 months 
of follow-up for all participants.

All patients were intended to be treated with CICB in the form 
of nivolumab 3 mg kg−1 and ipilimumab 1 mg kg−1 three weekly for 
four doses (induction), followed by nivolumab monotherapy main-
tenance (3 mg kg−1 two weekly or 480 mg four weekly after a protocol 
amendment) for up to 2 years or until PD or unacceptable toxicity. 
The trial’s prespecified primary endpoint was to determine the clini-
cal efficacy of CICB in patients with rare cancers using the RECIST 1.1 
BOR61. In brief, BOR was determined at data cutoff and defined as the 
investigator-assessed RECIST 1.1 best response designation at any 
on-trial time point until the date of objectively determined progres-
sion per RECIST 1.1 or the date of subsequent anticancer therapy com-
mencement. For participants without documented progression or 
subsequent therapy, all available response designations contributed 
to their BOR assessment. The trial’s minimum duration criterion for 
the determination of SD was 9 weeks.

For the assessment of radiographic response, all patients were 
intended to undergo whole-body cross-sectional imaging with com-
puted tomography or magnetic resonance imaging at baseline (within 
28 days before registration), 12 weeks, 18 weeks and then 12 weekly 
thereafter (±1 week). Patients with rapid disease-related clinical dete-
rioration who were thus unable to undergo restaging imaging at the 
first restaging time point were deemed to have cPD. PFS and OS were 
determined from the date of first treatment; the efficacy and safety out-
comes for various trial subcohorts have been reported previously23–26. 
Given the accumulating evidence of ‘pseudoprogression’ in a minority 
of ICB recipients62, under the trial protocol, ICB therapy could extend 
beyond RECIST 1.1-defined PD if there was investigator-assessed clinical 
benefit and good participant tolerance of the study drugs until there 

was evidence of a further 10% or greater increase in target lesion dimen-
sions or further new disease sites.

Other clinical metadata. Detailed information on tumor characteris-
tics, demographic factors, blood laboratory values and concomitant 
medications was collected by the site investigators into an electronic 
case report form. For this analysis, we included the following 15 clini-
cal metadata variables, as we hypothesized their potential relevance 
to treatment response and/or gut microbial compositions based on 
our literature review: patient age (years, at time of trial commence-
ment), sex, body mass index, ECOG performance status, histology 
cohort (based on the pathology report), extent of measurable tumor 
(based on the sum of RECIST target lesion diameters calculated using 
the computed tomography scan at trial screening), study site, season 
of fecal sample collection, antibiotic use, proton-pump inhibitor use, 
chemotherapy use, blood NLR, platelet count, albumin levels and lac-
tate dehydrogenase levels (Supplementary Table 3). Only one partici-
pant had received prior ICB monotherapy (a NEN cohort patient treated 
with anti-PD-1 therapy ceased 20 months before trial treatment); given 
that only one patient was involved, this was not included as a clinical 
variable. Antibiotic, proton-pump inhibitor and chemotherapy use 
was defined as their recorded use within the 8 weeks before cycle 1 
of study treatment, given the evidence of antibiotic perturbations 
of gut microbial compositions lasting this duration63. The different 
antibiotics used were amoxicillin, amoxicillin plus clavulanic acid, 
ampicillin, azithromycin, cefalexin, cefazolin, ceftriaxone, clinda-
mycin, co-trimoxazole, doxycycline, flucloxacillin, gentamicin, nor-
floxacin, penicillin, piperacillin plus tazobactam and metronidazole. 
As only 9 of the 106 microbiome-evaluable patients had used any anti-
biotics in this 8-week period, they were not further subcategorized 
based on class or antimicrobial coverage. The different proton-pump 
inhibitors used were esomeprazole, pantoprazole, rabeprazole  
and omeprazole.

