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Multi-ancestry study of the genetics  
of problematic alcohol use in over  
1 million individuals

Problematic alcohol use (PAU), a trait that combines alcohol use disorder 
and alcohol-related problems assessed with a questionnaire, is a leading 
cause of death and morbidity worldwide. Here we conducted a large 
cross-ancestry meta-analysis of PAU in 1,079,947 individuals (European, 
N = 903,147; African, N = 122,571; Latin American, N = 38,962; East Asian, 
N = 13,551; and South Asian, N = 1,716 ancestries). We observed a high 
degree of cross-ancestral similarity in the genetic architecture of PAU 
and identified 110 independent risk variants in within- and cross-ancestry 
analyses. Cross-ancestry fine mapping improved the identification of likely 
causal variants. Prioritizing genes through gene expression and chromatin 
interaction in brain tissues identified multiple genes associated with PAU. 
We identified existing medications for potential pharmacological studies 
by a computational drug repurposing analysis. Cross-ancestry polygenic 
risk scores showed better performance of association in independent 
samples than single-ancestry polygenic risk scores. Genetic correlations 
between PAU and other traits were observed in multiple ancestries, with 
other substance use traits having the highest correlations. This study 
advances our knowledge of the genetic etiology of PAU, and these findings 
may bring possible clinical applicability of genetics insights—together with 
neuroscience, biology and data science—closer.

Excessive alcohol use and alcohol use disorder (AUD) are leading causes 
of death and morbidity worldwide. Globally, alcohol use accounts for 
2.2% of female deaths and 6.8% of male deaths1. AUD is a chronic relaps-
ing disease associated with a host of adverse medical, psychiatric and 
social consequences2. According to the 2021 National Survey on Drug 
Use and Health, 29.5 million people in the United States aged 12 years 
and older had a Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition (DSM-5)3 diagnosis of AUD in the past year. However, fewer 
than 8.7% of diagnosed individuals had received any treatment for 
AUD. In addition to psychosocial treatments, only three medications—
disulfiram, naltrexone and acamprosate—are approved by the United 
States Food and Drug Administration for treating AUD, and another 
two (topiramate and gabapentin) are recommended for off-label use4.

Genetic and environmental factors contribute to AUD risk, with 
an observed heritability (h2) of ∼50% (ref. 5). Identifying genetic fac-
tors could advance efforts to prevent, identify and treat both medical 
and psychiatric aspects related to alcohol. There has been substantial 
progress made in genome-wide association studies (GWAS) of AUD 
and related phenotypes6–10, including measures of alcohol consump-
tion11,12. A prior GWAS of problematic alcohol use (PAU, N = 435,563), a 
phenotype based on a meta-analysis of highly genetically correlated 
(genetic correlations (rg) > 0.7) traits—AUD, alcohol dependence (AD) 
and alcohol-related problems identified using questions 4–10 of the 
Alcohol Use Disorders Identification Test–Problem (AUDIT–P) ques-
tionnaire)—identified 29 independent risk variants, predominantly in 
European (EUR) ancestry individuals9.
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Classification of Diseases (ICD)-diagnosed AUD (Ncase = 136,182 and 
Ncontrol = 692,594), DSM-IV AD (Ncase = 29,770 and Ncontrol = 70,282) and 
AUDIT–P (N = 151,119), together defined as PAU (based on high genetic 
correlations (rg > 0.7) across these measures). The total number of 
AUD and AD cases was 165,952, almost double the 85,391 cases in the 
previously largest study27.

Genome-wide association results for PAU
We performed GWAS and within-ancestry meta-analyses for PAU in five 
ancestral groups and then completed a cross-ancestry meta-analysis. In 
the EUR meta-analysis, 113,325 cases of AUD/AD, 639,923 controls and 
149,899 participants with AUDIT–P scores were analyzed (Extended 
Data Fig. 1a). After conditional analysis, 85 independent variants at 75 
loci reached GWS (Methods, Fig. 1b and Supplementary Table 1). Of 
these variants, 41 are in protein-coding genes including five missense 
variants (GCKR*rs1260326, ADH1B*rs75967634, ADH1B*rs1229984, 
SCL39A8*rs13107325 and BDNF*rs6265).

With the smaller sample numbers, the non-EUR GWAS yielded 
fewer variants associated with PAU than did the EUR GWAS (Supple-
mentary Table 1). The AFR meta-analysis found two independent ADH1B 
missense variants (rs1229984 and rs2066702) associated with AUD 
(Fig. 1b and Extended Data Fig. 1b), which have been reported previ-
ously10,28. In the LA samples from MVP, only ADH1B*rs1229984 (lead 
SNP) was identified (Extended Data Fig. 1c). Two independent risk 
variants, ADH1B*rs1229984 and BRAP*rs3782886, were reported in 
EAS previously29. In the small SAS meta-analysis, one intergenic variant 
(rs12677811) was associated with AUD; however, this SNP was present 
only in the UKB (Extended Data Fig. 1d).

Of the 85 lead variants identified in the EUR GWAS, 76 were 
either directly analyzed or had proxy variants in AFR (Methods,  
Fig. 1c and Supplementary Table 2), 64 of which had the same direc-
tion of effect (sign test P = 1.00 × 10−9). Of these, 23 were nominally 
associated (P < 0.05) and 6 were significantly associated with AUD after 
multiple-testing correction (P < 6.58 × 10−4). In LA, 15 of the EUR GWS 
variants were nominally significant (P < 0.05) and 2 were significantly 
associated with AUD (rs12048727 and rs1229984). In EAS, five variants 
were nominally significant and two were significantly associated with 
AUD (rs1229984 and rs10032906). Only two variants were nominally 
associated with PAU in SAS (rs1229984 was not present in SAS).

The SNP-based heritability (h2) for PAU and AUD (excluding 
AUDIT–P from UKB) in EUR, AFR and LA was significant: observed-scale 
h2 ranged from 6.6% to 12.7%, and liability-scale h2 ranged from 12.4% 
to 16.2% (Fig. 1d and Supplementary Table 3).

We performed a secondary, sex-stratified (sex was concordant 
between self-reported and genetically inferred) GWAS in seven EUR 
samples (Methods). In the analyzed males (N = 639,746; Extended 
Data Fig. 2a), we identified three additional variants associated with 
PAU: TRIM54*rs142346138 (Pmales = 4.49 × 10−8 and Pfemales = 0.15), 
SLC25A48*rs199537352 (Pmales = 1.37 × 10−8 and Pfemales = 0.98) and 
CLMN*rs113464470 (Pmales = 9.90 × 10−9 and Pfemales = 0.38). In females 
(N = 143,198; Extended Data Fig. 2b), we identified two additional vari-
ants: intergenic rs72772203 (Pfemales = 1.11 × 10−8 and Pmales = 0.28) and 
TLK2*rs181007867 (Pfemales = 1.43 × 10−8 and Pmales = 0.40). Observed-scale 
h2 was estimated to be 8.4% (s.e. 0.3%, P = 1.69 × 10−133) in males and 4.5% 
(s.e. 0.5%, P = 9.72 × 10−24) in females. There was high genetic correlation 
between males and females (rg = 0.84, s.e. 0.04 and P = 2.39 × 10−86). 
Overall, we found a similar genetic architecture of PAU in males and 
females, with possible sex-specific effects at a few loci.

High genetic correlations were observed across the EUR, AFR and 
LA ancestries (Fig. 1e and Supplementary Table 4). The genetic-effect 
correlation (ρge) is 0.71 (s.e. 0.09, P = 6.16 × 10−17) between EUR and AFR, 
0.85 (s.e. 0.09, P = 3.14 × 10−22) between EUR and LA, and 0.88 (s.e. 0.18, 
P = 1.58 × 10−6) between AFR and LA. The genetic-impact correlation (ρgi) 
is 0.67 (s.e. 0.07, P = 2.78 × 10−21) between EUR and AFR, 0.86 (s.e. 0.09, 
P = 3.52 × 10−20) between EUR and LA, and 0.72 (s.e. 0.16, P = 9.63 × 10−6) 

A key finding from recent studies is that both AUD and AUDIT–P differ 
phenotypically and genetically from typical alcohol consumption7,10,13.  
AUD and AUDIT–P index aspects of excessive alcohol intake and higher 
risk of which correlate with genetic liability to psychiatric and psycho-
social factors (for example, higher risk for major depressive disorder 
and lower educational attainment (EA)). An item-level study of the 
AUDIT questionnaire confirmed a two-factor structure at the genetic 
level, underscoring unique genetic influences on alcohol consumption 
and alcohol-related problems14 and noted that the genetics of drink-
ing frequency were confounded by socioeconomic status. A similar 
pattern—genetic distinctions between substance use disorder (SUD) 
versus nondependent use—has also been observed for cannabis use 
disorder and cannabis use15. Furthermore, aggregating across multiple 
SUDs suggests that problematic and disordered substance use has a 
unique genetic architecture that, while shared across SUDs, does not 
overlap fully with nondependent substance use per se16.

