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Diabetic retinopathy (DR) is the leading cause of preventable blindness 
worldwide. The risk of DR progression is highly variable among different 
individuals, making it difficult to predict risk and personalize screening 
intervals. We developed and validated a deep learning system (DeepDR 
Plus) to predict time to DR progression within 5 years solely from fundus 
images. First, we used 717,308 fundus images from 179,327 participants with 
diabetes to pretrain the system. Subsequently, we trained and validated 
the system with a multiethnic dataset comprising 118,868 images from 
29,868 participants with diabetes. For predicting time to DR progression, 
the system achieved concordance indexes of 0.754–0.846 and integrated 
Brier scores of 0.153–0.241 for all times up to 5 years. Furthermore, we 
validated the system in real-world cohorts of participants with diabetes. 
The integration with clinical workflow could potentially extend the mean 
screening interval from 12 months to 31.97 months, and the percentage 
of participants recommended to be screened at 1–5 years was 30.62%, 
20.00%, 19.63%, 11.85% and 17.89%, respectively, while delayed detection of 
progression to vision-threatening DR was 0.18%. Altogether, the DeepDR 
Plus system could predict individualized risk and time to DR progression 
over 5 years, potentially allowing personalized screening intervals.

DR is the most common microvascular complication of diabetes and 
the leading cause of preventable blindness in adults aged 20–74 years1–3. 
Notably, DR mainly develops and progresses asymptomatically in the 
early stages until loss of vision occurs in the later stages of disease2.

However, the risk of DR progression is highly variable among dif-
ferent individuals, influenced by many modifiable and non-modifiable 
risk factors4,5. Currently, it is not possible to identify which patients with 
diabetes would develop DR or progress faster or slower. Consequently, 
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DeepDR Plus system, we used eight independent longitudinal cohorts 
for external validations (Methods and Extended Data Fig. 1). The base-
line demographics information, anthropometric indices, biochemical 
measurements and retinal images of all the cohorts are summarized 
in Table 1. The relevant distribution of DR grades at baseline and at the 
end of follow-up in the developmental and validation datasets is shown 
(Extended Data Table 1), based on the International Clinical Diabetic 
Retinopathy Disease Severity Scale (ICDRDSS)23.

DeepDR Plus predicts time to DR progression
The DRPS cohort was used to develop the DL system for DR progres-
sion. In internal validation, for the prediction of DR progression among 
patients with diabetes, the metadata model achieved a concordance 
index (C-index) of 0.696 (95% confidence interval (CI), 0.668–0.725); 
the fundus model achieved a C-index of 0.823 (95% CI, 0.796–0.850), 
which was superior to the metadata model; and the combined model 
achieved a C-index of 0.833 (95% CI, 0.807–0.857). The aforementioned 
results indicated that the performance of the combined model was 
similar to that of the fundus model, demonstrating the accurate predic-
tion performance of the fundus model (Extended Data Table 2). In the 
eight independent external datasets, the models achieved similar per-
formances in predicting DR progression. The fundus model achieved 
C-indexes of 0.786–0.802, which were comparable with the combined 
model. The fundus model using low-resolution images of 128 × 128 
pixels still yielded superior performance than the metadata model, 
suggesting that the resolution requirements for this technique can 
be easily met (Supplementary Fig. 1).

Subsequently, we predicted specific time to DR progression based 
on fundus images at years 1–5. C-index and the integrated Brier score 
(IBS) were used to evaluate the performance of the fundus model in 
the internal and external datasets. As illustrated in Fig. 2a, the fundus 
model achieved C-indexes of 0.823–0.862 and IBS ranged from 0.049 
to 0.161 for years 1–5. The performance of the fundus model was carried 
over well to the external datasets 1, 2, 4 and 5, resulting in C-indexes of 
0.804–0.837 and IBSs of 0.066–0.170, indicating the high concordance 
and strong calibration of the DeepDR Plus system.

To assess the prediction ability of the fundus model, we stratified 
eyes from individuals with diabetes into two groups (low or high risk) 
for DR progression according to the predicted risk scores. The thresh-
old for the low-risk and high-risk groups was based on the median of 
the risk scores predicted from the fundus models in the developmental 
dataset. As shown in Fig. 2b, the fundus model can accurately discrimi-
nate low-risk and high-risk groups in both internal and external data-
sets (log-rank test P < 0.001). Additionally, we used time-dependent 
receiver operating characteristic (ROC) curves at years 1–5 to assess 
the prognostic accuracy of the fundus model of DR progression. For 
years 1–5, the areas under the ROC curve (AUCs) for DR progression 
ranged between 0.826 and 0.865 in the internal dataset. In the external 
sets, the AUCs ranged between 0.722 and 0.863 (Fig. 2c). Particularly, 
we showed the model performance in predicting time to progression 
of eyes with DR progression in the internal test set and external valida-
tion datasets 1, 2, 4 and 5 (Extended Data Fig. 2). The level of agreement 
between the predicted time to DR progression and the actual time to 
DR progression was depicted using a Bland–Altman plot. The fundus 
model demonstrated good performance in DR progression predic-
tion, achieving a coefficient of determination (R2) of 0.678 (Extended 
Data Fig. 2a). The predictive performance of the metadata model 
(R2 = 0.396) was markedly lower compared with the fundus model. As 
shown in Extended Data Fig. 2b, the fundus model also resulted in a 
significantly lower mean absolute error compared with the metadata 
model (P < 0.001) and demonstrated no significant difference com-
pared with the combined model (P = 0.122).

Furthermore, we conducted a subgroup analysis to evaluate the 
predictive performance of the fundus model considering the glyce-
mic control (Supplementary Table 1). No significant difference was 

routine screening for DR at yearly intervals is widely recommended 
for all individuals with diabetes with no DR or mild DR by national and 
international organizations6–9. Additionally, many individuals with dia-
betes are referred for monitoring and follow-up in specialist eye clinics 
or hospitals before they progress to severe DR, sometimes within just 
2 years into a screening program10,11. Although previous studies have 
shown that as a group, DR is generally a slowly progressing disease12, 
and it is feasible to approximate progression risk for subgroups of 
patients with similar risk factors and DR severity levels13, it has been 
challenging to extend screening intervals from 1 year to 2 years (or 
even 3 years)14 because of the difficulty in accurately predicting an 
individual’s risk of and time to development of DR. As a result, many 
physicians and national DR screening programs have been extremely 
hesitant to recommend such an approach, although it would be highly 
cost-effective14.

Thus, one of the main challenges in managing DR is the lack of an 
individualized risk model and accurate prediction of the time to the 
onset and progression of the disease. By developing such a model, we 
can better estimate the risk and time frame for developing DR, which 
would significantly enhance the efficiency of DR screening programs15. 
Furthermore, we can allocate more intensive DR management strate-
gies to those at high risk, which could help prevent the progression 
of DR.