Fecal sample collection. The collection of fecal samples was added 
to the study protocol in version 5 ( July 24, 2017). Participants were 
trained and provided OMR-200 ‘OMNigene GUT kits’ (DNA Genotek) 
to collect a fecal sample immediately before treatment (from day −7 to 
day 0 relative to cycle 1 of trial treatment). OMR-200 kits are designed 
to stabilize DNA and have been shown to enhance DNA quantifications 
and stability across storage temperatures relative to nonpreserva-
tive alternatives64. Fecal samples were express-shipped to the Olivia 
Newton-John Cancer Research Institute, where they were then frozen at 
−80 °C for long-term storage. DNA was extracted using the FastDNA kit 
(MP Biomedicals), including a negative control using ultrapure water. 
DNA samples were shipped to the Wellcome Sanger Institute on dry ice 
for shotgun metagenomic sequencing.

Fecal shotgun metagenomic sequencing and analysis
DNA sequencing and quality control. DNA samples were quantified 
using a Qubit fluorometer, and whole metagenome libraries were 
deeply sequenced on a single run of the NovaSeq 6000 S4 platform 
(2 × 150-bp paired-end reads), generating a median of 20,477,028 
raw paired-end reads per sample (interquartile range 19,244,530–
22,056,539 paired-end reads). Raw sequencing data were first human 
decontaminated by the Wellcome Sanger Institute core sequencing 
team by removing read pairs in which one or both aligned to the GRCh37 
human genome assembly using bwa (v0.7.17; ‘aln’ then ‘sampe’ com-
mands)65. These data were further quality controlled using the metaW-
RAP (v1.2)66 ‘reads_qc’ pipeline, which first trimmed low-quality bases 
using trim-galore (v0.6.7)67 (default parameters) and then performed a 
second pass of human decontamination with BMTagger (v3.101)68 using 
the GRCh38 human genome assembly. Finally, a median of 20,359,318 
clean paired-end reads per sample (interquartile range 19,014,843–
21,771,873) were available for further analysis.
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MAG assembly. Quality-controlled paired-end reads were first assem-
bled individually with SPAdes (v3.14) using option ‘-meta’ (refs. 69,70). 
Unassembled reads were then recovered by mapping raw reads back to 
metaSPAdes-assembled contigs using bwa ‘mem’ (v0.7.17)65, followed 
by reassembly with MEGAHIT (v1.2.4)71 using default parameters. Sub-
sequently, the sample-wise metaSPAdes and MEGAHIT assemblies were 
combined and sorted, with short contigs (<1,500 bp) removed. The 
resulting assemblies were then independently binned with MetaBAT 
2 (v2.13)72, MaxBin2 (v2.2.4)73 and CONCOCT (v0.4)74 using default 
parameters and a minimum contig length threshold of 1,500 bp (option 
‘--minContig 1500’). The depth of contig coverage required for the bin-
ning was inferred by mapping the raw reads back to their assemblies 
with bwa-mem and then calculating the corresponding read depths 
for each contig with samtools (v1.5)75 (‘samtools view -Sbu’ followed by 
‘samtools sort’), together with the ‘jgi_summarize_bam_contig_depths’ 
function in MetaBAT 2.

Thereafter, individual bin sets produced by the three binning 
programs were consolidated into a refined bin set consisting of the 
best version of each bin based on the most optimal genome completion 
and contamination metrics among all seven versions of hybridized bin 
sets (MetaBAT 2, MaxBin2, CONCOCT, MetaBAT 2 + MaxBin2, MetaBAT 
2 + CONCOCT, MaxBin2 + CONCOCT, MetaBAT 2 + MaxBin2 + CON-
COCT), as estimated by CheckM (v1.1.2)76 using the metaWRAP (v1.2) 
‘bin_refinement’ pipeline66. Finally, the final bin sets were further 
improved by performing reassembly with SPAdes in ‘--careful’ mode 
after both strict and permissive mapping of raw reads and keeping 
the bin sets with the best CheckM metrics. In total, 4,277 MAGs with 
≥50% completion and ≤5% contamination were generated. These were 
then further quality controlled, now for ≥90% completeness and ≤5% 
contamination using CheckM2 (v0.1.3)77 and for strain-level contamina-
tion using GUNC (v1.0.5)78 to finally identify 2,209 quality-controlled 
nc-MAGs consistent with the MIMAG (minimum information about 
a MAG) criteria79. Finally, study-specific MAGs were taxonomically 
classified (using GTDB r207 taxonomy) with GTDB-tk (v2.1)80, pplacer 
(v1.1)81 and fastANI (v1.3)82.