Notwithstanding prior discovery of multiple genome-wide sig-
nificant (GWS) loci for PAU, there are major gaps in our understanding 
of its genetic underpinnings. First, the estimated single-nucleotide 
polymorphism (SNP)-based heritability (h2) of AUD and PAU ranges 
from 5.6% to 10.0%, reflecting substantial ‘missing heritability’. Second, 
most of the available samples used in human genetic studies—includ-
ing for AUD—are from individuals of EUR genetic ancestry; lack of 
ancestral diversity is a major problem both for understanding the 
genetics of these traits, and for potential applications of these genetic 
discoveries to global populations. Our previous study in the Million 
Veteran Program (MVP) analyzed AUD in multiple ancestral groups10. 
However, non-EUR samples (N = 72,387) were far smaller than EUR 
samples (N = 202,004), resulting in inadequate statistical power and 
unbalanced gene discovery across ancestral backgrounds.

In this Article, to improve our understanding of the biol-
ogy of PAU in multiple populations, we conducted substantially 
larger ancestry-specific GWAS of PAU followed by a cross-ancestry 
meta-analysis in 1,079,947 individuals from multiple cohorts. We iden-
tified 85 independent risk variants in participants of EUR ancestry 
and 110 in the within-ancestry and cross-ancestry meta-analyses. We 
investigated the shared genetic architectures of PAU across different 
ancestries and performed fine mapping for causal variants by com-
bining information from multiple ancestries. We identified dozens of 
genes linked to brain with convergent evidence. A drug repurposing 
analysis identified potential medications that have the potential to 
inform further pharmacological studies. Overall, these findings sub-
stantially augment the number of loci that contribute to the risk of 
PAU, which increases our power to investigate the causal relationships 
of PAU with other diseases, demonstrating similarity in the genetic 
architecture across ancestries and helps identify potential druggable 
targets whose therapeutic potential requires empirical evaluation.

Results
Ancestrally diverse data collection
To extend our understanding of the genetics of PAU—a phenotype 
comprising AUD and alcohol-related problems measured by the 
AUDIT–P—we collected data from newly genotyped individuals 
(most from the MVP17,18) and previously published data from multi-
ple cohorts (MVP, FinnGen19 and UK Biobank (UKB)20, the only cohort 
that includes AUDIT–P data), the Psychiatric Genomics Consortium 
(PGC)8, iPSYCH21,22, the QIMR Berghofer Medical Research Institute 
(QIMR Berghofer) cohorts23–25, Yale–Penn 3 and East Asian (EAS) 
cohorts (a study of the genetics of methamphetamine dependence 
in Thailand (Thai METH), Han Chinese–Illumina Global Screening 
Array (GSA) and Han Chinese–Illumina Cyto12 array (Cyto))26) result-
ing in a total of 1,079,947 individuals (Table 1). Five ancestral groups 
were analyzed (Fig. 1a): EUR (N = 903,147), African (AFR, N = 122,571), 
Latin American (LA, N = 38,962), EAS (N = 13,551) and South Asian (SAS, 
N = 1,716). As in our previous study9, we utilized data on International 
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between AFR and LA. The estimates involving smaller study popula-
tions were not robust (Bonferroni P > 0.05).

In the cross-ancestry meta-analysis of all available datasets, we 
identified 100 independent variants at 90 loci (Fig. 1f and Supple-
mentary Table 1); 80 have not been previously reported in associa-
tion with PAU. Of these, 53 variants were in protein-coding genes, of 
which 9 are missense variants: GCKR*rs1260326; ADH1B*rs75967634, 
rs1229984 and rs2066702; SCL39A8*rs13107325; OPRM1*rs1799971; 
SLC25A37*rs2942194; BDNF*rs6265 and BRAP*rs3782886. The 
cross-ancestry meta-analysis identified 24 more risk variants than the 
EUR meta-analysis, but 9 EUR variants fell below GWS (P values ranging 
from 5.26 × 10−6 to 9.84 × 10−8). In total, 110 unique variants were associ-
ated with PAU in either the within-ancestry or cross-ancestry analyses 
(Fig. 1b and Supplementary Table 1).

Within- and cross-ancestry causal variant fine mapping
We performed within-ancestry fine mapping for the 85 clumped regions 
with independent lead variants in EUR (Supplementary Tables 5 and 6). 
A median number of 115 SNPs were included in each region to estimate 
the credible sets with 99% posterior inclusion probability (PIP) of causal 
variants. After fine mapping, the median number of SNPs constituting 
the credible sets was reduced to 20. Among the 85 regions, there were 
5 credible sets that include only a single variant with PIP ≥99% (presum-
ably indicating successful identification of specific causal variants): 
rs1260326 in GCKR, rs472140 and rs1229984 in ADH1B, rs2699453 (inter-
genic) and rs2098112 (intergenic). Another 19 credible sets contained 
≤5 variants (Fig. 2a).

We performed cross-ancestry fine mapping to identify credible 
sets with 99% PIP for causal variants proximate to 92 independent lead 

Table 1 | Demographics for cohorts in the meta-analysis of PAU

Cohorts Traits Ncase Ncontrol Ntotal Nfemale (%) Neffective Ref. a

EUR ancestry

MVP AUD 80,028 368,113 448,141 33,345 (7.4) 262,947 9 and new

FinnGen AUD 8,866 209,926 218,792 123,579 (56.5) 34,027 Newb

UKB–EUR1 AUDIT–P – – 132,001 74,113 (56.1) 132,001 9 and new

UKB–EUR2 AUDIT–P – – 17,898 10,529 (58.5) 17,898 New

PGC AD 9,938 30,992 40,930 20,933 (51.1) 23,075 8d

QIMR AGDS AD 6,726 4,467 11,193 8,605 (76.9) 10,737 New

QIMR TWINS AD 2,772 5,630 8,402 4,922 (58.6) 7,430 8 and new

QIMR GBP AD 1,287 751 2,038 1,435 (70.4) 1,897 New

iPSYCH1 AD 2,117 13,238 15,355 8,077 (52.6) 7,301 New

iPSYCH2 AD 1,024 5,732 6,756 3,607 (53.4) 3,475 New

YP3 AD 567 1,074 1,641 854 (52.0) 1,484 New

Subtotal PAU 113,325 639,923 903,147 289,999 (32.1) 502,272

AFR ancestry

MVP AUD 36,330 79,100 115,430 16,084 (13.9) 99,583 10 and new

PGC AD 3,335 2,945 6,280 3,124 (49.7) 4,991 8

YP3 AD 451 410 861 430 (50.0) 959 New

Subtotal AUD 40,116 82,455 122,571 19,638 (16.0) 105,433

LA

MVP AUD 10,150 28,812 38,962 3,731 (9.6) 30,023 10 and new

EASa ancestry

MVP AUD 701 6,254 6,955 747 (10.7) 2,521 26

Han Chinese–GSA AD 533 2,848 3,381 1,012 (29.9) 1,796

Thai METH–MEGA AD 794 1,576 2,370 1,008 (42.5) 2,112

Thai METH–GSA AD 127 405 532 263 (49.4) 387

Han Chinese–Cyto AD 99 214 313 0 (0) 271

Subtotal AUD 2,254 11,297 13,551 3,030 (22.4) 7,087

SAS ancestry

MVP AUD 107 389 496 67 (13.5) 336 10 and new

UKB–SAS AUDIT–P – – 1,220 535 (43.9) 1,220 New

Subtotal PAU 107 389 1,716 602 (35.1) 1,556

Total PAU 165,952 762,876 1,079,947 317,000 (29.4) 646,371

Note: aData either published in previous alcohol GWAS or newly included for this project. bFinnGen summary statistics were downloaded from FinnGen data freeze v5 (https://r5.finngen.fi/). 
cIncluded related individuals from UKB. dReran the PGC AD GWAS in EUR excluding two Australian cohorts. Cohorts are described in the Methods. UKB–EUR1: genetically defined EUR ancestry 
White-British by UKB; UKB–EUR2: genetically defined EUR non-White-British participants (Methods); AGDS, the Australian Genetics of Depression Study; TWINS, the Australian twin family 
study of AUD; GBP, the Australian Genetics of Bipolar Disorder Study; iPSYCH1, phase 1 of iPSYCH; iPSYCH2, phase 2 of iPSYCH; YP3, Yale–Penn 3; Neffective, effective sample size; MEGA, Illumina 
Multi-Ethnic Global Array.
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variants in the cross-ancestry meta-analysis (Supplementary Tables 7 
and 8). The median number of SNPs in the credible sets was nine. We 
found that 13 credible sets contain only a single variant with PIP ≥99%; 
47 credible sets contain ≤5 variants (Fig. 2b). For example, fine map-
ping the region proximate to lead SNP rs12354219 (which maps to DYPD 
on chromosome 1) identified rs7531138 as the most likely potential 
causal variant (PIP of 48%), although this variant and rs12354219 (PIP 
of 11%) are in high linkage disequilibrium (LD) in different populations  
(r2 ranges from 0.76 to 0.99). In a cross-ancestry meta-analysis, 
rs7531138-T (the risk allele for PAU) was significantly positively associ-
ated with schizophrenia (P = 1.04 × 10−8), but rs12354219 (P = 6.18 × 10−8) 
was not significant30. Rs7531138-T was also associated with decreased 
EA (P = 1.74 × 10−11), and again, rs12354219 was not (P > 5 × 10−8)31.