Artificial intelligence (AI) has been playing an increasingly impor-
tant role in medicine2,16. Deep learning (DL), with convolutional neural 
networks, has been developed for the automated detection of DR 
from retinal photographs17–20. There are, however, very few studies 
with retinal image-based DL systems to prospectively predict the risk 
of DR15,21. Moreover, there are critical gaps in existing research. First, 
regarding risk prediction of DR onset and progression, previous DL 
models focused on risk stratification within only 2 years after the base-
line visit15,21. This is insufficient for a chronic disease such as DR because 
most patients do not develop DR progression within 2 years5. Second, 
an automated prediction of an individual’s time to DR onset and pro-
gression has not been explored in previous studies. Third, studies are 
needed to evaluate the impact of retinal image-based DL systems on 
patient outcomes when integrated into clinical workflow. These gaps 
need to be addressed before retinal image-based DL systems can be 
incorporated into DR screening programs.

We have previously developed a DL system (DeepDR), that can 
detect early-to-late stages of DR20. In the present study, we developed, 
validated and externally tested a DL system (DeepDR Plus), to predict 
individualized patient trajectories for DR progression within 5 years. 
Firstly, 717,308 fundus images from 179,327 patients with diabetes were 
used to pretrain the DeepDR Plus system. Subsequently, we trained and 
validated our DeepDR Plus system using clinical metadata and retinal 
fundus images from diverse multiethnic multicountry datasets, which 
comprise more than 118,868 images collected from 29,868 participants. 
To further demonstrate the outcome of the integration with clinical and 
digital workflows, we conducted a real-world study within prospective 
cohorts with diabetes.

Results
Study design and participants
To learn the features associated with DR, the DeepDR Plus system was 
pretrained using 717,308 fundus images from 179,327 individuals with 
diabetes from the Shanghai Integrated Diabetes Prevention and Care 
System (Shanghai Integration Model)20,22 and the Shanghai Diabetes 
Prevention Program (SDPP). Subsequently, it was developed and vali-
dated in an internal dataset consisting of 76,400 fundus images from 
19,100 individuals with diabetes collected from the Diabetic Retinopa-
thy Progression Study (DRPS) cohort (Fig. 1). The DRPS cohort was 
divided into a developmental dataset and an internal test set at the 
patient level at a 9:1 ratio to predict the risk and time to DR progression 
at specific future time points. To validate the generalizability of the 
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observed in the model performance for predicting DR progression 
among patients with different glycemic control statuses, regardless 
of the addition of follow-up hemoglobin A1c (HbA1c) levels.

DeepDR Plus predicts time to progression in three subgroups
Because determining when patients should seek out an ophthalmolo-
gist and assessing the extent of DR are key concerns for both clini-
cians and patients, we conducted three subgroup analyses to provide 
additional evidence of the predictive capabilities of the DeepDR Plus 
system. The three subgroups included diabetes with no retinopathy 
to DR (subgroup 1), non-referable DR to referable DR (subgroup 2), 
non-vision-threatening DR to vision-threatening DR (subgroup 3). 

Referable DR was defined as moderate non-proliferative diabetic 
retinopathy (NPDR) or worse, and/or diabetic macular edema (DME). 
Additionally, we defined VTDR as severe NPDR, proliferative diabetic 
retinopathy (PDR) and/or DME.

In these three subgroups, we developed and tested the DeepDR 
Plus system using baseline retinal images to predict different types of 
DR grade deteriorations over 5 years. The performance of the three 
prediction models for each subgroup was compared using C-index and 
IBS. The metadata model achieved C-indexes of 0.700–0.711 and IBSs 
of 0.261–0.328 in predicting progression to any grade of DR, referable 
DR and VTDR in the internal dataset. Compared with the metadata 
model, C-indexes of the fundus model improved to 0.826 (95% CI, 
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0.797–0.851) for DR, 0.820 (95% CI, 0.785–0.853) for referable DR, 
and 0.824 (95% CI, 0.758–0.880) for VTDR, while IBS decreased to 
0.153–0.189 for three subgroups. When the fundus images were com-
bined with clinical metadata, the combined model gave C-indexes of 
0.835–0.852 and IBS of 0.145–0.167 for subgroups 1–3 (Extended Data 
Table 2). Furthermore, we evaluated the prediction performance of 
the fundus model in the external datasets and achieved comparable 
results with the internal dataset (Extended Data Table 2). The results 
indicated that the fundus images alone could effectively predict the 
disease progression. Similarly to the task of predicting the time to any 
DR progression, we evaluated the prediction performance in three 
subgroups. As shown in Extended Data Figs. 3–5, the fundus model 
achieved C-indexes of 0.820–0.895 and IBSs of 0.045–0.189 in the inter-
nal dataset for years 1–5. Moreover, the external validation datasets 1, 
2, 4 and 5 achieved C-indexes of 0.794–0.842 and IBSs of 0.058–0.218.

The risk stratification results of the DeepDR Plus system in predict-
ing the progression of three subgroups are shown in Extended Data 
Figs. 3–5. We stratified baseline eyes from individuals with diabetes 
into two groups (low or high risk) for disease progression based on 
the predicted risk scores of the fundus model. Significant separations 
of the survival curves of each group were achieved in both internal 

and external datasets (P < 0.001) in three subgroups. Additionally, we 
used time-dependent ROC curves at years 1–5 to assess the prognostic 
accuracy of the fundus model for the above three situations. For years 
1–5, the AUC values were 0.822–0.896 for predicting the onset of DR, 
referable DR and VTDR in the internal dataset. For external validation, 
the fundus model achieved comparable performance with AUC values 
ranging from 0.738 to 0.886.

Applying the DeepDR Plus system improves clinical outcomes
To evaluate the effectiveness of the DeepDR Plus system with the inte-
gration of clinical workflows, we conducted a real-world study within a 
community-based prospective cohort study of Chinese adults (Meth-
ods). A total of 2,185 participants were included in the analysis, with 
538 participants in the integrated management (IM) group (integrated 
hospital–community diabetes management program) and 1,647 partici-
pants in the non-IM group. Participants in the IM group were provided 
regular clinical and metabolic measurements, advised by specialists 
in comprehensive hospitals and received lifestyle guidance and peer 
support at community health service centers24. Participant enroll-
ment is outlined in Extended Data Fig. 6a and specific characteristics 
of all participants at baseline and at the end of follow-up are listed in 
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Fig. 2 | Internal and external validation of the fundus model in the prediction 
of the progression of DR. a, IBS (left) showing overall fit (lower is better) and 
C-index (right) measuring model risk discrimination (higher is better) for various 
time points. Data of external validation include retinal fundus images from 
individuals in the ECHM, WTHM, CUHK-STDR and PUDM cohorts. b, Kaplan–
Meier plots for the prediction of DR progression. The x axis indicates the time 
in years. The y axis is the survival probability, measuring the probability of no 
DR progressing in 5 years. One-sided log-rank test was used for the comparison 

between the low-risk and high-risk groups. The P values for the internal test set 
and the external validation datasets 1, 2, 4 and 5 are 1.554 × 10−41, 3.258 × 10−46, 
4.867 × 10−17, 2.946 × 10−19 and 1.888 × 10−4, respectively. c, Prediction of DR 
progression using time-dependent ROC curves. The asterisk indicates that there 
is only one case of the progression from non-DR to DR in the first year. The shaded 
areas in a and b denote 95% CIs. Areas under the ROC curves are presented as 
mean values (lower bound of 95% CI, upper bound of 95% CI).
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Supplementary Table 2. The baseline retinal images and metadata of 
all participants were assessed by two models (the fundus model and 
metadata model in DeepDR Plus system) to evaluate their risk of DR 
progression. Each model generated the predicted time as a risk score, 
which was compared to a model-specific threshold obtained in the 
developmental dataset. Consequently, both models divided the IM 
group and non-IM group into low-risk and high-risk groups.