Generation of a custom, MAG-informed reference database. As the 
recovery of MAGs may be challenging for some (for example, low abun-
dance or difficult to assemble) strains, we sought to supplement our 
study-specific strain genome reference database with SRGs from GTDB 
r207 (62,291 bacterial and 3,412 archaeal genomes) to create a ‘hybrid’ 
reference library. To identify a relevant shortlist of GTDB SRGs, we first 
mapped quality-controlled reads from our study to the full GTDB r207 
SRG database with Bowtie 2 (v2.3.5)83 and inStrain (v1.3.0)84 (using 
default settings in ‘--database’ mode). After further filtering of reads 
mapped to <0.5 SRG breadth, we determined that n = 1,076 SRGs were 
present. We combined these SRGs with the study-specific nc-MAGs 
(total 3,285) and used dRep (v2.0.0)85 to dereplicate the combined 
genome set to 98% identity using the settings ‘-comp 90 -con 5 --S_algo-
rithm fastANI --S_ani 0.98 --cov_thresh 0.50 --multiround_primary_clus-
tering --greedy_secondary_clustering’. An absolute nucleotide identity 
(ANI) threshold of 98% was chosen as a compromise between offering 
subspecies (strain-level) resolution for read classification while still 
mitigating ‘read stealing’ due to overly similar reference genomes (as 
detailed in the inStrain documentation). Ultimately, n = 1,397 genomes 
were selected using dRep and formed our ‘hybrid’ custom strain refer-
ence database. Of these, just over half were study-specific nc-MAGs 
(714, 51%), whereas the remainder were either near-complete isolate 
(423, 30%) genomes or nc-MAG (260, 19%) SRGs. Using GTDB-tk, we 
could classify 1,363 of the 1,397 genomes to 904 separate GTDB r207 
species clusters (898 bacteria, 6 archaea), with the remaining 34 (32 
bacteria, 2 archaea) representing completely new species. For the 
904 ‘known’ species, 705 species had 1 strain, whereas 199 species had 
2–21 strains each. The species with n = 21 distinct strains by 98% ANI 
delimitation was Ruminococcus D bicirculans (Supplementary Table 16).

Read mapping to a custom strain database. We first used Bowtie 
2 to generate a mapping index and then to align reads to our custom 
reference database. We then used the inStrain profile, now with set-
tings ‘--min_read_ani 0.95 --min_genome_coverage 1’, to perform more 
precise quality control of the mapped reads. InStrain uses informa-
tion on paired-end read orientation, mapQ score, insert size and ANI 
value to filter read mappings stringently, resulting in high-confidence 
quantifications.

To enhance our confidence about read mappings further, we 
removed reads mapped with <0.5 genome breadth coverage, as low 
genome breadth might indicate mapping to mobile genetic elements or 
mismapping. For our discovery cohort, a median of 50% (range 39–73%) 
of quality-controlled reads were ultimately used for abundance estima-
tion of strains within each sample (Supplementary Fig. 1).

We finally used Decontam (v1.16.0)86 to screen for potential 
contaminants. Reassuringly, after the above steps, no bacteria were 
identified in our negative control sample for the discovery cohort. 
Based on the ‘frequency’ method (inverse correlation between the 
abundance of strains and the DNA concentration of submitted sam-
ples), one strain was identified as a potential contaminant in over 
10% of samples from our discovery cohort (CA209-538 cohort) and 
was thus removed (Pseudomonas E sp002874965; Supplementary  
Fig. 4).