To compare within- and cross-ancestry fine mapping, we per-
formed within-ancestry fine mapping for the above 92 regions using 
the same SNP sets and EUR-only LD information (Fig. 2b,c). The median 
number of SNPs in the credible sets was 13, with 7 credible sets con-
taining a single variant and 26 containing ≤5 variants, indicating that 
cross-ancestry fine mapping improved causal variant identification, 
consistent with other studies reporting improved fine mapping by 
including other ancestries12.

Gene-based association analysis
We used Multivariate Analysis of Genomic Annotation (MAGMA)32 
to perform gene-based association analyses. One hundred thirty 

genes in EUR, nine in AFR and six in LA (for AFR and LA populations, all  
mapped to the ADH gene cluster), and seven in EAS (mapped to either 
the ADH gene cluster or the ALDH2 region) were associated with PAU 
or AUD (Supplementary Table 9). There were no significant findings 
in SAS.

TWAS
We used S-PrediXcan33 to identify predicted gene expression associa-
tions with PAU in 13 brain tissues. In total, 426 significant gene–tissue 
associations were identified, representing 89 unique genes (Sup-
plementary Table 10). Five genes showed associations with PAU in 
all available brain tissues, including aminomethyltransferase (AMT), 
yippee like 3 (YPEL3), ecotropic viral integration site 2A (EVI2A), 
ecotropic viral integration site 2B (EVI2B) and long noncoding RNA 
(CTA-223H9.9). We also observed associations between PAU and the 
expression of alcohol dehydrogenase genes (ADH1B in the putamen 
(basal ganglia), ADH1C in ten brain tissues and ADH5 in cerebellar 
hemisphere and cerebellum). Among the brain tissues, caudate (basal 
ganglia) had the most genes whose expression was associated with 
PAU (42 genes), followed by the putamen (basal ganglia, 39 genes). 
Transcriptome-wide association analyses (TWAS) that integrated 
evidence across 13 brain tissues using S-MultiXcan34 to test joint 
effects of gene expression variation identified 121 genes (81 shared 
with S-PrediXcan) whose expression was associated with PAU (Sup-
plementary Table 11).
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Fig. 1 | Genetic architecture of PAU. a, Sample sizes in different ancestral 
groups. b, Relationship between sample size and number of independent 
variants identified. Kranzler et al., 2019: cross-ancestry meta-analysis for AUD; 
Zhou et al., 2020: PAU in EUR. c, Lookup for cross-ancestry replication in AFR 
for the 85 independent variants in the EUR meta-analysis. Of the 85 variants, 76 
could be analyzed in AFR (Methods). A sign test was performed for the number 
of variants with same direction of effect (64/76, binomial test P = 1.0 × 10−9). 
Twenty-three variants were nominally significant (P < 0.05) in AFR and six were 
significant after multiple correction (P < 0.05/76 = 6.58 × 10−4). d, Observed-

scale and liability-scale SNP-based heritability (h2) in multiple ancestries. For 
PAU in EUR, N = 903,147 and for AUD, N = 753,249 (EUR), N = 122,571 (AFR) and 
N = 38,962 (LA). The error bar is the 95% confidence interval. e, Cross-ancestry 
genetic-effect correlation (ρge) and genetic-impact correlation (ρgi) among EUR 
(N = 903,147), AFR (N = 122,571) and LA (N = 38,962) ancestries. The error bar is 
the 95% confidence interval. f, Genome-wide association results for PAU in the 
cross-ancestry meta-analysis (N = 1,079,947 and Neffective = 646,371). Effective 
sample size-weighted meta-analyses were performed using METAL. Red line is 
significance threshold of 5 × 10−8.
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Linking risk genes to brain chromatin interaction
We used Hi-C-coupled MAGMA (H-MAGMA)35 to implicate risk genes 
associated with PAU by incorporating brain chromatin interaction 
profiles. A total of 1,030 gene–chromatin associations were identified 
in six brain Hi-C annotations, representing 401 unique genes (Supple-
mentary Table 12). Fifty-eight genes showed association with chromatin 
interaction in all six annotations, including ADH1B, ADH1C, DRD2, EVI2A 
and others that also showed evidence by TWAS in brain tissues.

Convergent evidence linking association to brain
We examined overlapped genes by both gene-based association analy-
sis and TWAS in brain tissues and/or H-MAGMA analysis using Hi-C 
brain annotations. Among the 130 genes associated with PAU in EUR, 
62 were also implicated by TWAS findings either by single brain tissue 
(S-PrediXcan) or across brain tissues (S-MultiXcan), 82 have evidence 
of brain chromatin interaction and 51 have evidence from both TWAS 
and Hi-C annotations including ADH1B, DRD2, KLB and others (Sup-
plementary Table 9).

Probabilistic fine mapping of TWAS
We performed fine mapping for TWAS using FOCUS36, a method that 
estimates credible gene sets predicted to include the causal gene, 
which can be prioritized for functional assays. We detected 53 credible 
sets at a nominal confidence level (set at 90% PIP). These contained 
145 gene–tissue associations with an average PIP of 32% (Supplemen-
tary Table 13). For the 19 gene–tissue associations having PIP >90%, 9 
are from brain tissues (for example, ZNF184 expression in the hypo-
thalamus (PIP of 0.94%), MTCH2 expression in the nucleus accumbens 
(basal ganglia) (PIP of 99%), SLC4A8 expression in the dorsolateral 
prefrontal cortex (PIP of 98%), YPEL3 expression in the cerebellum (PIP 
of 100%) and CHD9 expression in the dorsolateral prefrontal cortex 
(PIP of 100%).

Drug repurposing
Independent genetic signals from the cross-ancestry meta-analysis 
were searched in OpenTargets.org37 for druggability and medica-
tion target status based on their nearest genes. Among them, OPRM1  
implicated naltrexone and GABRA4 may implicate acamprosate, 
both current treatments for AUD. Additionally, DRD2, CACNA1C, 
DPYD, PDE4B, KLB, BRD3, NCAM1, FTO and MAPT were identified as  
druggable genes.

From the drug repurposing analysis using S-PrediXcan results,  
287 compounds were significantly correlated with the tran-
scriptional pattern associated with risk for PAU (Supplementary  
Table 14). Of these 287, 141 medications were anticorrelated with the 
transcriptional pattern. Of those, trichostatin-a (P = 3.29 × 10−35), melp-
erone (P = 6.88 × 10−11), triflupromazine (P = 7.37 × 10−10), spironolac-
tone (P = 2.45 × 10−9), amlodipine (P = 1.42 × 10−6) and clomethiazole 
(P = 1.30 × 10−5) reversed the transcriptional profile associated with 
increased PAU risk, targeting a gene near an independent significant 
locus in the cross-ancestry GWAS.

Cross-ancestry PRS association
We tested the cross-ancestry polygenic risk score (PRS) association 
with AUDIT–P in UKB using AUD summary data from EUR (leaving out 
the UKB AUDIT–P data), AFR and LA. PRS-CSx38 was applied to calculate 
the posterior effect sizes for each SNP by leveraging LD diversity across 
discovery samples. We validated the PRS associations with AUDIT–P in 
UKB–EUR2 and tested them in UKB–EUR1 (Table 1). In the UKB–EUR1 
samples, the EUR-based AUD PRS was significantly associated with 
AUDIT–P (Z score 11.6, P = 3.14 × 10−31, covariate-adjusted R2 = 3.31% 
and ΔR2 = 0.11%). By incorporating GWAS data from multiple ances-
tries, the AUD PRS was more significantly associated with AUDIT–P and 
explains more variance (Z score 13.6, P = 2.44 × 10−42, covariate-adjusted 
R2 = 3.35% and ΔR2 = 0.15%) than the single-ancestry AUD PRS.

