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Large-scale pancreatic cancer detectionvia
non-contrast CT and deep learning

Received: 9 February 2023 Kai Cao'", Yingda Xia® 2", Jiawen Yao ® **"°, Xu Han®'%, Lukas Lambert®'®,
Tingting Zhang™®, Wei Tang®", Gang Jin®, Hui Jiang', Xu Fang',
Isabella Nogues", Xuezhou Li', Wenchao Guo ® *#, Yu Wang®*, Wei Fang®*,

Accepted: 12 October 2023

Published online: 20 November 2023 Mingyan Qiu®#, Yang Hou™, Tomas Kovarnik™, Michal Vocka®", Yimei Lu®,
Yingli Chen®, Xin Chen®, Zaiyi Liu', Jian Zhou®'®, Chuanmiao Xie'®,
B, Check for updates Rong Zhang'®, Hong Lu”, Gregory D. Hager ®®, Alan L. Yuille®®, Le Lu®?,

Chengwei Shao®', Yu Shi® ™7, Qi Zhang®*" 7, Tingbo Liang ®>" <,
Ling Zhang®?/ < & Jianping Lu®"

Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid
malignancy, is typically detected late and at an inoperable stage.

Early orincidental detection is associated with prolonged survival, but
screening asymptomatic individuals for PDAC using a single test remains
unfeasible due to the low prevalence and potential harms of false positives.
Non-contrast computed tomography (CT), routinely performed for
clinicalindications, offers the potential for large-scale screening, however,
identification of PDAC using non-contrast CT has long been considered
impossible. Here, we develop a deep learning approach, pancreatic cancer
detectionwith artificial intelligence (PANDA), that can detect and classify
pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained
onadataset of 3,208 patients from a single center. PANDA achieves an area
under the receiver operating characteristic curve (AUC) of 0.986-0.996
for lesion detection in a multicenter validation involving 6,239 patients
across 10 centers, outperforms the mean radiologist performance

by 34.1% in sensitivity and 6.3% in specificity for PDAC identification,

and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion
detectionin areal-world multi-scenario validation consisting of 20,530
consecutive patients. Notably, PANDA utilized with non-contrast CT shows
non-inferiority to radiology reports (using contrast-enhanced CT) in

the differentiation of common pancreatic lesion subtypes. PANDA could
potentially serve as anew tool for large-scale pancreatic cancer screening.

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest solid Recent studies indicate that high-risk individuals with screen-
malignancy worldwide, and causes approximately 466,000 deaths  detected PDAC have amedian overall survival of 9.8 years, substantially
per year'. Despite the poor prognosis of PDAC, its early or incidental  longer than the 1.5 years for those diagnosed outside of surveillance
detection has been shown to substantiallyimprove patientsurvival>”.  (for example, via standard clinical diagnostic techniques)®. As such,
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Fig.1| Overview of PANDA’s development, evaluation and clinical translation.
a,Model development. PANDA takes non-contrast CT as input and outputs the
probability and the segmentation mask of possible pancreatic lesions, including
PDAC and seven non-PDAC subtypes; PANDA was trained with pathology-
confirmed patient-level labels and lesion masks annotated on contrast
CTimages. CP, chronic pancreatitis. b, Model evaluation. We evaluate the
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1)  High sensitivity and exceptional specificity for consecutive
real-world patients

2) Detect malignancies missed by the standard of care

3) Detect malignancies at the surgically resectable stage

4) Safe (one false positive among 1,000 tests) and efficient

5) Model evolution to better align with bedside clinical needs

performance of PANDA on the internal test cohort, two reader studies (on non-
contrast and contrast CT, respectively), external test cohorts consisting of nine
centers, achest CT cohort, and real-world multi-scenario studies (the clinical
trial includes two real-world studies; chictr.org.cn, ChiCTR2200064645).

¢, Model clinical translation. The real-world clinical evaluation answers five
critical questions to close the clinical translational gap for PANDA.

screening of PDAC holds the greatest promise to reduce PDAC-related
mortality®. However, due to the relatively low prevalence of PDAC, effec-
tive screening in the general population requires high sensitivity and
exceptionally high specificity to mitigate the risk of over-diagnosis.
Current screening techniques are limited in this regard, and thus can-
not be implemented in the general population as urgently needed®™.