Downstream analysis of taxonomic abundances. Most downstream 
microbiome analyses were performed in the R (v4.1.0) environment, 
using ‘phyloseq’ (v1.12.0)87, ‘microbiome’ (v1.12.0)88 and ‘vegan’ (v2.6.4). 
Specifically, alpha diversity was computed using the Shannon diversity 
index on strain relative abundances (each sample’s sum abundances 
transformed to a sum of 1). As we found no association between the 
Shannon diversity index and clean paired-end reads in our discovery 
cohort (Pearson R = 0.068, P = 0.49), we did not perform rarefaction. 
Beta diversity was calculated using the strain Aitchison distance, a 
measure of Euclidean distance of CLR-transformed abundances, com-
puted using log(a/gma), where a is the species relative abundance and 
gma is the sample geometric mean relative abundance (with a small 
pseudocount of one-half the minimum nonzero abundance added 
to all values to account for zeros). As CLR abundances may better 
account for the inherent compositionality of microbial abundance 
data89, CLR-transformed feature abundances were exclusively used 
for the supervised ML analyses.

Generation and visualization of phylogenetic trees. For whole bac-
terial kingdom genome sets, approximately maximum-likelihood 
phylogenetic trees were constructed using GTDB-tk (v2.1.0)80 (align-
ing 120 ubiquitous bacterial genes) and FastTree (v2.1.0)90 using the 
WAG model (Fig. 3a,b). For the tree of Faecalibacterium genomes, 
pairwise whole-genome ANI distances were computed using FastANI82 
(many-to-many mode), which was converted into a distance matrix and 
then to a Newick-format tree using rapidNJ (v2.3.3)91 (Supplementary 
Fig. 2). Trees were visualized using the R package ggtree (v3.2.1)92.

Functional annotation. To evaluate the presence of virulence factor 
genes, we used abricate (v1.0.1)93 to screen relevant strain genomes 
against the VFDB (Virulence Factor Database)94. To profile strain met-
abolic potential broadly, we used gapseq (v1.2)95 using the ‘gapseq 
find’ command with default settings. Briefly, this involved perform-
ing a homology search of genomes (using TBLASTN (https://doi.org/ 
10.1186/1471-2105-10-421)) for 28,768 reactions from 2,910 metabolic 
pathways (curated from MetaCyC and manually). Metabolic pathways 
were deemed present if ≥80% complete (lowered to ≥67% if ‘key’ reac-
tions were present).

To evaluate butyrate production potential specifically, we used 
a previously validated multilevel approach involving hidden Markov 
models (HMMs)44,96. Briefly, we used a published database of 1,716 
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genomes and 19,284 genes to build HMM profiles (using HMMER 
v3.2.1; http://hmmer.org/) for the six genes encoding the acetyl-CoA 
butyrate-producing pathway (responsible for butyrate production 
through carbohydrate degradation). These genes are acetyl-CoA 
acetyltransferase (thl), β-hydroxybutyryl-CoA dehydrogenase (bhbd), 
crotonase (cro), butyryl-CoA dehydrogenase (bcd), and the alterna-
tive terminal enzymes butyryl-CoA:acetate CoA transferase (but) and 
butyrate kinase (butk). We then used these models to screen the strain 
genomes for the presence of these respective genes. As an orthogonal 
approach, we also mapped cleaned sample paired-end reads to the 
above genes’ sequences using Bowtie 2 and then used inStrain ‘quick 
profile’ to count mappings to estimate their sample-wise gene abun-
dance (normalized per million reads) agnostic of source strain. The 
output is available in Supplementary Tables 13 (strain_top22_acetyl-
coa_pwy) and 14 (sample_acetylcoa_pwy).

Supervised ML analysis
Supervised ML analyses were performed in the Python 3 environ-
ment using the packages sklearn (v1.1.1)97, imblearn (v0.9.1)98 and their 
dependencies. The supervised ML pipeline involved a preprocess-
ing step before model training and testing, performed separately 
for each training and testing instance to ensure no data leakage. This 
involved standard-scaling numerical features (computed using the 
formula z = (x − u)/s, where x is the feature value (for example, the 
CLR-transformed strain abundances), u is the mean of the fold samples 
and s is the s.d. of the fold samples) and one-hot encoding categorical 
features. Subsequently, only before classifier training (but not test-
ing), classes of the target variable (RvsP or PFS12) were balanced with 
random oversampling with replacement.

We chose to use RF as our classifier, given its, on average, superior 
performance using microbial feature sets in previous benchmarking 
studies31. RF uses bootstrapped data to create an ensemble of decision 
trees (each trained on a subset of features), with the ultimate classifi-
cation based on consensus; thus, it is feature scale invariant and able 
to capture nonlinearities and is also interpretable using TreeSHAP 
(described subsequently).