Genetic correlations
We confirmed significant positive genetic correlations (rg) in EUR 
between PAU and substance use and psychiatric traits (Supplemen-
tary Table 15). AD8 showed the highest correlation with PAU (rg = 0.85, 
s.e. 0.07 and P = 4.49 × 10−34), followed by maximum habitual alcohol 
intake39 (rg = 0.79, s.e. 0.03 and P = 1.24 × 10−191) and opioid use disor-
der (OUD)40 (rg = 0.78, s.e. 0.04 and P = 1.20 × 10−111). We next tested 
rg between AUD and 13 published traits with a large GWAS in AFR 
(Fig. 3 and Supplementary Table 16). Maximum habitual alcohol 
intake39 (rg = 0.67, s.e. 0.15 and P = 8.13 × 10−6) showed the highest 
correlation with AUD, followed by OUD40 (rg = 0.62, s.e. 0.10 and 
P = 6.70 × 10−10) and smoking trajectory41 (rg = 0.57, s.e. 0.08 and 
P = 3.64 × 10−4).

PRS for phenome-wide associations
In the phenome-wide association studies (PheWAS) using PsycheMERGE 
data, 58 phenotypes were significantly associated with the PAU PRS in 
EUR (Supplementary Table 17 and Extended Data Fig. 3). In AFR, AUD 
(odds ratio (OR) 1.25, s.e. 0.04 and P = 2.62 × 10−7), alcohol-related dis-
orders (OR 1.21, s.e. 0.04 and P = 4.11 × 10−7) and tobacco use disorder 
(OR 1.09, s.e. 0.02 and P = 6.98 × 10−6) were significantly associated with 
AUD PRS (Supplementary Table 18 and Extended Data Fig. 4).

In the Yale–Penn EUR subsample, the PRS of PAU was associated 
with 123 traits, including 26 in alcohol, 39 in opioid, 24 in cocaine and 17 in 
tobacco categories (Supplementary Table 19 and Extended Data Fig. 5),  
indicating high comorbidity and shared genetic components across 
SUDs. In the Yale–Penn AFR subsample, the AUD PRS was associated 
with six alcohol-related traits, including DSM-5 AUD criterion count, 
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alcohol-induced blackouts and frequency of alcohol use (Supplemen-
tary Table 20 and Extended Data Fig. 6).

Discussion
We report here the largest multi-ancestry GWAS for PAU so far, compris-
ing over 1 million individuals and including 165,952 AUD/AD cases. The 
inclusion of multiple ancestries both broadened the findings and dem-
onstrated that the genetic architecture of PAU is substantially shared 
across these populations. Cross-ancestry fine mapping improved the 
identification of potential causal variants, and cross-ancestry PRS analy-
sis was a better predictor of alcohol-related traits in an independent 
sample than single-ancestry PRS. We prioritized multiple genes with 
convergent evidence linking association to PAU with gene expression 
and chromatin interaction in the brain, and we investigated genetic 
correlations with multiple traits in AFR, also not possible previously. 
On the basis of these advances, we identified existing medications 
predicted to be potential treatments for PAU, which can be tested.

A total of 110 variants were associated with PAU in either 
within-ancestry or cross-ancestry analyses. These include rs1799971 
in OPRM1 that encodes the μ opioid receptor, which plays roles in 
regulating pain, reward and addictive behaviors. This variant was also 
associated with OUD on multiple large GWAS40,42. Previously, there were 
inconsistent candidate gene association results for OPRM1*rs1799971 
and AUD (reviewed in ref. 43). This is the first GWAS to confirm the 
association of rs1799971 in PAU; the risk allele is the same as for OUD. 
In contrast to an apparent EUR-specific effect of rs1799971 on OUD, 
the OPRM1 association with PAU (P = 6.16 × 10−9) was detected in the 
cross-ancestry meta-analysis. Further investigation in larger non-EUR 
samples is needed to assess the association of this SNP with SUDs in 
different population groups. Rs6265 in brain-derived neurotrophic 
factor (BDNF) encodes a member of the nerve growth factor family of 
proteins and has been investigated intensively in the past decades44; 
studies showed that this variant is associated with smoking traits11 and 
externalizing behavior45. Rs13107325 in solute carrier family 39 member 
8 (SLC39A8) has been associated with schizophrenia46, substance use10,11 
and many glycemic traits, and is critical for glycosylation pathways47.

The values of liability-scale h2 of AUD of 12.4% (in LA) to 16.2% (in 
AFR) can be explained by the current study. Accounting for more of 
the heritability of a complex trait depends on the genetic architec-
tures of the trait and the power of the study samples. For example, in 
a whole-genome sequencing study of height, the SNP heritability of 
height was estimated to be 0.68 (s.e. 0.1), which is close to the pedi-
gree estimates of 0.7–0.8 (ref. 48). This is probably due in part to the 
accuracy with which height is measured and its relative stability once 
adulthood is reached, and rare variants, in particular those in regions 

of low LD, that are a major source of the still-missing heritability. A 
whole-genome sequencing study is warranted to increase our knowl-
edge of the heritability and to identify rare variants contributing to 
risk for PAU/AUD.

Previous studies have shown that PAU is a brain-related trait with 
evidence of functional and heritability enrichment in multiple brain 
regions. We performed gene-based association, TWAS in brain tissues, 
and H-MAGMA analysis in brain annotations. We identified 51 genes 
that were supported across multiple levels of analysis. For example, 
ADH1B expression in putamen was associated with PAU by TWAS, and 
with chromatin interaction in all 6 brain annotations by H-MAGMA, 
indicating additional potential biological mechanisms for the associa-
tion of ADH1B with PAU risk through gene expression and/or chroma-
tin interactions in brain, potentially independent of the well-known 
hepatic effect on alcohol metabolism. DRD2 expression in cerebellar 
hemisphere and chromatin interaction in all brain annotations were 
also associated with PAU risk. Alcohol metabolism, as is well reported, 
has effects that modulate alcohol’s aversive and reinforcing effects49, 
but also contributes to brain histone acetylation, gene expression and 
alcohol-related associative learning in mice50.

In other fields, there has been progress in translating recent knowl-
edge on genetic mechanisms into more effective therapeutic applica-
tions51. A UKB whole-exome sequencing study identified 564 genes 
associated with health-related traits, include 36 (6.4%) gene targets of 
drugs approved by the Food and Drug Administration, which is more 
common than in the remaining genes (1.9% are gene targets of approved 
drugs)52. Several genes associated with PAU encode proteins that inter-
act with medications approved to treat AUD (for example, GABRA4 
with acamprosate and OPRM1 with naltrexone53). Our multivariate 
analysis provided evidence for several potentially repurposable drugs. 
Trichostatin-a, a histone deacetylase inhibitor, showed effects on H3 
and H4 acetylation and neuropeptide Y expression in the amygdala, 
and prevented the development of alcohol withdrawal-related anxiety 
in rats54. Spironolactone, a mineralocorticoid receptor antagonist, 
reduced alcohol use in both rats and humans in a recent study55. Clome-
thiazole, a GABA receptor antagonist, also showed an effect in treating 
alcohol withdrawal syndrome56. We anticipate that the prioritization of 
genes in this study will lead to follow-up studies that could improve the 
likelihood of successful drug development. However, the pathway from 
genetic variants to the function of encoded protein to a biologically 
important therapeutic target is complicated and intricate, requiring 
more work in many modalities.

The PheWAS analyses identified associations with medical 
phenotypes in EUR. With increasing number of AFR GWAS now pub-
lished, mainly from MVP, we were able to estimate genetic correlations 
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between AUD and a limited set of traits in AFR. As in EUR, AUD in AFR 
was genetically correlated with substance use traits including OUD, 
smoking trajectory (that identifies groups of individuals that follow 
a similar progression of smoking behavior), and maximum habitual 
alcohol intake. PheWAS of PRS in AFR from PsycheMERGE and Yale–
Penn confirmed that AUD is genetically correlated with substance use 
traits. The lack of a wider set of phenotypes for comparison by ancestry 
is a continuing limitation.