We calculated the adjusted relative reduction (ARR)25,26 of DR 
progression rate between the fundus model and metadata model in the 
DeepDR Plus system (Table 2). After adjustment for patient demograph-
ics, medical history, anthropometric indices and biochemical meas-
urements, in the IM group, the difference in the DR progression rate 
between the fundus model and metadata model was not statistically 
significant in both low-risk group (ARR −33.05%; 95% CI, −67.79–35.76%) 
and high-risk group (ARR 14.54%; 95% CI, −28.26–74.63%). However, 
patients from the fundus high-risk group of the non-IM group had a 
higher DR progression rate compared with metadata high-risk group 
(33.13 versus 23.37 per 1,000 eye-years). Participants identified by the 
fundus high-risk group were prone to develop DR progression when 
they did not receive integrated hospital–community management 
(ARR 61.36%; 95% CI, 25.36–109.91%). Interestingly, in patients of the 
non-IM group, the fundus low-risk group had a significantly lower rate 
of DR progression compared with the metadata low-risk group (ARR 
−91.63%; 95% CI, −93.91% to −89.06%). Under comprehensive inter-
ventions (that is, intensive intervention for the high-risk group and 
non-intensive intervention for the low-risk group), compared with the 
metadata model, the fundus model can relatively prevent 46.80% DR 
progression incidence (ARR 46.80%; 95% CI, 12.37–94.93%).

To further evaluate the outcome of the integration with clinical 
workflows, we additionally conducted a real-world study within an 
Indian prospective cohort (SN-DREAMS)27, among 992 patients with 
diabetes who underwent 4 years of follow-up (Supplementary Table 3). 
Compared to the metadata model, the fundus model could relatively 

prevent 88.74% DR progression incidence under comprehensive inter-
ventions (Table 2).

Furthermore, we evaluated the performance of the personalized 
screening regime recommended by the metadata model or fundus 
model, compared with fixed annual screening. Table 3 shows the aver-
age screening interval, reduction in screening frequency and rate of 
delayed detection of DR progression in both IM and non-IM groups. For 
all participants, the mean screening interval could be extended from 
12 months to 31.97 months if all participants in both IM and non-IM 

Table 2 | Associations between risk identification model and participant outcomes

Eyes with DR progression incidence per 1,000 eye-years (number of 
cases/number of eyes)

ARRa (95% CI)

Integrated hospital–community 
diabetes management program

IM group (n = 1,076)

DeepDR Plus-low risk (AI-low) Metadata-low risk (meta-low)
−33.05 (−67.79, 35.76)

5.11 (16/626) 7.63 (24/629)

DeepDR Plus-high risk (AI-high) Metadata-high risk (meta-high)
14.54 (−28.26, 74.63)

26.67 (60/450) 23.27 (52/447)

Non-IM (n = 3,294)

DeepDR Plus-low risk (AI-low) Metadata-low risk (meta-low)
−91.63 (−93.91, −89.06)

5.01 (50/1,996) 11.34 (113/1,993)

DeepDR Plus-high risk (AI-high) Metadata-high risk (meta-high)
61.36 (25.36, 109.91)

33.13 (215/1,298) 23.37 (152/1,301)

Comprehensive interventions: [(AI-high + AI-low) − (meta-high + meta-low)] in IM 
group − [(AI-high + AI-low) − (meta-high + meta-low)] in non-IM group

46.80 (12.37, 94.93)

Sankara Nethralaya-Diabetic 
Retinopathy Epidemiology and 
Molecular Genetics Studyb

IM group (n = 146)

DeepDR Plus-low risk (AI-low) Metadata-low risk (meta-low)
−9.39 (−79.77, 287.41)

4.08 (2/98) 4.49 (2/89)

DeepDR Plus-high risk (AI-high) Metadata-high risk (meta-high)
20.48 (−70.93, 400.0)

25.0 (6/48) 21.05 (6/57)

Non-IM group 
(n = 1,798)

DeepDR Plus-low risk (AI-low) Metadata-low risk (meta-low)
−97.32 (−98.28, −96.32)

5.24 (28/1,068) 13.0 (70/1,077)

DeepDR Plus-high risk (AI-high) Metadata-high risk (meta-high)
43.13 (9.1, 87.18)

44.11 (161/730) 33.01 (119/721)

Comprehensive interventions: [(AI-high + AI-low) − (meta-high + meta-low)] in IM 
group − [(AI-high + AI-low) − (meta-high + meta-low)] in non-IM group

88.74 (10.83, 330.25)

aARR is reported as ‘median (95% CI)’ by bootstrapping. bOnly eyes with gradable fundus images in both baseline and follow-up visits in the Sankara Nethralaya-Diabetic Retinopathy 
Epidemiology and Molecular Genetics Study were included.

Table 3 | Performance of personalized screening regime 
recommended by the metadata model or fundus model in 
DeepDR Plus, compared with fixed annual screening

Group Model Average 
screening 
interval 
(months)

Reduction 
in 
screening 
frequency 
(%)a

Delayed 
detection 
of any DR 
progression 
(%)b

Delayed 
detection of 
progression 
to VTDR (%)