Our hyperparameter tuning procedure involved a random hyper-
parameter search over a broad array of options with 1,000 separate 
combinations tested, aiming to maximize the ROC AUC averaged over 
20 times repeated fivefold cross-validation (that is, 100 separate mod-
els trained and tested (splits), for each 1,000 iterations, for each feature 
and classifier combination).

ROC AUC is a popular classifier performance metric that evalu-
ates the discriminative performance across all potential decision 
thresholds, thus allowing for a head-to-head comparison of differ-
ently calibrated classifiers99. Ultimately, the best hyperparameter 
combination (based on mean AUC) was selected and referred to as the 
‘tuned’ pipeline. The optimal hyperparameters and AUC scores for all 
100 splits for all full feature sets are listed in Supplementary Table 9 
(hyperparam_tuning_all).

To evaluate model performance, we used cross-validation (for 
example, leave-one-histotype-out cross-validation) or completely 
separate training and test cohorts (for example, training a model using 
one study cohort and then testing the fitted model on another cohort). 
Whenever evaluating model performance, training and testing pro-
cedures were repeated 100 times, and the resultant predictions were 
averaged to account for the stochasticity of our RF pipeline. As with 
hyperparameter tuning, ROC AUC was our metric of choice for gaug-
ing model performance.

Feature importances were evaluated with the ‘shap’ package using 
the TreeExplainer() function. Based on the foundation of game theory, 
TreeExplainer computes the influence of each feature (strain abun-
dance) in determining the RF classifier’s local (per-sample) prediction. 
Therefore, we computed global feature importances (cohort-wide aver-
age of the absolute TreeExplainer scores) and imputed the importance 

‘direction’ (that is, positive or negative influence on response predic-
tion) by constructing a simple linear model between the feature values 
and SHAP values. We repeated this procedure 1,000 times to account 
robustly for the RF pipeline’s stochasticity. The global feature impor-
tance and s.d. values of all features are listed in Supplementary Table 12  
(strain_importance).

Literature review and meta-analysis of relevant published 
datasets
We sought to identify all published clinical datasets that met the fol-
lowing criteria:

 1. Evaluated baseline fecal microbiota from patients with cancer 
who were about to commence only ICB (anti-PD-1, anti-CTLA-4 
or CICB) therapy. ‘Baseline’ samples were defined as those 
collected between day −15 and day 15 relative to the start of ICB 
to ensure that the profile reflected the patient’s gut microbial 
context immediately before treatment and that the gut micro-
bial profile had not been already affected by ICB therapy (for 
example, anti-CTLA-4 appears to modify gut barrier integrity51 
and thus could feasibly change microbial compositions).

 2. Used short-read, paired-end shotgun metagenomic sequenc-
ing (to allow us to standardize and maintain stringency in our 
bioinformatic pipeline and quality control steps).

 3. Reported tumor response. To be pragmatic, we accepted 
radiographic (using RECIST 1.1) or pathological response. How-
ever, we excluded studies that reported only PFS12 or where 
response was binned with SD.

To find all such datasets, we performed a structured PubMed 
database search combining the following three search strings that 
used both MeSH (Medical Subject Headings) terms and title and/or 
abstract keywords:

‘neoplasms’[MeSH Major Topic] OR ‘cancer’[Title/Abstract] OR 
‘malignancy’[Title/Abstract] OR ‘tumor’[Title/Abstract]

OR

‘immune checkpoint inhibitors’[MeSH Terms] OR 
‘pembrolizumab’[Title/Abstract] OR ‘nivolumab’[Title/Abstract] 
OR ‘atezolizumab’[Title/Abstract] OR ‘avelumab’[Title/Abstract] 
OR ‘durvalumab’[Title/Abstract] OR ‘cemiplimab’[Title/Abstract] 
OR ‘dostarlimab’[Title/Abstract] OR ‘ipilimumab’[Title/Abstract] 
OR ‘tremilimumab’[Title/Abstract] OR ‘immunotherapy’[Title/
Abstract] OR ‘immune checkpoint’[Title/Abstract]