Non-contrast computed tomography (CT) is widely used in physi-
cal examination centers and hospitals in low-resource regions. Com-
pared with contrast-enhanced CT (the primary imaging modality for
diagnosing PDAC’), non-contrast CT exposes patients to lower radia-
tion doses and eliminates the risk of adverse reactions to the contrast
agents. In addition to abdominal non-contrast CT routinely used in
emergency departments and community hospitals, chest non-contrast
CT also can fully or partially scan the pancreas region and is the most
frequently performed CT exam (that s, it accounts for nearly 40% of all
performed CT exams)" in multiple clinical scenarios, such as for lung
cancer screening. Although identifying PDAC from non-contrast CT
is challenging even for experienced radiologists, recent studies have
shown that artificial intelligence (Al) can match or surpass human
experts on various medical image analysis tasks"; moreover, Al
is capable of synthesizing contrast-enhanced medical images from
regularimages'® . Al-based opportunistic screening? vianon-contrast
CT has the potential to advance early detection of PDAC in the vast
population of asymptomatic patients under several clinical domains,
with minimal additional cost and exposure to radiation.

In this study we show that our proposed Al approach, PANDA
(pancreatic cancer detection with Al, Fig. 1), is capable of detecting
and diagnosing PDAC and non-PDAC lesions on non-contrast CT with
high accuracy and can be readily utilized for opportunistic screening
in large-scale asymptomatic patient populations. This will result in

safe and effective detection of early-stage malignancies missed by
standard of care diagnostic techniques, and in some cases will enable
timely treatment with intent to cure. Our study first evaluates PANDA
internally on abdominal non-contrast CT scans and compares its per-
formance with results from two reader studies involving 48 radiolo-
gists on non-contrast and contrast CT imaging, respectively. We then
validate PANDA on a large external multicenter test cohort (n = 5,337)
to assessits generalizability to various settings. To increase the range
of applicable patient populations, we study the feasibility of applying
PANDA on chest CT. Finally, to validate the critical issues related to
realistic clinical translation, we explore the integration of PANDA into
large-scale real-world multi-scenarios of routine clinical processes,
involving 20,530 consecutive patients from four settings (that is,
physical exam, emergency, outpatient, and inpatient) with available
abdominal or chest non-contrast CT scans.

Results
The PANDA network
We present a deep learning model, PANDA, to detect and diagnose
PDAC and seven subtypes of non-PDAC lesions (Methods), that is, pan-
creatic neuroendocrine tumor (PNET), solid pseudopapillary tumor
(SPT), intraductal papillary mucinous neoplasm (IPMN), mucinous
cystic neoplasm (MCN), serous cystic neoplasm (SCN), chronic pan-
creatitis, and ‘other’ (cf. Supplementary Table 1), from abdominal and
chest non-contrast CT scans. Our model can detect the presence or
absence of a pancreatic lesion, segment the lesion, and classify the
lesion subtypes (Fig. 1a).

PANDA was trained on a training set of abdominal non-contrast
CT scans of 3,208 patients from a high-volume pancreatic cancer insti-
tution, Shanghai Institution of Pancreatic Diseases (SIPD), directly
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affiliated with a tertiary hospital (a major comprehensive academic
medical center in Shanghai, China). The patient characteristics are
listed in Extended Data Table 1. The ground truth labels were confirmed
either by surgical pathology for lesions or by a 2 year follow-up for
normal controls. PANDA was also supervised by pixel-wise annota-
tions, including both the pancreas and the lesion, transferred by image
registration from annotations on paired contrast-enhanced CT scans
in which tumors were more visible. Dataset and annotation details are
givenin the Methods section.