IM
Metadata 34.06 64.77 1.86 0.93

Fundus 31.54 61.95 0.37 0.37

Non-IM
Metadata 35.32 66.02 6.01 0.97

Fundus 32.11 62.63 1.28 0.12

IM and 
non-IM

Metadata 35.01 65.72 4.99 0.96

Fundus 31.97 62.46 1.05 0.18

The screening interval was set at an annual time point from baseline, which was just the year 
after the predicted participant-specific time to DR progression by the metadata model or 
fundus model. aThe resulting reduction in the annual number of screenings of the population 
when applying the personalized screening regime recommended by the metadata model 
or fundus model in DeepDR Plus, compared with fixed annual screening. bThe rate of 
delayed detection of DR progression when applying the personalized screening regime 
recommended by metadata model or fundus model in DeepDR Plus, compared with fixed 
annual screening.
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groups followed the recommended personalized screening interval 
given by the fundus model. Compared with the metadata model, the 
fundus model can achieve a similar reduction in screening frequency 
(62.46% versus 5.72%) while maintaining obviously less delayed detec-
tion of any DR progression (1.05% versus 4.99%). Additionally, there was 

a lower rate of delayed detection of any DR progression in patients of 
the IM group compared with the non-IM group (0.37% versus 1.28%) 
using the screening interval recommended by the fundus model, which 
suggested that the DeepDR Plus system could guarantee a low pos-
sibility of delayed detection of DR progression regardless of future 
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Fig. 3 | Explainability analysis of DeepDR Plus in predicting DR progression. 
a, Comparisons of color fundus photographs at baseline and follow-up using 
attention maps. b, Mean attention maps and corresponding stack fundus 
images for any DR progression and subgroups 1–3. c, Bar plot (left) of fundus 
score and clinical features and their contribution to the prediction model of DR 
progression. Features are in descending order by contribution (also known as 

importance) in the model. Details of associations are shown in a beeswarm plot 
(right) in which each point represents a participant. Color indicates the value of 
the feature, with red denoting higher and blue denoting lower. A negative SHAP 
value indicates negative feature attribution for the prediction of DR progression; 
a positive SHAP value indicates positive feature attribution for the prediction of 
DR progression.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 30 | February 2024 | 584–594 591

Article https://doi.org/10.1038/s41591-023-02702-z

interventions. Extended Data Fig. 6b shows the waterfall plot of pre-
dicted time to DR progression of participants in the real-world study 
by the fundus model. If all participants in both IM and non-IM groups 
followed the recommended personalized screening interval given by 
the fundus model, the percentage of participants who were recom-
mended to screen DR at 1–5 years was 30.62%, 20.00%, 19.63%, 11.85% 
and 17.89%, respectively, while delayed detection of progression to 
VTDR was only 0.18%. To sum up, compared with the metadata model, 
the fundus model could stratify participants more accurately to enable 
personalized interventions and reduce DR screening frequencies with 
less delayed detection of DR progression.

Explainability analysis
The interpretability of the DeepDR Plus system can shed insight into 
its diagnostic mechanism and enable broad adoption. To better under-
stand how the DeepDR Plus system could predict DR progressions, we 
took three steps to ensure the relevance and interpretability of the 
resulting features.

First, we conducted a saliency analysis using attention methods28 
(Methods) to provide insights into the regions in the fundus images 
that could influence the predictions of the fundus model. Representa-
tive example attention maps at different times to DR progression (1 to  
5 years, respectively) are shown in Fig. 3a. Attention maps of baseline 
fundus photographs were compared with annual follow-up fundus 
images. The results showed that our fundus model predicted DR pro-
gression by focusing on retinal vessels and the fovea. In addition, mean 
attention maps were generated for eyes with DR progression from the 
internal test set, reflecting that these observations were also general-
ized across many images (Fig. 3b).

It has been demonstrated that vessel density, fractal dimension 
and foveal avascular zone area could predict DR progression29,30. Previ-
ous studies also support that retinal vascular changes and related vari-
ables are associated with DR-related risk factors31. To further explore 
the patterns of retina associated with the future occurrence of DR, 
a range of retinal vascular variables were quantitatively measured 
by human graders who were masked to participant characteristics 
using our Singapore I vessel assessment software32. Cox regression 
analysis showed that higher venular fractal dimension in zone C was 
independently associated with any progression of DR, incident DR and 
incident referable DR after adjustment for age (P < 0.05) in the internal 
test set (Supplementary Tables 4 and 5). Meanwhile, central retinal vein 
equivalent in zone B and zone C significantly predicted the incidence 
of DR and referable DR (P < 0.05), and central retinal artery equivalent 
in zone B and zone C independently predicted incident referable DR 
(P < 0.05) after adjusting for age (Supplementary Table 5). Specifically, 
retinal vascular geometry resulted in a slight improvement in AUC 
values when added to the metadata model (Supplementary Table 6). 
These results showed that baseline retinal vascular geometry might 
be predictive patterns for the occurrence of DR, and the fundus model 
might pick up on signals beyond retinal vascular geometry to make 
these predictions.

Furthermore, we applied SHAP-based model interpretation to 
discover the predictive contribution of different clinical features for 
DR progression in the internal test set (Fig. 3c). The fundus score had 
the highest contribution to model performance.

Discussion
Early screening and timely intervention are critical for the prevention 
and better clinical management of DR to achieve favorable outcomes. 
In this study, we developed a DL system called the DeepDR Plus system 
that utilized baseline retinal images to precisely predict individualized 
time to DR progression for all times up to 5 years. We also demonstrated 
the integration of this system into the clinical workflow could poten-
tially extend the mean screening interval from the current 12 months 
to nearly 3 years, while delayed detection of progression to VTDR was 

only 0.18%. These results demonstrated that our DeepDR Plus system 
could potentially promote patient-specific risk assessment and further 
personalized care for DR management, based on just one single-time 
retinal check in the future.

The personalized interval for DR screening could improve the 
efficiency and put more attention on those who are at high risk for DR 
progression33, as in-person expert examinations are impractical and 
unsustainable given the pandemic size of the population with diabetes. 
In previous studies15,21, DL systems were created for predicting DR pro-
gression within 2 years, and were independent of available risk factors. 
Such a risk stratification tool might help to optimize screening intervals 
to reduce costs while improving vision-related outcomes. Considering 
the high variability in an individual’s risk of DR progression, our study 
provides a potential clinical tool to stratify low-risk and high-risk indi-
viduals with diabetes, which would support a personalized AI-driven 
approach to determine clinic follow-up intervals and more personal-
ized management plans.

To further demonstrate the outcome of the integration of the 
DeepDR Plus system into clinical workflow, we first conducted a 
real-world study within a prospective cohort. Cutting-edge AI systems 
could not realize their full potential unless they are integrated into 
clinical and digital workflows34. In participants of the non-IM group, 
compared with the metadata model, participants with high risk iden-
tified by the DeepDR Plus system were prone to develop DR progres-
sion, suggesting that our DL models could predict patient-specific 
risk trajectories for DR progression more accurately than the meta-
data model. These participants could be preferentially selected for 
more intensive management or counseling35,36. Intriguingly, there 
was a significantly lower rate of DR progression in fundus low-risk 
group, which revealed that it might be relatively safe for these par-
ticipants to achieve lenient control targets. Further, DeepDR Plus 
could potentially enable individualized DR screening intervals to bal-
ance early detection and reduce cost14. Compared with fixed annual 
screening for participants with no or mild NPDR, if all participants 
followed the recommended personalized screening interval given 
by the fundus model, the mean screening interval could be extended 
from 12 months to 31.97 months with 62.46% reduction in frequency, 
while the delayed detection of DR progression was minimal. Mean-
while, the DeepDR Plus system could also carry over well to Indians 
when integrated into clinical workflow, suggesting the generality  
of the system.