OR

‘microbiota’[MeSH Terms] OR ‘metagenome’[MeSH Terms] OR 
‘metagenomics’[MeSH Terms] OR ‘microbiome’[Title/Abstract] 
OR ‘microbiota’[Title/Abstract]

In total, this search yielded 1,181 records up to December 31, 2022. 
Titles and abstracts were manually reviewed to identify a total of 28 
unique studies meeting eligibility criterion 1. A manual bibliography 
search yielded a further three studies meeting eligibility criterion 1 
(Supplementary Table 17 (lit_review)). Of these, 19 studies used shotgun 
metagenomics, and 13 studies made these raw data available. Three 
studies were excluded as the shotgun metagenomic data were single end 
(Ion Torrent). Finally, of the remaining ten studies, four were excluded as 
they did not report response, yielding six studies that could be included 
in our meta-analysis (see Supplementary Fig. 3 for a PRISMA-style flow-
chart). Metadata for each cohort were curated from the corresponding 
publication tables or relevant sequencing repositories (for example, 
Sequence Read Archive, European Nucleotide Archive).
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Shotgun metagenomic sequencing data for the six evaluable 
cohorts were downloaded and analyzed using a uniform bioinformatic 
procedure (as described earlier), including FASTQ file quality control 
and human DNA decontamination, and then read mapping to an identi-
cal custom strain database (generated from CA209-538 MAGs) using 
identical settings of Bowtie 2 and inStrain. Despite a wide range in the 
number of quality-controlled paired-end reads per sample, in general, 
all were deeply sequenced (Table 2). Subsequent downstream analysis 
of gut microbial profiles and supervised ML analyses were performed 
using identical methods to those previously described.

Statistical analysis
Statistical tests are cited in the text. In general, nonparametric statisti-
cal tests were preferred (all were two-sided). To determine associations 
between an ordinal and a numeric variable (for example, BOR versus 
a numeric metadata variable), we used the Kendall τ test. For associa-
tions between a binary and a numeric variable, the Mann–Whitney U 
(also known as the Wilcoxon rank-sum) test was used. For associations 
between a nonordinal categorical variable and a numeric variable, 
the Kruskal–Wallis test was used. The threshold for significance was 
set as a two-tailed P value of <0.05. Data were processed and visual-
ized using the R packages ‘tidyverse’ (v2.0.0)100, ‘ggpubr’ (v0.6.0), 
‘survival’ (v3.5.5)101, ‘survminer’ (v0.4.9) and ‘table1’ (v1.4.3) and the 
Python packages ‘numpy’ (v1.23.3)102, ‘pandas’ (v1.4.3) and ‘matplotlib’ 
(v3.5.1)103. For all boxplots, the center line indicates the median, box 
limits indicate the upper and lower quartiles, and whiskers indicate 
1.5× the interquartile range.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All CA209-538 fecal shotgun metagenomic sequencing data (after 
first-pass human decontamination) have been deposited to the Euro-
pean Nucleotide Archive (study accession no. ERP134027). The 1,397 
quality-controlled (near-complete) study-specific genomes used 
as the custom reference database have been deposited to Zenodo  
(https://doi.org/10.5281/zenodo.10450122). CA209-538 clinical meta-
data and strain abundance data necessary to replicate our analyses 
are provided in the Supplementary Tables. The six publicly available 
shotgun metagenomics datasets were downloaded using the following 
accession numbers: EGAS00001006982 (2022_Simpson), PRJEB43119 
(2022_Lee), PRJNA762360 (2022_McCulloch), EGAD00001006734 
(2021_Andrews), PRJNA399742 (2018_Matson) and PRJNA397906 
(2017_Frankel). Permission to access the 2021_Andrews raw sequenc-
ing dataset was kindly provided by J. Wargo and The University of 
Texas M.D. Anderson Cancer Center. Permission to access the 2022_
Simpson raw sequencing data was kindly provided by G. Long and 
the Melanoma Institute of Australia. Associated sample-level clinical 
metadata for external datasets were collected from their relevant pub-
lications, the relevant sequencing repository or an associated GitHub  
repository.