PANDA consists of acascade of three network stages thatincrease
in model complexity and the difficulty level of the tasks performed
(Extended DataFig.1; Methods). The first stage (Stage 1) involves pan-
creaslocalization, using an nnU-Net model”. The second stage (Stage 2)
carries out lesion detection, and we build convolutional neural net-
works (CNNs) together with a classification head to distinguish the
subtle texture change of lesions in non-contrast CT. We tune the
Stage 2 model to achieve a specificity of 99% for lesion detection on
cross-validation of the training set to reduce false-positive predic-
tions. The third stage (Stage 3) involves the differential diagnosis of
pancreatic lesions if any abnormalities are detected in the second
stage, integrated with an auxiliary memory transformer branch?** to
automatically encode the feature prototypes of the pancreaticlesions,
such aslocal texture, position and pancreas shape, for more accurate
fine-grained classification.

We mainly evaluate the performance of PANDA on three tasks
(Methods). The first task is lesion detection: that s, lesion versus nor-
mal, which also includes detection rates stratified by lesion type and
by cancer stage. The second task is primary diagnosis: PDAC versus
non-PDAC versus normal, which also includes evaluation of one versus
others, forexample, PDAC identification (PDAC versus non-PDAC + nor-
mal). The third task is differential diagnosis: that is, classification of
PDAC and seven non-PDAC lesion subtypes.

Internal evaluation

Our independent internal test cohort consisted of 291 patients
(108 patients with PDAC, 67 patients with non-PDAC, and 116 normal
controls) fromthe SIPD (Extended Data Table 1; Methods). These patient
labels were confirmed on surgical pathology or a 2 year follow-up. For
lesion detection, PANDA achieved an area under the receiver operat-
ing characteristic curve (AUC) of 0.996 (95% confidence interval (CI)
0.991-1.00, Fig. 2a), a sensitivity of 94.9% (95% Cl 91.4-97.8%) and a
specificity of 100% (95% C1100-100%); for the PDAC subgroup the
sensitivity for detection was 97.2% (95% CI 93.5-100%) overall, 97.1%
(95% C191.4-100%; n = 35; Fig. 2c) for stage I, and 96.2% (95% C1 90.4~-
100%; n = 52; Fig. 2c) for stage Il. For small PDACs (diameter <2 cm, T1
stage), the sensitivity for detection was 85.7% (95% Cl 64.3-100%; n = 14;
Fig. 2c). For PDAC identification, the AUC was 0.987 (95% CI1 0.975-
0.996, Fig. 2b), the sensitivity was 92.6% (95% Cl 87.3-97.0%) and the
specificity was 97.3% (95% C1 94.6-99.5%, Fig. 2b).

For the internal differential diagnosis cohort (n = 786; Extended
Data Table 1; Methods), PANDA achieved an accuracy of 79.6% (95% ClI
76.8-82.6%) and abalanced accuracy (averaged class-level accuracy)
0of 60.7% (95% C155.7-65.4%). The accuracy is non-inferior (P= 0.0018
ata pre-specified 5% margin) to the second-reader radiology reports
(Fig. 2f, Supplementary Fig. 1 and Supplementary Table 4), which is
asecondary analysis of a primary standard of care clinical radiology
report that includes access to the contrast-enhanced CT, clinical
information and patient history, and represents the standard of care
of pancreatic lesion management practice in the internal center. The
results for IPMN subtype classification (main or mixed-duct versus
branch-duct IPMN) and the full pipeline (detection + diagnosis) in
the internal cohorts are given in Supplementary Table 13 and Sup-
plementary Fig. 7a, respectively.

Ablation studies were conducted to analyze the performance of
PANDA's Stage 2 and Stage 3 modules on the internal training cohort

(n=3,208) (Extended Data Fig. 2; Methods). Stage 2 and Stage 3 had
significantly better performance than their related baseline methods
(P=0.00022and P=0.0002, respectively). We also analyzed the effect
oftraining datasize on the performance of PANDA. More training data
led to better performance for all tasks, and the margins of improve-
mentincreased as the tasks became more challenging (Extended Data
Fig. 3). PANDA is an interpretable Al model that directly outputs the
segmentation mask of the pancreas and the detected lesion (see Sup-
plementary Table 5 for segmentation accuracy). Additional analyses
of interpretability via the visualization of the Stage 2 activation maps
and Stage 3 attention maps are provided in Extended Data Fig. 4 and
the Methods section.