Limitations include that the differences in ascertainment and phe-
notypic heterogeneity across cohorts might bias the results. Despite 
the high genetic correlation between AUD and AUDIT–P, they are not 
identical traits, which introduces heterogeneity. Also, differences 
in ascertainment among the cohorts may have introduced biases; 
for example, the QIMR Berghofer Australian Genetics of Depression 
Study (AGDS) cohort has high major depression comorbidity, and 
the Australian Genetics of Bipolar Disorder Study (GBP) cohort has 
high bipolar disorder comorbidity. Heterogeneity would, however, 
have been more likely to limit discovery than to create false positives. 
Additionally, although we tried to include all available samples for prob-
lematic drinking in multiple ancestries, the sample sizes in the non-EUR 
ancestries were still small for gene discovery and downstream analyses. 
The collection of data from individuals of diverse genetic ancestries 
is a critical next step in this field. With more multi-ancestral biobanks 
and large consortia becoming available, including future releases of 
data from MVP, the Global Biobank Meta-analysis Initiative57 and the 
All of Us Research Program58, we anticipate that the gap between find-
ings in EUR and other populations will diminish. Confounding effects, 
including socioeconomic status, may bias our results; the rg with EA is 
−0.21 (P = 7.57 × 10−31), indicating a shared genetic architecture between 
PAU and EA, a socioeconomic factor that influences many psychiatric 
traits (and nonpsychiatric traits as well)31. Genetic nurture, or indirect 
genetic effects—effects of alleles in parents on offspring through the 
environment—exist in many GWAS59. Imputation of parental genotypes 
using family data could improve estimates of direct genetic effects for 
PAU60. We note that the current findings are not sufficient for clinical 
risk prediction at the individual level, given the limited SNP-based 
heritability and small proportion of variance explained by PRS.

In summary, we report here a large multi-ancestry GWAS and 
meta-analysis for PAU, in which we focused our analyses in three main 
directions. First, we demonstrated that there is substantial shared 
genetic architecture of PAU across multiple populations. Second, we 
analyzed gene prioritization for PAU using multiple approaches, includ-
ing cross-ancestry fine mapping, gene-based association, brain-tissue 
TWAS and fine mapping, and H-MAGMA for chromatin interaction. We 
identified many genes associated with PAU with biological support, 
extending our understanding of the brain biology that substantially 
modifies PAU risk and expands opportunities for investigation using 
in vitro methods and animal models. These genes are potential targets 
for downstream functional studies and studies of potential pharma-
cological intervention based on the drug repurposing results. Third, 
we investigated the genetic relationship between PAU and many traits, 
which was possible in populations of AFR ancestries for the first time.
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Methods
Ethics
The central Veterans Affairs (VA) institutional review board (IRB) 
approved the MVP study. All relevant ethical regulations for work 
with human subjects were followed in the conduct of the study and 
informed consent was obtained from all participants. The iPSYCH 
study was approved by the scientific ethics committee in the Central 
Denmark Region (case no. 1-10-72-287-12) and the Danish Data Protec-
tion Agency. The QIMR Berghofer study was approved by the QIMR 
Berghofer Medical Research Institute Human Research Ethics Com-
mittee. The Yale–Penn study was approved by Yale Human Research 
Protection Program and University of Pennsylvania IRB.

Study design
In the previous PAU study9, the rg between MVP AUD and PGC AD was 
0.98, which justified the meta-analysis of AUD (includes AUD and AD) 
across the two datasets, and the rg between AUD and UKB AUDIT–P was 
0.71, which justified the proxy-phenotype meta-analysis of PAU (includ-
ing AUD, AD and AUDIT–P) across all datasets. In this study, we use the 
same definitions, defining AUD by meta-analyzing AUD and AD across 
all datasets, and defining PAU by meta-analyzing AUD, AD and AUDIT–P 
(Table 1). No statistical method was used to predetermine sample size.

MVP dataset
MVP enrollment and genotyping have been described previously17,18. 
MVP is a biobank supported by the United States Department of VA 
with rich phenotypic data collected using questionnaires and the VA 
electronic health record system.

MVP genotype data were processed by the MVP release 4 (R4) 
data team. A total of 729,324 samples were genotyped using an Affy-
metrix Axiom biobank array. Rigorous sample-level quality control 
(QC) served to remove samples with duplicates, call rates <98.5%, 
sex mismatches, >7 relatives or excess heterozygosity. After QC, 
MVP R4 data contained 658,582 participants and 667,995 variants 
(pre-imputation). Pre-imputation QC removed variants with high 
missingness (>1.5%), that were monomorphic, or with Hardy–Wein-
berg equilibrium (HWE) P value of ≤1 × 10−6, leaving 590,511 variants 
for imputation. As in our previous work, we ran a principal component 
analysis (PCA)61 for the R4 data and 1000 Genome phase 3 reference 
panels62. The Euclidean distances between each MVP participant and 
the centers of the five reference ancestral groups were calculated 
using the first ten principal components (PCs), with each participant 
assigned to the nearest reference ancestry. A second round of PCA 
within each assigned ancestral group was performed and outliers with 
PC scores >6 standard deviations from the mean of any of the 10 PCs 
were removed. This two-stage approach resulted in the assignment 
of 468,869 EUR ancestry, 122,024 AFR, 41,662 LA, 7,364 EAS and 536 
SAS individuals for analysis.

Imputation was done by the MVP R4 data team. The entire cohort 
was prephased using SHAPEIT4 (v4.1.3) (ref. 63), then imputed using 
Minimac4 (ref. 64) with the African Genome Resources reference panel 
by the Sanger Institute and the 1000 Genomes Project phase 3 as refer-
ence. Single-nucleotide variants with an imputation score <0.8, HWE P 
value ≤1 × 10−6 or minor allele frequency (MAF) lower than the threshold 
set in each ancestral group based upon their sample size (EUR, 0.0005; 
AFR, 0.001; LA, 0.005; EAS, 0.01; and SAS, 0.01) were removed before 
association analysis.

Participants with at least one inpatient or two outpatient ICD-9/10 
codes for AUD were assigned as AUD cases, while participants with zero 
ICD codes for AUD were controls. Those with one outpatient diagnosis 
were excluded from the analysis. In total, 80,028, 36,330, 10,150, 701 
and 107 cases were included in EUR, AFR, LA, EAS and SAS, respectively, 
and 368,113, 79,100, 28,812, 6,254 and 389 controls were included in 
EUR, AFR, LA, EAS and SAS, respectively. BOLT-LMM65 was used to cor-
rect for relatedness, with age, sex and the first ten PCs as covariates.

UKB
UKB released genotype and imputed data for ∼500,000 individu-
als from across the United Kingdom20, which were accessed through 
application 41910. UKB defined White-British (WB) participants geneti-
cally. For the non-WB individuals, we used a PCA to classify them into 
different genetic groups, as was performed for MVP. Individuals with 
available AUDIT–P scores were included in this study. The final sample 
included 132,001 WB (hereafter called UKB–EUR1) and 17,898 non-WB 
EURs (hereafter called UKB–EUR2), and 1,220 SAS. SNPs with geno-
type call rate >0.95, HWE P value >1 × 10−6, imputation score ≥0.8 and 
MAF ≥0.001 in EUR1 and EUR2 and ≥0.01 in SAS were kept for GWAS. 
BOLT-LMM was used for association correcting for relatedness, age, 
sex and the first ten PCs.

FinnGen
Summary statistics for AUD from FinnGen data freeze 5 were down-
loaded from the FinnGen website (http://r5.finngen.fi/). Details of the 
genotyping, imputation and QC for FinnGen data were described previ-
ously19. There were 8,866 AUD cases defined by ICD-8/9/10 codes and 
209,926 controls. Association analysis was performed using a SAIGE66 
mixed model with age, sex and ten PCs as covariates. Positions of the 
variants were lifted over to build 37 (GRCh37/hg19) for meta-analysis.

iPSYCH
The iPSYCH21,22 samples were selected from a baseline birth cohort 
comprising all singletons born in Denmark between 1 May 1981 and 
31 December 2008.

AUD was diagnosed according to the ICD-10 criteria (F10.1–F10.9 
diagnosis codes). The iPSYCH cohort was established to investigate 
genetic risk for major psychiatric disorders (that is, attention-deficit/
hyperactivity disorder, schizophrenia, bipolar disorder, major depres-
sive disorder and autism spectrum disorder) but not AUD (or PAU), 
so comorbidity of psychiatric disorders among these AUD cases is 
higher than expected for cases selected randomly from the popula-
tion. Therefore, we generated a control group around five times as 
large as the case groups and, to correct for the bias introduced by 
high comorbidity of psychiatric disorders among cases, we included 
within the control group individuals with the above listed psychiatric 
disorders (without comorbid AUD) at a proportion equal to what was 
observed among the cases.