Code availability
No unique software or computational code was created for this study. 
The relevant code to replicate our supervised machine learning analy-
ses of CA209-538 data, using the data in Supplementary Table 8 (meta-
data_and_clr_abundances), is available at https://github.com/agunjur/
cancer_microbiome_CICB/.
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Extended Data Fig. 1 | Clinical and gut microbiome characteristics of the 
CA209-538 clinical trial cohort. a, Kaplan-Meier curve of progression-free 
survival stratified by histology (UGB n = 38, NEN n = 32, GYN n = 36). Log-rank 
test p-value for OS duration across groups printed. Chi-squared test p-value 
shown for proportion of OS12 per group printed. b, Kaplan-Meier curve of 
progression-free survival stratified by histology (UGB n = 38, NEN n = 32, GYN 
n = 36). Log-rank test p-value for PFS duration across groups printed. Chi-
squared test of independence p-value shown for proportion of PFS12 per group 
printed. c, Boxplots of patient baseline blood albumin (g/L) and NLR levels 
(log-transformed) by BOR category (cPD n = 21, PD n = 30, SD n = 29, PR n = 22, 
CR n = 4). Boxplot centre line= median; box limits= upper and lower quartiles; 
whiskers= 1.5x interquartile range. Linear model line-of-best-fit for respective 
variables (albumin and NLR) versus BOR (with shaded 95% confidence interval) 
superimposed (in grey). Kendall τ and p-value for association between respective 
variables (albumin and NLR) and BOR printed. Pairwise Mann-Whitney  
U test p-values for cPD vs other groups summarized (*: p < 0.05, **: p < 0.01,  
***: p < 0.001). Exact p-values as follows: Albumin: cPD vs PD p = 0.0076, cPD 
vs SD p = 0.00079, cPD vs PR p = 0.0039, cPD vs CR p = 0.034; NLR: cPD vs PD 
p = 0.00093, cPD vs SD p = 0.00042, cPD vs PR p = 0.0075, cPD vs CR p = 0.025.  
d, Proportion of explained variance (R2) of microbial composition by  

each available clinical and technical metadata variable. Calculated using 
PERMANOVA on inter-sample Aitchison distance (9999 permutations).  
Metadata variables coloured by category (blood, exposome, patient,  
technical or tumour). PERMANOVA p-values summarized (*: p < 0.05). Exact 
p-values available in Supplementary Table 6 (‘ca209-538_permanova’). e, Analysis 
of baseline microbial variance by moving PFS cut-off (1-monthly intervals,  
from 1-24 months). Top panel show microbial variance between groups formed 
by cut-off (inverse PERMANOVA p-value, 999 permutations) using Aitchison 
distance. Bottom panel shows proportion of progression-free-survivors at 
respective threshold (that is the proportion in each group). Dashed line with  
* indicates p = 0.05 threshold. Exact p-values available in Supplementary Tables 7  
(‘moving_pfs_permanova’). Acronyms: UGB = upper gastrointestinal & biliary, 
NEN = neuro-endocrine neoplasms, GYN = gynaecological, PFS = progression-
free survival, OS = overall survival, BOR = best overall response, CR = complete 
response, PR = partial response, SD = stable disease, PD = progressive disease, 
cPD = clinical progressive disease, chemo = chemotherapy, PPI = proton-
pump inhibitor, BMI = body-mass index, LDH = lactate dehydrogenase, NLR = 
neutrophil:lymphocyte ratio, ECOG = eastern cooperative oncology group, 
PERMANOVA = permutational multivariate analysis of variance.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Sensitivity analyses of gut microbial strain-efficacy 
classifiers. a, Comparison of the RvsP and PFS12 binary endpoints. Venn 
diagrams show the overlap between the ‘negative and ‘positive’ outcome 
populations (P/non-PFS12 and R/PFS12 respectively). Size of circles (area) in 
proportion to population size, with set differences labelled. b, AUC scores 
for the best iteration of PFS12 classifiers for each feature-set combination 
during 20-repeated 5-fold cross-validation (100 folds each): clinical (yellow), 
microbiome (blue) and combined (green), at different taxonomic resolutions. 
Mean (circle) and standard deviation (error bars) over the 100 folds. Linear model 
line-of-best-fit for AUC score and taxonomic rank of microbiome-only feature 
sets (with shaded 95% confidence interval) superimposed. Kendall τ and p-value 
for association between AUC score and taxonomic rank of microbiome-only 
feature sets printed. Mann-Whitney U p-value for comparison of AUCs of specific 
pairwise feature-sets (depicted by callipers) printed. c, Patient’s predicted RvsP 
(using strain-RvsP RF classifiers trained on the full evaluable cohort) vs. actual 