In our study, retinal vascular geometry and the fovea were impor-
tant image patterns for future occurrence of DR based on the DeepDR 
Plus system, which was consistent with state-of-the-art studies and our 
previous studies29–31,37,38. Regions of DR-related capillary dropout have 
been related to local underlying photoreceptor loss, and the fovea may 
provide information on visual function and foveal perfusion39,40. It has 
also been demonstrated that changes in the caliber of the retinal ves-
sel, especially widening of the venules, increase the risk of developing 
functional abnormalities in the eye and progression of DR41. Fractal 
dimension reflects underlying structural and/or functional alterations 
resulting from the effects of inflammation, neuronal abnormalities 
and other pathophysiological mechanisms42–44. In addition, increased 
vascular fractal dimension was associated with retinal neuropathy, 
which is an early event in the pathogenesis of DR45–48. The above studies 
might partially explain why retinal vascular geometry and the fovea are 
important image patterns for future occurrence of DR.

AI-based technology can assist DR screening, which is an unmet 
public health need18–20,49. Our study showed that an AI-driven personal-
ized screening interval could be incorporated to improve efficiency, 
equity and accessibility of DR screening, particularly in low-resource 
settings50. Because highly effective recall systems can improve adher-
ence to future clinical practice, integrating it into AI-based DR screen-
ing programs would further improve DR management. The use of AI 
in new classification of DR is promising51, and there are optimistic 
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prospects for future guideline modifications pertaining to the use of 
AI in DR management.

Our study had several limitations. First, our DeepDR Plus system 
was trained in a Chinese population. Additional training on a wider 
variety of clinical and demographic datasets could improve predictive 
performance and its usefulness across multiple populations. Second, 
certain intrinsic biases, such as unidentified confounders (for exam-
ple, myopia status), cannot be eradicated in the current retrospective 
study framework. Third, the performance of the fundus model may 
vary among patients with different treatment regimes, and this aspect 
still requires future testing for further ascertainment. Lastly, although 
the DeepDR Plus system was not actually applied to the clinic practice, 
our study could serve as proof of concept for developing large-scale 
personalized AI models for predicting DR progression and pave the way 
for future studies and randomized clinical trials to further evaluate the 
effectiveness of AI-driven DR screening and intervention. A foundation 
model for retinal images, named RETFound, was developed to provide 
a generalizable solution to improve model performance52. The integra-
tion of RETFound and DeepDR Plus system in the future may improve 
the predictive performance and may explore the application in early 
warning of other retinal diseases.

In summary, we developed DeepDR Plus, a system that could pre-
dict personalized risk and time to DR progression, solely based on 
baseline fundus images. The further real-world study showed that 
the integration of this system into the clinical workflow of patients 
could potentially extend the mean screening interval from the current  
12 months to 31.97 months (nearly 3 years), with less delayed detection 
of DR progression. Thus, our DeepDR Plus system has great potential to 
integrate into clinical and digital workflows, in the hope of promoting 
individualized intervention strategies for DR management.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-023-02702-z.
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Methods
Ethical approval
This study was approved by the Ethics Committee of Shanghai Sixth 
People’s Hospital and conducted in accordance with the Declaration 
of Helsinki. Informed consent was obtained from all participants. 
The study was registered on the Chinese Clinical Trial Registry 
(ChiCTR2300069400).

Data acquisition
To pretrain the DeepDR Plus system to make it learn features of DR, 
717,308 fundus images of 179,327 individuals with diabetes from the 
Shanghai Integration Model20,22 and SDPP were used. The SDPP is a 
community-based, longitudinal cohort comprising 79,284 participants 
who underwent physical examinations between December 2015 and 
November 2022 in Huadong Sanatorium and Shanghai Sixth People’s 
Hospital. At baseline, data on demographic information, anthropo-
metric indices, biochemical measurements and retinal images were 
recorded. After the baseline survey, 25,231 participants completed 
annual follow-up visits for at least 4 years.

To develop the DeepDR Plus system for predicting DR progres-
sion, fundus image data and clinical metadata were collected from the 
DRPS cohort. The DRPS cohort consists of two longitudinal cohorts. 
The dataset of the first cohort was extracted from the Hospital Infor-
mation System of the Department of Endocrinology and Metabolism 
at Shanghai Sixth People’s Hospital and contained 15,587 patients 
with diabetes, who underwent annual health checks during a 5-year 
period. The second cohort enrolled 3,513 participants with diabetes 
at baseline from Huadong Sanatorium, and the cohort participants 
completed 5-year follow-up annually. Data on demographic informa-
tion, anthropometric indices, biochemical measurements and retinal 
images were recorded at baseline and each visit. The diagnoses of DR 
grading and DME were based on the macular and optic disc-centered 
fundus images of each eye at baseline and follow-up visits.

We enrolled eight independent cohorts to serve as external vali-
dations. The ECHM (external dataset 1) is a community-based retro-
spective cohort study of participants who received comprehensive 
physical examination in Wuxi between 2006 and 2016. We enrolled 
2,141 participants with diabetes who underwent annual examinations 
for 5 years in the ECHM. The WTHM cohort (external dataset 2) is a 
retrospective longitudinal cohort containing 971 participants with 
diabetes who received routine physical examinations at the physical 
examination center of the Geriatric Department of Tongji Hospital 
between 2010 and 2021. The NDSP cohort (external dataset 3) was a 
prospective observational study conducted in Nicheng, a large com-
munity in Shanghai, and the study was aimed at screening and fol-
lowing the progression of metabolic disorders and cardiovascular 
diseases among the older population of the entire area. The baseline 
survey was conducted in 2013, and 1,194 participants with diabetes 
completed the follow-up survey in 2018. The PUDM cohort (external 
dataset 5) was a clinic-based retrospective cohort, containing 307 
participants with diabetes from the Peking Union Medical College 
Hospital, who received annual health checks between 2010 and 2016. 
The CUHK-STDR cohort (external dataset 4) was a prospective obser-
vational study involving 337 patients with diabetes28. Participants were 
recruited from CUHK Eye Centre in Hong Kong between July 2015 and 
November 2016 and had been consecutively followed up for at least 5 
years. The SEED cohort (external dataset 6) is a multiethnic longitudinal 
population-based study including Singaporean adults of Malay, Indian 
and Chinese descent18,53. In total, 1,699 individuals with diabetes from 
the SEED cohort with 5-year follow-ups were enrolled for external vali-
dation. The SiDRP (external dataset 7) was a retrospective longitudinal 
cohort covering all 18 primary care clinics across Singapore from 2010 
to 2015. It provided ‘real-time’ assessments of DR photographs by a 
centralized team of trained and accredited graders supported by a 
tele-ophthalmology information technology infrastructure54. A total 

of 3,284 individuals with diabetes from the cohort were enrolled for 
external validation. The BJHC (external dataset 8) is a community-based 
prospective study. In total, 835 patients with diabetes from the BJHC 
were included in this study. Baseline examinations were performed in 
the period between 2014 and 2016, and follow-up examinations were 
conducted between 2019 and 2020. In all external cohorts, two retinal 
photographs (macular and optic disc-centered) were captured for each 
eye at baseline and follow-up visits.