The samples were genotyped in two genotyping rounds referred 
to as iPSYCH1 and iPSYCH2. iPSYCH1 samples were genotyped using 
Illumina’s PsychArray and iPSYCH2 samples using Illumina´s GSA v.2 
(Illumina). QC and GWAS were performed using the Ricopili pipeline67. 
More details can be found in ref. 68. GWAS were performed separately 
for iPSYCH1 (2,117 cases and 13,238 controls) and iPSYCH2 (1,024 cases 
and 5,732 controls) using dosages for imputed genotypes and addi-
tive logistic regression with the first five PCs (from the final PCAs) as 
covariates using PLINK v1.9 (ref. 69). Only variants with a MAF >0.01 and 
imputation score >0.8 were included in the final summary statistics.

QIMR Berghofer cohorts
The AGDS recruited >20,000 participants with major depression 
between 2017 and 2020. Recruitment and subject characteristics have 
been reported23. Participants completed an online self-report question-
naire. Lifetime AUD was assessed on DSM-5 criteria using the Composite 
International Diagnostic Interview. A total of 6,726 individuals with and 
4,467 without AUD were included in the present study.

The Australian twin family study of AUD (TWINS, including Aus-
tralian Alcohol and Nicotine Studies) participants were recruited from 
adult twins and their relatives who had participated in questionnaire- 
and interview-based studies on alcohol and nicotine use and 
alcohol-related events or symptoms (as described in ref. 70). They 
were predominantly of EUR ancestry. Young adult twins and their 
non-twin siblings were participants in the Nineteen and Up study24. A 
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total of 2,772 cases and 5,630 controls were defined using DSM-III-R 
and DSM-IV criteria. Most alcohol-dependent cases were mild, with 70% 
of those meeting AD criteria reporting only three or four dependence 
symptoms and ≤5% reporting seven dependence symptoms.

The GBP study recruited >5,000 participants living with bipolar 
disorder between 2018 and 2021. The sample’s recruitment and char-
acteristics have been reported25: participants completed an online 
self-report questionnaire. Lifetime DSM-5 AUD was assessed using the 
Composite International Diagnostic Interview.

QIMR cohorts were drawn from larger batches genotyped over an 
extended period using several different Illumina genotyping micro-
arrays. The microarrays used were (1) Global Screening Array v1 or 
v2 used for AGDS and GBP, and for TWINS participants either GSA 
(N = 48); (2) Illumina Omni or Core+Exome family chips (Core+Exome 
N = 1,023, PsychArray N = 255, OmniExpress N = 102 and 2.5M N = 321; 
total N = 1,701) or (3) older Illumina HapMap-derived chips (370K 
N = 3,728, 610K N = 2,319, 317K N = 580 and 660K N = 27; total N = 6,654). 
Per-batch imputation QC removed variants with GenTrain score <0.6, 
MAF <0.01, SNP call rate <95% and HWE deviation (P < 1 × 10−6). Geno-
types from each of the three Illumina microarray families were merged 
for the core set of markers that passed QC in all batches, then were 
imputed using the TOPMed Imputation Server with the TOPMed-r2 
reference panel64,71. The core set used ∼441K, ∼232K and ∼280K mark-
ers for (1), (2) and (3), respectively. Association analysis was performed 
using SAIGE with the LOCO = TRUE flag; age, sex, ten PCs and two 
covariates that model the three imputation runs, which were used 
for the individuals. Participants of non-EUR ancestry (defined as >6 
standard deviations from the PC1 and PC2 centroids) were excluded. 
Association analyses were limited to variants with a MAF ≥0.0001, 
minor allele count ≥5 and an R2 ≥ 0.1.

PGC
Lifetime DSM-IV diagnosis of AD in both EUR and AFR ancestries were 
analyzed by PGC, with details reported previously8. This included 
5,638 individuals from Australia. To avoid overlap with the new QIMR 
Berghofer cohorts, we re-analyzed the PGC data without two Austral-
ian cohorts: Australian Alcohol and Nicotine Studies and Brisbane 
Longitudinal Twin Study. This yielded 9,938 cases and 30,992 controls 
of EUR ancestry and 3,335 cases and 2,945 controls of AFR ancestry.

Yale–Penn 3
There are three phases of the Yale–Penn study defined by genotyping 
epoch; the first two were incorporated in the PGC study, thus they are 
included in the meta-analyses. Here, we included Yale–Penn 3 individu-
als as a separate sample. Lifetime AD was diagnosed based on DSM-IV 
criteria. Genotyping was performed in the Gelernter laboratory at 
Yale using the Illumina Multi-Ethnic Global Array, then imputed using 
Michigan imputation server with Haplotype Reference Consortium 
reference. We performed PCA analyses to classify EAs (567 cases and 
1,074 controls) and AAs (451 cases and 410 controls). Variants with 
MAF >0.01, HWE P value >1 × 10−6 and imputation quality score (INFO) 
≥0.8 were retained for association analyses using linear mixed models 
implemented in GEMMA72 and corrected for age, sex and ten PCs.

EAS cohorts
Summary statistics for AUD/AD GWAS from five EAS cohorts (MVP EAS, 
Han Chinese–GSA, Thai METH–MEGA, Thai METH–GSA and Han Chi-
nese–Cyto) were included in the cross-ancestry meta-analysis. Analyses 
of these five cohorts were previously published and the detailed QC 
can be found in ref. 26.

Meta-analyses
Meta-analyses were performed using METAL73 with effective sample 
size weighting. For all the case-control samples, we calculated effec-
tive sample size as:

neffective =
4

1
ncase

+ 1
ncontrol

For AUDIT–P in UKB, a continuous trait, we used actual sam-
ple sizes for meta-analysis. For all meta-analyses within or across 
ancestries, variants with a heterogeneity test P value <5 × 10−8 and 
variants with effective sample size <15% of the total effective sample 
size were removed. For the cross-ancestry and EUR within-ancestry 
meta-analyses, we required that variants were present in at least two 
cohorts. For the AFR and SAS within-ancestry meta-analyses, which 
are small samples, this was not required.

Sex-stratified analyses
Sex-stratified GWAS were performed in EUR. Seven cohorts with 
individual-level data available and a sample size >1,000 in both sexes 
were included: MVP, UKB–EUR1, UKB–EUR2, iPSYCH1, iPSYCH2, AGDS 
and TWINS. The same QCs and association analyses were applied as in 
the combined samples.

Independent variants and conditional analyses
We identified the lead variants using PLINK with parameters of clump-
ing region 500 kb and LD r2 = 0.1. We then ran conditional analyses using 
Genome-wide Complex Trait Analysis conditional and joint analysis 
(GCTA-COJO)74 to define conditionally independent variants among 
the lead variants using the 1000 Genomes Project phase 3 as the LD 
reference panel. Any two independent variants <1 Mb apart whose 
clumped regions overlapped were merged into one locus.

Cross-ancestry lookup
For the 85 independent variants associated in EUR, we looked up the 
associations in non-EUR groups. If the variants were not observed in 
another ancestry, we substituted proxy SNPs defined as associated 
with PAU (P < 5 × 10−8) and in high LD with the EUR lead SNP (r2 ≥ 0.8).

SNP-based heritability (h2)
SNP-based h2 for common SNPs mapped to HapMap3 was estimated 
in EUR, AFR and LA ancestries using LD Score regression (LDSC)75; cor-
responding populations in the 1000 Genomes Project phase 3 were 
used as LD reference panels. For PAU in EUR, we only estimated the 
observed-scale h2. For AUD, both observed-scale h2 and liability-scale 
h2 were estimated, using population lifetime prevalence estimates 
of 0.326, 0.220 and 0.229 in EUR, AFR and LA, respectively2. These 
prevalence estimates were for lifetime DSM-5 AUD in the United States, 
which could introduce bias given the different definitions and preva-
lence in different cohorts. By default, LDSC removes SNPs with sample 
size <90th percentile N/2. Here, we skipped this filtering and kept all 
SNPs for analyses because we did basic filtering based on the number 
of cohorts and sample size. The final number of SNPs in the analyses 
ranged from 527,994 to 1.17M.

Cross-ancestry genetic correlation
We estimated the genetic correlations between different ancestries 
using Popcorn76, which can estimate both the genetic-effect correlation 
(ρge) as correlation coefficient of the per-allele SNP effect sizes and the 
genetic-impact correlation (ρgi) as the correlation coefficient of the 
ancestry-specific allele variance-normalized SNP effect sizes. Popula-
tions in 1000 Genomes were used as reference for their corresponding 
population. A large sample size and number of SNPs are required for 
accurate estimation, which explains the nonrobust estimates for EAS 
and SAS samples.