BOR outcome (cPD n = 21, PD n = 30, SD n = 29, PR n = 22, CR n = 4). Boxplot centre 
line= median; box limits= upper and lower quartiles; whiskers= 1.5x interquartile 
range. Kendall rank correlation τ and p-value for association between predicted 
RvsP and actual BOR printed. d, Kaplan-Meier overall survival curves for those 
patients with a best overall response (BOR) of stable disease (n = 29), stratified by 
those with above median (blue) and below median (red) strain-RvsP RF classifier 
predictions. Bottom panel shows number of patients at risk at each marked 
interval. P-value by log-rank test printed. Acronyms: P= progressors (RECIST 
progressive disease (PD) or clinical progressive disease (cPD)), R= responders 
(RECIST complete response (CR) or partial response (PR)), GYN= gynaecological, 
NEN= neuro-endocrine neoplasm, UGB= upper gastrointestinal & biliary, ROC= 
receiver operating characteristic, AUC= area under curve, OS= overall survival, 
SD= stable disease, RvsP= response versus progression, cPD= clinical progressive 
disease, PD= progressive disease, SD= stable disease, PR= partial response, CR = 
complete response.
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Extended Data Fig. 3 | Identification and metabolic-potential profiling 
of the top 22 response predictive strains. a, Kernel density plot of impact 
(feature importance) of strains in the strain-RvsP classifier. The top 22 strains 
with absolute impact within half maximal value shown (coloured by importance, 
and size by prevalence). b, Strain impact (absolute) versus prevalence in the 
CA209-538 cohort. Top 22 strains coloured (blue and red for positive and 

negative associations with response, respectively), with importance threshold 
depicted (red dashed line). c, Plot of principal coordinate 1 vs 2 using Jaccard 
dissimilarity of metabolic pathway presence/absence for top 22 strain genomes. 
Points (individual strains) coloured by impact on RvsP, and size by prevalence. 
Acronyms: PCo= principle coordinate.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Heterogeneity of baseline gut microbial compositions 
across meta-analysis cohorts. a, Proportion of quality-controlled paired-end 
reads aligned by Bowtie 2 (red), and ultimately used for abundance estimation 
after stringent filtering (cyan). Organised by study (2017_FRANKEL n = 39, 
2018_MATSON n = 39, 2021_ANDREWS n = 46, LEE n = 165, 2022_MCCULLOCH 
n = 37, 2022_ 2022_SIMPSON n = 38, CA209-538 n = 106). Boxplot central line= 
median, box limits= upper and lower quartiles, and whiskers= 1.5x interquartile 
range. Median printed within each boxplot. b, Proportion of explained variance 
(R2) of microbial composition by metadata variables (grouped into ‘exposome’, 
‘technical’ and ‘tumour’ categories. R2 values (printed on bar) calculated using 

PERMANOVA (9999 permutations). c, PCA plot of samples by CLR-transformed 
abundances (Aitchison’s distance), with points coloured by sample city (the 
variable explaining the most variance). Ellipses depict 0.8 of each group’s 
multivariate t-distribution. PERMANOVA p-value and R2 using 9999 permutations 
printed. d, PCA plot of samples by CLR-transformed abundances (Aitchison’s 
distance), with points coloured by extraction kit (the variable explaining 
the second-most variance). Ellipses depict 0.8 of each group’s multivariate 
t-distribution. PERMANOVA p-value and R2 using 9999 permutations printed. 
Acronyms: ICB= immune checkpoint blockade, PCo= principle coordinate.
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