For the real-world study within a community-based prospective 
cohort study of Chinese adults, 5,214 participants were screened in 
March 2017, with participants without a self-reported history of dia-
betes undergoing a 75 g oral glucose tolerance test at baseline. Details 
of biochemical measurements and anthropometric data collection 
included body weight, waist circumference, blood pressure, lipid pro-
file and related factors of cardiometabolic diseases. There were 2,383 
participants with diabetes (non-DR or mild NPDR) enrolled in the final 
cohort according to World Health Organization 2019 criteria55, with 
603 participants in the IM group and 1,780 participants in the non-IM 
group. Participants in the IM group were provided regular clinical and 
metabolic measurements, advised by specialists in comprehensive hos-
pitals, and received lifestyle guidance and peer support at community 
health service centers24. Participants in this program were followed up 
annually for 5 years. In March 2022, 538 participants in the IM group and 
1,647 participants in the non-IM group completed the follow-up visit.

Diagnostic criteria
Diabetes is diagnosed by a self-reported history of diabetes, fasting 
plasma glucose ≥ 7.0 mmol l−1, 2-h plasma glucose ≥ 11.1 mmol l−1 and/
or HbA1c ≥ 6.5%56. The diagnosis and classification of DR and DME 
were evaluated according to the ICDRDSS23. The progression of DR was 
defined as the first deterioration of DR grades or new onset of DME, 
based on ICDRDSS during the follow-up.

Image quality control and grading procedure
For the DRPS, ECHM, WTHM, NDSP, PUDM, BJHC and Chinese 
real-world study datasets, the retinal fundus images were captured 
using a variety of standard fundus cameras, including Topcon TRC-NW6 
(Topcon), Canon CR1–Mark II (Canon) and Optos camera (Optos). All 
fundus images were read by a centered reading group consisting of 12 
certified ophthalmologists. Original retinal images were uploaded to 
an online platform20, and the images of each eye were assigned sepa-
rately to 2 authorized ophthalmologists. They labeled the images using 
the online reading platform and gave the graded diagnosis of DR. The 
third ophthalmologist who served as the senior supervisor confirmed 
or corrected when the diagnostic results were contradictory. The 
final grading result was dependent on the consistency among these 
3 ophthalmologists. The grading procedures for the CUHK-STDR28, 
SEED18,53, SiDRP18 and SN-DREAMS27 datasets are reported in previous 
publications. Ungradable images of all the datasets were excluded 
from the study.

Model development and training
We developed the DeepDR Plus system to predict DR progression. The 
DeepDR Plus system contains three models for predicting DR progres-
sion: the metadata model, the fundus model and the combined model. 
The risk and time to DR progression are estimated based on baseline 
inputs. The fundus model has a feature extractor to extract features 
from fundus images (details in ‘Model pretraining’) and a predictor 
to generate fundus score by estimating the survival time given the 
input data (details in ‘Model evaluation’). The fundus model utilizes 
the ResNet-50 as the backbone to extract features from the fundus 
images, and a soft-attention layer is used to select the most informative 
features. The metadata model inputs the metadata to produce survival 
predictions. The output of the fundus model (fundus score) combined 
with metadata is used as the input of the combined model. Metadata 
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includes age, gender, smoking status, duration of diabetes, baseline 
DR level, body mass index, glycated HbA1c, systolic blood pressure, 
diastolic blood pressure, triglycerides, low-density lipoprotein cho-
lesterol and high-density lipoprotein cholesterol. We also developed 
and compared the metadata model, the fundus model and the com-
bined model for predicting DR progression in three subgroups. The 
three subgroups included diabetes with non-DR to DR (subgroup 1),  
non-referable DR to referable DR (subgroup 2) and non-VTDR to VTDR 
(subgroup 3).

DR progression model
Considering that most of the longitudinal datasets in this study have 
a fixed follow-up exam period of about 1 year, the longitudinal dataset 
suffers from right censoring and interval censoring. The aim of the DR 
progression model is to estimate the survival function. To achieve this 
goal, we modeled the survival distribution of each individual object as 
a fixed-size mixture of Weibull distributions. The parameters from each 
Weibull distribution were randomly sampled and fixed. We used a deep 
learning network to estimate the weights for each distribution in the 
mixture model (a fixed-size mixture of Weibull distributions). During 
training, the parameters of the deep learning network were optimized 
by adjusting their values to maximize the likelihood, which represents 
the probability of the observed training data given by the DeepDR Plus 
system. The development of these algorithms is described in detail 
below (Extended Data Fig. 7).

Problem definition. We have a longitudinal dataset S containing mul-
tiple objects s, where each object si = ⟨xi, ti, t′i , ei⟩. Here, xi represents the 
feature vector (including image features and/or metadata at baseline). 
ei indicates whether the record is censored. In particular, ei = 1 for the 
uncensored records, and ei = 0 otherwise. ti represents the time to the 
last exam before the event of interest. If the event is observed, then t′i 
represents the time until that event occurred. However, if the event is 
not observed, then ti is equal to t′i. We used a mixture of Weibull distribu-
tions to model the survival function S(t) = ℙ(T > t) = ∫∞

t f(u)du of each 
participant. As the Weibull distribution is only valid for positive reals, 
it is suitable for survival analysis. Besides, the Weibull distribution has 
an analytic solution for the cumulative distribution function, which 
enables the use of gradient-based optimization for maximum likeli-
hood estimation in our research57.

Our goal is to estimate a set of parameters and weights for the 
mixture model given the input. The survival function of each patient 
is defined as follows:

ℙ(T > t|x) =
K
∑
i=1

ϕi|x

∞

∫
t

fi(u|αi,βi)du

where fi(u|αi,βi) =
βi

αi
( u
αi
)
βi−1 exp(−(u/αi)

βi ) is the probability distribution 

function of the Weibull distribution, and αi and βi are drawn from the 
Gaussian distribution logβi ∼ 𝒩𝒩(β0, 1/λ), logαi ∼ 𝒩𝒩(α0, 1/λ). α0, β0 and λ 
are prior parameters determined empirically. ϕ is a set of parameters 
for the mixture distribution containing multiple parameters ϕi|x.

The cumulative distribution function of the Weibull distribution 
is given by

ℙ(T⟨t|x) =
K
∑
i=1

ϕi|x(1 − exp(−(t/αi)
βi )).

The input feature matrix (including fundus images and clinical 
metadata) I is passed through the deep learning network f(⋅|ΘΘΘ) to deter-
mine all the parameters Θ.

We used a maximum likelihood estimation to estimate the 
parameters of the deep learning network. For uncensored data, the 
log-likelihood function can be written by

lnℙ(𝒟𝒟U|ΘΘΘ) = ln (
|𝒟𝒟U |
∏
i=1

ℙ(T > ti|X = xi,ΘΘΘ)ℙ(T < t′i |X = xi,ΘΘΘ))

=
|𝒟𝒟U |
∑
i=1

(lnℙ(T > ti|X = xi,ΘΘΘ) + lnℙ(T < t′i |X = xi,ΘΘΘ)).