Within- and cross-ancestry fine mapping
We performed fine mapping using MsCAVIAR77, which can leverage 
LD information from multiple ancestries to improve fine mapping of 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02653-5

causal variants. To reduce bias introduced by populations with small 
sample size, here we performed fine mapping using summary statistics 
from the EUR, AFR and LA populations. Three sets of analyses were 
conducted. The first is within-ancestry fine mapping for the 85 regions 
with independent variants in EUR using EUR summary data and 1000 
Genomes Project phase 3 EUR LD reference data. For each region, we 
selected SNPs that clumped (within 500 kb and LD r2 > 0.1) with the 
lead SNP and with P < 0.05 for fine mapping. We then calculated the 
pair-wise LD among the selected SNPs. If two SNPs were in perfect 
LD (r2 = 1, indicating that they are likely to be inherited together), we 
randomly removed one from the analysis. The second is cross-ancestry 
fine mapping for the 100 regions with independent variants identified 
in cross-ancestry meta-analyses. For each region, we performed clump-
ing (within 500 kb and LD r2 > 0.1) in EUR, AFR and LA summary data 
for the lead SNP separately, to select three sets of SNPs (P < 0.05) for 
fine mapping, with corresponding LD reference panels from the 1000 
Genomes Project. For each set of SNPs, we calculated the pair-wise 
LD and randomly removed one SNP if r2 = 1. If the lead SNP was not 
presented in the EUR SNP set, we did not perform fine mapping for 
this region. Loci with limited numbers of variants cannot have con-
vergent results, so they are not included in the results. After that, this 
cross-ancestry analysis included 92 regions. For the ten regions in 
which the lead SNPs are missing in both AFR and LA populations, we 
did within-ancestry fine mapping in EUR instead to keep the lead SNP 
(cross-ancestry fine mapping will only analyze the SNPs common in 
analyzed ancestries). Next, because the credible set length identified is 
related to the number of variants in the input, to provide a more direct 
comparison between the cross-ancestry fine mapping and the fine 
mapping using information only from EUR, we used the same lists of 
SNPs from the above 92 regions in the cross-ancestry fine mapping as 
for the EUR-only fine mapping. ‘Credible set’ was defined as plausible 
causal variants with accumulated PIP >99%. For each credible set, we 
report the variant with the highest PIP. We assumed that each locus 
contains only one causal variant by default, and increased to three at 
maximum if the analysis was unable to converge.

Gene-based association analyses
We performed gene-based association analysis for PAU or AUD in multi-
ple ancestries using MAGMA implemented in FUMA78. Default settings 
were applied. Bonferroni corrections for the number of genes tested 
(range from 18,390 to 19,002 in different ancestries) were used to 
determine GWS genes.

TWAS
For PAU in EUR, we performed TWAS using S-PrediXcan to integrate 
transcriptomic data from GTEx79. With prior knowledge that PAU is a 
brain-related disorder (evidenced by significant enrichment of gene 
expression in several brain tissues), 13 brain tissues were analyzed. 
The transcriptome prediction model database and the covariance 
matrices of the SNPs within each gene model were downloaded from 
the PredictDB repository (http://predictdb.org/). Significance of the 
gene–tissue association was determined following Bonferroni cor-
rection for the total number of gene–tissue pairs (P < 0.05/166,064 = 
3.01 × 10−7). We also used S-MultiXcan to integrate evidence across the 
13 brain tissues using multivariate regression to improve association 
detection. In total, 18,383 genes were tested in S-MultiXcan, leading to 
a significance P value threshold of 2.72 × 10−6.

Association with chromatin interactions in brain
We used H-MAGMA, a computational tool that incorporates brain 
chromatin interaction profiles from Hi-C, to identify risk genes associ-
ated with PAU based on EUR inputs. Six brain annotations were used: 
fetal brain, adult brain, adult midbrain dopaminergic, iPSC-derived 
astrocyte, iPSC-derived neuron and cortical neuron. In total, 319,903 
gene–chromatin associations were analyzed across the six brain 

annotations. Significant genes were those with a P value below the 
Bonferroni corrected value for the total number of tests (P < 0.05/ 
319,903 = 1.56 × 10−7).

Probabilistic fine mapping of TWAS
We performed fine mapping for TWAS in EUR using FOCUS, a method 
that models correlation among TWAS signals to assign a PIP for every 
gene in the risk region to explain the observed association signal. The 
estimated credible set containing the causal gene can be prioritized for 
functional assays. FOCUS used 1000 Genomes Project EUR samples as 
the LD reference and multiple expression quantitative trait loci refer-
ence panel weights. Under the model of PAU as substantially a brain 
disorder, we did fine mapping while prioritizing predictive models 
using a brain tissue-prioritized approach.

Drug repurposing
To match inferred transcriptional patterns of PAU with transcriptional 
patterns induced by perturbagens, we related our S-PrediXcan results 
to signatures from the Library of Integrated Network-based Cellular 
Signatures L1000 database80. This database catalogs in vitro gene 
expression profiles (signatures) from thousands of compounds from 
>80 human cell lines (level 5 data from phase I: GSE92742 and phase 
II: GSE70138). Our analyses included signatures of 829 chemical com-
pounds in five neuronal cell lines (NEU, NPC, MNEU.E, NPC.CAS9 and 
NPC.TAK). To test significance of the association between PAU signa-
tures and Library of Integrated Network-based Cellular Signatures per-
turbagen signatures, we followed the procedure from So et al.81. Briefly, 
we computed weighted (by proportion of heritability explained) Pear-
son correlations between transcriptome-wide brain associations and 
in vitro L1000 compound signatures using the metafor package82 in R. 
We treated each L1000 compound as a fixed effect incorporating the 
effect size (rweighted) and sampling variability (se2) from all signatures 
of a compound (for example, across all time points and doses). We 
only report those perturbagens that were associated after Bonferroni 
correction (P < 0.05/829 = 6.03 × 10−5).

Cross-ancestry PRS
We used PRS-CSx, a method that couples genetic effects and LD across 
ancestries via a shared continuous shrinkage (CS) prior, to calculate the 
posterior effect sizes for SNPs mapped to HapMap3. Three sets of AUD 
GWAS summary data were use as input and corresponding posterior 
effect sizes in each ancestry were generated: EUR (without AUDIT–P from 
UKB, Neffective = 352,373), AFR (Neffective = 105,433) and LA (Neffective = 30,023). 
Three sets of AUD PRS based on the posterior effect sizes were calculated 
for UKB–EUR1 and UKB–EUR2 individuals using PLINK, following stand-
ardization (zero mean and unit variance) for each PRS. For each related 
pair (≥3rd degree, kinship coefficient ≥0.0442 as calculated by UKB), 
we removed the individual with the lower AUDIT–P score, or randomly 
if they had the same score, leaving 123,565 individuals in UKB–EUR1 and 
17,401 in UKB–EUR2. Then, we ran linear regression for AUDIT–P in UKB–
EUR2 as a validation dataset using PRSEUR, PRSAFR and PRSLA as independ-
ent variables. The corresponding regression coefficients were used as 
weights in the test dataset (UKB–EUR1) to calculate the final PRS: PRSfinal =  
ωEUR × PRSEUR + ωAFR × PRSAFR + ωLA × PRSLA. We used linear regression to 
test the association between AUDIT–P and PRSfinal after standardization, 
correcting for age, sex and the first ten PCs. We also ran a null model of 
association between AUDIT–P and covariates only, to calculate the vari-
ance explained (R2) by PRSfinal. For comparison, we also calculated PRS 
in UKB–EUR1 using only the AUD summary data in EUR, then calculated 
the variance explained by PRSsingle. The improved PRS association was 
measured as the difference of the variance explained (ΔR2).

Genetic correlation
Genetic correlations (rg) between PAU or AUD and traits of interest 
were estimated using LDSC. For EUR, we tested rg between PAU and 
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49 traits using published summary data and the EUR LD reference 
from the 1000 Genomes Project. The rg with P values <1.02 × 10−3 were 
considered significant. For AFR, we tested rg between AUD and 13 pub-
lished traits in AFR using MVP in-sample LD (most of the analyzed AFR 
were from MVP) built from 1,000 randomly selected AFR individuals 
by cov-LDSC83. The rg with P values <3.85 × 10−3 (0.05/13) in AFR were 
considered as significant. For comparison, we also tested rg using 1000 
Genomes AFR as the LD reference, which showed similar estimates.