Similarly, for censored data the log-likelihood function can be 
given by

lnℙ(𝒟𝒟C|ΘΘΘ) = ln (
|𝒟𝒟C |
∏
i=1

ℙ(T > ti|X = xi,ΘΘΘ))

=
|𝒟𝒟C |
∑
i=1

(lnℙ(T > ti|X = xi,ΘΘΘ)).

And we define the loss function as

L = −
|𝒟𝒟|
∑
i=1

ln
K
∑
j=1

ϕj|x(exp(−(ti/αj)
βj )) − γ

|𝒟𝒟|
∑
i=1

ei ln
K
∑
j=1

ϕj|x(1 − exp(−(t′i/αj)
βj )),

where γ is a hyperparameter that balances the weight of censored data 
and uncensored data.

Model pretraining
We used Momentum Contrast (MoCo, v2)58,59, which leverages 
self-supervised learning to produce a pretrained feature extractor. 
In this process, the feature extractor is trained on a large dataset of 
fundus images without the need for manual annotations. MoCo v2 
uses a momentum-based contrastive learning framework, where the 
pretrain framework in the fundus model learns to create positive and 
negative pairs of image patches from the same image59. We laid out 
the experimental setup in our pretrain process. We predominantly 
followed the experimental settings of MoCo v2, but adopted differ-
ent approaches in data augmentation and certain hyperparameter 
selections. We used the k-nearest neighbors monitor as a tool for 
self-supervised evaluation once per epoch. For data augmentation, 
our augmentation method included random image compression, ran-
dom blur, brightness jitter, contrast jitter, random gamma transform, 
random Gaussian noise and random rotation. Two 512 × 512 crops were 
taken for each fundus image in each iteration. For hyperparameter 
selections, we chose ResNet-50 as the encoder and stochastic gradi-
ent descent (SGD) as the optimizer. The input image resolution was 
512 × 512 pixels, the batch size was set to 256, and the MoCo v2 model 
was trained for 800 epochs. Grid search was used to obtain the opti-
mal hyperparameters as a learning rate = 10−3, weight decay = 10−4, 
SGD momentum = 0.9 and temperature τ = 1.0. The encoder momen-
tum coefficient was m = 0.996 and it was increased to 1 with a cosine 
schedule. We also conducted an ablation experiment to evaluate the 
predictive performance of the fundus model by pretraining with MoCo 
v2. The results showed that incorporating MoCo v2 into the training 
process could enhance the predictive performance of the fundus model  
(Supplementary Table 7).

Fundus model
For tasks of predicting DR progression, we used the pretrained 
ResNet-50 as the feature extractor. The self-attention layer60 was used 
in our network to emphasize the important parts in fundus features. 
Specifically, we added a standard dot-product self-attention layer61 to 
calculate the weight of each pixel in the feature map produced by the 
block3 of ResNet-50. The attention layer outputs the feature map with 
the same size as the input feature map to ensure it can be inserted into 
ResNet-50 seamlessly. In the interpretation stage, the attention feature 
map was reshaped to 32 × 32 and subsequently resized to H × W for 
illustration. In addition, a three-layer multilayer perceptron (MLP) as 
a predictor was used to estimate the weights of the fixed-size mixture 
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of Weibull distributions taking as input the features generated by the 
pretrained ResNet-50 model.

The fundus model was then trained on the training dataset using 
an SGD optimizer. In this study, we used grid search to find the optimal 
values and other hyperparameters. The fundus model was trained by 
back-propagation of errors in batches of 32 images resized to 512 × 512 
pixels for 50 epochs with a learning rate of 10−5. Data augmentation 
strategies used here were the same as those used during MoCo v2-based 
pretraining (details in ‘Model pretraining’).

Metadata model and combined model
We used a three-layer MLP in the metadata model and combined model. 
The metadata model takes the metadata as input and outputs the pre-
dicted time-to-event for the individual participant. For the combined 
model, the predicted time-to-event from the fundus model is added as 
an extra feature for the three-layer MLP. The metadata model, fundus 
model and combined model share the same loss function during the 
model development.

Model evaluation
To estimate the time of the target event, we first calculated the survival 
function using the baseline input, then we took the predicted time at 
the maximum point of the density function as the predicted time to 
event. Using this predicted time-to-event as the risk score, we evaluated 
the performance of the model in predicting whether the given par-
ticipant would have the target disease within 1, 2, 3, 4, or 5 years, using 
C-index and IBS. According to the scores of the baseline visit obtained 
from the fundus model, the participants were triaged into two groups: 
low and high risk according to the threshold defined by the upper and 
lower half of the predicted scores in groups of participants with differ-
ent DR progression outcomes. Kaplan–Meier curves were constructed 
for the risk groups, and the significance of differences between group 
curves was computed using the log-rank test. Time-dependent ROC 
curves were used to quantify model performance on validation sets at 
the time of interest. ROC curves were constructed at a landmark time 
from predicted risk scores of relative participants using the DeepDR 
Plus system.

Interpretation of AI predictions
A visualization tool is needed that would enable clinicians to under-
stand important clinical visual features in fundus images. To this end, 
following Google’s approach28, we first produced individual attention 
maps as visual explanations by inserting a self-attention layer into 
the architecture of the fundus model (details in ‘Fundus model’). The 
most predictive features captured by the DeepDR Plus system were 
highlighted for each individual image. To generate mean attention 
maps, all individual fundus images and individual attention maps 
were aligned based on their optic disc positions. That is, all fundus 
images and attention maps were translated to share the same optic disc 
position. Subsequently, final mean attention maps were obtained by 
averaging the ‘registered’ individual attention weights across multiple 
images. What’s more, we used the SHAP Python package62 to illustrate 
the importance of clinical features as well as the fundus score (that is, 
predicted time-to-event by fundus model) involved in the combined 
model. SHAP stands for Shapley Additive exPlanations63. The SHAP 
values of each feature represented their contribution to the model 
prediction. A positive SHAP value indicates the positive feature attri-
bution for the prediction of DR progression, whereas a negative SHAP 
value indicates the negative feature attribution for the prediction of 
DR progression. Feature importance was calculated by averaging the 
absolute SHAP values of each feature.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Individual-level patient data can be accessible with the consent of the 
data management committee from institutions and are not publicly 
available. Requests for the non-profit use of the fundus images and 
related clinical information should be sent to W.J. or T.Y.W. The data 
management committee will then review all the requests and grant (if 
successful). A formal data transfer agreement will be required upon 
approval. Generally, all these requests for access to the data will be 
responded to within 1 month. All data shared will be de-identified. 
For the reproduction of our algorithm code, we have also deposited a 
minimum dataset at Zenodo (https://zenodo.org/records/10076339), 
which is publicly available for scientific research and non-commercial 
use. Source data are provided with this paper.