PAU PRS for phenome-wide associations
We calculated PRS using PRS-CS for PAU (based on the EUR 
meta-analysis of PAU) in 131,500 individuals of EUR ancestry, and PRS 
for AUD (based on the AFR meta-analysis of AUD) in 27,494 individuals 
of AFR ancestry in four independent datasets (Vanderbilt University 
Medical Center’s Biobank, Mount Sinai (BioMe), Mass General Brigham 
Biobank (MGBB)84 and Penn Medicine Biobank (PMBB)85) from the 
PsycheMERGE Network86, followed by PheWAS. Details for each dataset 
are described below.

Vanderbilt University Medical Center’s Biobank
Genotyping of individuals was performed using the Illumina MEGEX 
array. Genotypes were filtered for SNP and individual call rates, sex 
discrepancies and excessive heterozygosity using PLINK. Imputation 
was conducted using the Michigan Imputation Server based on the 
Haplotype Reference Consortium reference panel. PCA using Flash-
PCA2 (ref. 87) combined with CEU, YRI and CHB reference sets from 
the 1000 Genomes Project phase 3 was conducted to determine par-
ticipants of AFR and EUR ancestry. One individual from each pair of 
related individuals was removed (p̂ > 0.2). This resulted in 12,384 AFR 
and 66,903 EUR individuals for analysis.

BioMe
From the BioMe biobank, the Illumina Global Screening Array was 
used to genotype the BioMe samples. The SNP-level QC removed 
SNPs with (1) MAF <0.0001, (2) HWE P value ≤1 × 10−6 and (3) call rate 
<98%. The individual-level QC removed participants with (1) sample 
call rate <98% and (2) heterozygosity F coefficient ≥3 s.d. In addition, 
one individual from each pair of related samples with a genomic 
relatedness (proportion identity by descent) >0.125 was removed 
(–rel-cutoff=0.125 in PLINK). Imputation was performed using 1000 
Genomes phase 3 data. Each ancestry was confirmed by the genetic 
PC plot. A final sample size of 4,727 AFR and 9,544 EUR individuals 
were included for this study.

MGBB
Individuals in the MGBB were genotyped using the Illumina Multi-Ethnic 
Global array with hg19 coordinates. Variant-level QC filters removed 
variants with a call rate <98% and those that were duplicated across 
batches, monomorphic, not confidently mapped to a genomic location 
or associated with genotyping batch. Sample-level QC filters removed 
individuals with a call rate less than 98%, excessive autosomal heterozy-
gosity (±3 s.d. from the mean) or discrepant self-reported and geneti-
cally inferred sex. PCs of ancestry were calculated in the 1000 Genomes 
phase 3 reference panel and subsequently projected onto the MGBB 
dataset, where a random forest classifier was used to assign ancestral 
group membership for individuals with a prediction probability >90%. 
The Michigan Imputation Server was then used to impute missing 
genotypes with the Haplotype Reference Consortium dataset serving 
as the reference panel. Imputed genotype dosages were converted to 
hard-call format and subjected to further QC, where SNPs were 
removed if they exhibited poor imputation quality (INFO <0.8), low 
MAF (<1%), deviations from HWE (P < 1 × 10−10) or missingness (variant 
call rate <98%). Only unrelated individuals (p̂ < 0.2) of EUR ancestry 
were included in the present study. These procedures yielded a final 
analytic sample of 25,698 individuals in the MGBB.

PMBB
PMBB is approved under IRB protocol no. 813913. Genotyping of indi-
viduals was performed using the Illumina Global Screening Array. QC 
removed SNPs with marker call rate <95% and sample call rate <90%, 
and individuals with sex discrepancies. Imputation was performed 
using Eagle2 (ref. 88) and Minimac4 on the TOPMed Imputation Server. 
One individual from each pair of related individuals (p̂ threshold of 
0.25) were removed from analysis. PCA was conducted using smartpca61 
and the HapMap3 dataset to determine genetic ancestry. This resulted 
in 10,383 AFR and 29,355 EUR individuals for analysis.

PheWAS
The AFR AUD PRS and EUR PAU PRS scores in each dataset were stand-
ardized for the PheWAS analyses. ICD-9 and -10 codes were extracted 
from the electronic health record and mapped to phecodes. Individuals 
were considered cases if they had two instances of the phecode. We 
conducted PheWAS by fitting a logistic regression for each phecode 
within each biobank. Covariates included sex, age and the top ten PCs. 
PheWAS results were meta-analyzed within each ancestral group across 
biobanks (AFR 27,494 and EUR 131,500) using the PheWAS package89 in 
R. Phecodes with Ncase < 100 were removed, resulting in the testing of 
1,493 phenotypes in EUR and 793 in AFR. We applied a Bonferroni cor-
rection to control for multiple comparisons (P < 0.05/1493 = 3.35 × 10−5 
in EUR and P < 0.05/793 = 6.31 × 10−5 in AFR).

Yale–Penn
We also conducted PheWAS in Yale–Penn, a deeply phenotyped cohort 
with comprehensive psychiatric assessments (SUDs and psychiatric 
disorders) and assessments for physical and psychosocial traits28. QC 
and creation of the PheWAS dataset have been described previously90. 
We calculated PRS for PAU in EUR and AUD in AFR (using summary sta-
tistics that leave out the Yale–Penn 3 and PGC sample, which includes 
Yale–Penn 1). We conducted PheWAS by fitting logistic regression 
models for binary traits and linear regression models for continuous 
traits. We used sex, age at recruitment and the top ten genetic PCs as 
covariates. We applied a Bonferroni correction to control for multiple 
comparisons.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The full summary-level association data from the within-ancestry and 
cross-ancestry meta-analyses and sex-stratified meta-analyses in EUR 
ancestry are publicly available through the Gelernter Lab website with-
out restriction (https://medicine.yale.edu/lab/gelernter/stats/) and 
dbGaP (accession number phs001672, under the ‘Addiction’ Analysis; 
registration and approval are needed following dbGaP’s data access-
ing process).

Code availability
All software used in this study is publicly available. EIGENSOFT; FLASH-
PCA2; SHAPEIT4; Minimac4; EAGLE2; Michigan Imputation Server, 
https://imputationserver.sph.umich.edu/index.html#!; TOPMed 
Imputation Server, https://imputation.biodatacatalyst.nhlbi.nih.
gov/#!; RICOPILI; PLINK; BOLT-LMM; SAIGE; GEMMA; METAL; GCTA; 
LDSC; cov-LDSC; Popcorn; MsCAVIAR; FUMA; S-PrediXcan and 
S-MultiXcan, https://github.com/hakyimlab/MetaXcan; H-MAGMA; 
FOCUS; PRS-CSx; PheWAS R package.
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Extended Data Fig. 1 | Manhattan and QQ plots for PAU/AUD meta-analyses 
in different ancestries. a, PAU meta-analysis in European ancestry (N = 903,147, 
Neffective = 502,272). b, AUD meta-analysis in African ancestry (N = 122,571, 

Neffective = 105433). c, AUD in Latin Americans (N = 38,962, Neffective = 30,023) from 
MVP. d, PAU meta-analysis in South Asian ancestry (N = 1,716, Neffective = 1,556). 
Effective sample size-weighted meta-analyses were performed using METAL.
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Extended Data Fig. 2 | Manhattan and QQ plots for PAU sex-stratified meta-analyses in EUR. a, PAU meta-analysis in males (N = 496,548, Neffective = 315,185). b, PAU 
meta-analysis in females (N = 143,198, Neffective = 115,717). Effective sample size-weighted meta-analyses were performed using METAL.
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Extended Data Fig. 3 | Phenome-wide associations with PAU PRS in PsycheMERGE EUR samples. PheWAS results were meta-analyzed across biobanks 
(N = 131,500). Red line indicates significant after correction for multiple testing (P < 0.05/1493 = 3.35 × 10−5).
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Extended Data Fig. 4 | Phenome-wide associations with AUD PRS in PsycheMERGE AFR samples. PheWAS results were meta-analyzed across biobanks (N = 27,494). 
Red line indicates significant after correction for multiple testing (P < 0.05/793 = 6.31 × 10−5).
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Extended Data Fig. 5 | Phenome-wide associations with PAU PRS in Yale-Penn EUR samples. N = 5,692. Red line indicates significant after correction for multiple 
testing (P < 0.05/627 = 7.95 × 10−5).
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Extended Data Fig. 6 | Phenome-wide associations with AUD PRS in Yale-Penn AFR samples. N = 4,918. Red line indicates significant after correction for multiple 
testing (P < 0.05/571 = 8.76 × 10−5).
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