Code availability
The code used in the current study for developing the algorithm is pro-
vided at https://github.com/drpredict/DeepDR_Plus. Python version 
3.9.0 was used for all statistical analvses in this study. The following 
third-party Python packages were used: Pytorch version 2.0.1 was used 
to build the DL models; Scikit-earn version 1.3.0 was used for calculat-
ing AUC. NumPy version 1.25.2 used for calculating C-index and Brier 
score. Lifelines version 0.27.7 was used for survival analysis.
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Extended Data Fig. 1 | Datasets flowchart. DRPS, Diabetic Retinopathy 
Progression Study; ECHM, The Eastern China Health Management; WTHM, 
Wuhan Tongji Health Management; NDSP, Nicheng Diabetes Screening Project; 
CUHK-STDR, The Chinese University of Hong Kong-Sight-Threatening Diabetic 

Retinopathy; PUDM: Peking Union Diabetes Management; SEED, the Singapore 
Epidemiology of Eye Diseases study; SiDRP, the Singapore National Diabetic 
Retinopathy Screening Program; BJHC, Beijing Healthcare Cohort Study.
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Extended Data Fig. 2 | Model performance in predicting time to progression 
of eyes with DR progression in the internal test set and external validation 
dataset–1,2,4, and 5. a, Bland–Altman plots for the agreement between the 
predicted and actual time to DR progression. The x axis represents the mean 
of predicted and actual time to DR progression (average DR progression time), 
and the y axis represents the difference between the two measurements. b, Box 

plots show the distribution of samples for the absolute error for three models 
(the fundus model, the metadata model and the combined model) (n = 859). 
The horizontal line indicates the median and the whiskers indicate the lowest 
and highest points within the interquartile ranges of the lower or upper quartile, 
respectively. Mann-Whitney U test was used for the comparison among the 
models. R2, coefficient of determination; MAE, mean absolute error.
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Extended Data Fig. 3 | Internal and external validation of the DeepDR Plus 
system in the prediction of the progression from non-DR to DR.  
a, Integrated Brier score (left) showing overall fit—lower is better and C-index 
(right) measuring model risk discrimination—higher is better—for various time 
points. b, Kaplan–Meier plots for the prediction of the progression from non-DR 
to DR. One-sided log-rank test was used for the comparison between the low- 
and high-risk groups. The P values on internal test set and external validation 

dataset–1,2,4, and 5 are 6.638×10−38, 2.181×10−46, 5.453×10−16, 1.167×10−12 and 
2.508×10−3, respectively. c, Prediction of the progression from non-DR to DR 
using time-dependent ROC curves. *The 1-year ROC of External-5 where only one 
case of the progression from non-DR to DR occurred that year. Shaded areas in a 
and b are 95% CIs. Areas under ROC curves are presented as mean values (lower 
bound of 95% CI, upper bound of 95% CI).
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Extended Data Fig. 4 | Internal and external validation of the DeepDR Plus 
system in the prediction of the progression from non-referable DR to 
referable DR. a, Integrated Brier score (left) showing overall fit—lower is better 
and C-index (right) measuring model risk discrimination—higher is better—for 
various time points. b, Kaplan–Meier plots for the prediction of the progression 
from non-referable DR to referable DR. One-sided log-rank test was used for the 

comparison between the low- and high-risk groups. The P values on internal 
test set and external validation dataset–1 and 2 are 6.995×10-24, 6.236×10-28 and 
3.500×10-9, respectively. c, Prediction of the progression from non-referable DR 
to referable DR using time-dependent ROC curves. Shaded areas in a and b are 
95% CIs. Areas under ROC curves are presented as mean values (lower bound of 
95% CI, upper bound of 95% CI).
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Extended Data Fig. 5 | Internal and external validation of the DeepDR Plus 
system in the prediction of the progression from non-vision-threatening 
DR to vision-threatening DR. a, Integrated Brier score (left) showing overall 
fit—lower is better and C-index (right) measuring model risk discrimination—
higher is better—for various time points. b, Kaplan–Meier plots for the prediction 
of the progression from non-vision-threatening DR to vision-threatening DR. 
One-sided log-rank test was used for the comparison between the low- and high-

risk groups. The P values on internal test set and external validation dataset–1 
and 2 are 8.528×10-8, 6.647×10-8 and 7.018×10-3, respectively. c, Prediction of the 
progression from non-vision-threatening DR to vision-threatening DR using 
time-dependent ROC curves. Shaded areas in a and b are 95% CIs. Areas under 
ROC curves are presented as mean values (lower bound of 95% CI, upper bound 
of 95% CI).

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02702-z

Extended Data Fig. 6 | The real-world study to assess the clinical outcome 
by integration with DeepDR Plus system. a, Flowchart of the study and actual 
DR progression rate among high-risk and low-risk evaluated by the Fundus and 
Metadata models in IM group and Non-IM group. b, Waterfall plot of predicted 
time to DR progression of participants in the real-world study by fundus model 

(DeepDR Plus). The waterfall plot displays the predicted time to DR progression 
of all participants in the real-world study by the fundus model. The individualized 
screening interval was set at an annual time point from baseline, which was just 
the year after the predicted patient-specific time to DR progression by the  
fundus model.
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Extended Data Fig. 7 | Illustration of the model structure of DeepDR Plus 
system. There are three models (fundus model, metadata model, and combined 
model) in the DeepDR Plus system, which can support different types of inputs. 
The fundus model has a fundus feature extractor and a predictor to generate 
a predicted time to progression of DR and fundus score. The fundus feature 
extractor is pretrained using Momentum Contrast (MoCo v2) to generate 

high-level feature vectors, while the predictor estimates the survival time in a 
fixed-size mixture of Weibull distributions based on the fundus feature vectors to 
generate the fundus score. The metadata and combined models share the same 
structure but differ in their inputs compared to the fundus model. The metadata 
model takes metadata as inputs, while the combined model takes both metadata 
and fundus score as inputs.
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Extended Data Table 1 | The distribution of diabetic retinopathy grades at baseline and the onset of the first DR grade 
deterioration in the developmental and validation datasets
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Extended Data Table 2 | Performance of the prediction model of DR progression based on metadata model, fundus model, 
and combined model in internal and external validation datasets
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2021. Fundus images in PUDM were collected in Beijing between 2010 and 2016. Fundus images in SEED cohort were collected in 
Singapore between 2004 and 2017. Fundus images in SiDRP cohort were collected in Singapore between 2010 and 2015. Fundus 
images in the BJHC were collected in Beijing between 2014 and 2020.

Outcomes The primary outcome was any DR progression. The secondary outcome was the progression from no retinopathy to DR, non-
referable DR to referable DR, and non-vision-threatening DR to vision-threatening DR. The diagnosis and classification of DR were 
evaluated by ophthalmologists according to the ICDRDSS22.
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