Reader studies

We conducted two reader studies (Methods and Extended Data
Table 2). The aim of the first study was to compare PANDA with
non-contrast CT readers consisting of pancreatic imaging special-
ists, general radiologists and radiology residents, and validate whether
PANDA could assist them in making more accurate decisions. The
second reader study was designed to compare PANDA, using only
non-contrast CT, with a clinical expert upper-bound set-up, that is,
apancreaticimaging specialist reading a contrast-enhanced CT.

In the first reader study, 33 readers from 12 institutions inter-
preted 291 non-contrast CT scansin the internal test cohort. Alongside
the CTimages, readers were provided with each patient’s age and sex,
and rated each case as PDAC, non-PDAC or normal (Supplementary
Fig.2). Forlesion detection, the performance values of all 33 readers
fell below PANDA’s receiver operating characteristic (ROC) curve
(Fig. 3a). PANDA significantly outperformed the average reader per-
formance by 14.7% (95% C110.8-18.8%, P= 0.0002) in sensitivity and
6.8% (95% C15.6-8.1%, P=0.0002) in specificity for lesion detection
(Supplementary Table 6a), and by a significant margin of 34.1% (95%
CI129.3-38.9%, P=0.0002) in sensitivity and 6.3% (95% Cl 4.1-8.4%,
P=0.0002) in specificity for PDAC identification (Supplementary
Table 6b). Notably, for PDAC identification the sensitivity was as low
as 16.7-35.2% for some radiology residents who were not specialized
in pancreatic imaging.

After at least a 1 month washout period, readers were addition-
ally provided with the Al lesion segmentation and primary diagnosis
probabilities (Supplementary Fig. 3) and re-rated each patient. With Al
assistance, for lesion detection the meanreader performance was sig-
nificantlyimproved by 8.5% in sensitivity (95% C16.5-10.3%, P= 0.0002)
and 5.3% in specificity (95% CI 4.3-6.3%, P=0.0002; Supplementary
Table 7a). For PDAC identification, the mean reader performance was
significantly improved by 20.5% (95% C117.8-23.4%, P=0.0002) in
sensitivity and by 3.1% (95% CI12.1-4.1%, P= 0.0002) in specificity (Sup-
plementary Table 7b). Overall, the largestimprovement was observed
in readers not specialized in pancreatic imaging. The residents’ per-
formance with Al could even approach that of pancreatic radiology
specialists (evaluated using balanced accuracy in Fig. 3d,e and Sup-
plementary Tables 7 and 9). Detailed confusion matrices are given in
Supplementary Figs. 2 and 4.

In the second reader study, another 15 pancreatic imaging
specialists from the internal center (SIPD) interpreted multi-phase
contrast-enhanced CT scans of the same 291 patients. Each reader was
provided with the non-contrast, arterial, and venous phase of CT images
along with the age and sex information and carried out the same rating
(Supplementary Fig. 5). PANDA (on non-contrast CT imaging) did better
than the mean performance of the specialists (using contrast-enhanced
CT scans) by 2.9% (95% C1 0.1-5.8%, P=0.0002 for non-inferiority) in
sensitivity and by 2.1% (95% Cl11.4-3.0%, P=0.0002 for difference) in
specificity, for lesion detection (Supplementary Tables 10a and 11a); and
by amargin of13.0% (95% C1 8.5-17.8%, P= 0.0002 for difference) in sen-
sitivity and 0.5% (95% CI1 -0.7 t0 1.9%, P= 0.0002 for non-inferiority) in
specificity, for PDACidentification (Supplementary Tables10b and 11b).
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Fig.2|Internal and external validation. a,b Receiver operating characteristic lesion subtypes detected by PANDA in the internal test cohort (n =175) and

curves of lesion detection (a) and PDAC identification (b) for the internal and external test cohort (n = 3,669). f, Confusion matrices of differential diagnosis
external test cohorts. ¢, Proportion of PDACs detected by PANDA in terms of inthe internal differential diagnosis cohort (left) and external test cohorts
American Joint Committee on Cancer (AJCC) T stage (left) and TNM (tumor, (right). c-e, Error bars indicate 95% CI. The center shows the computed mean
nodes, metastasis) stage (right) in the internal test cohort (n =105) and external of the metric specified by its respective axis labels. The results of subgroups
test cohort (n=2,584).d, Sensitivity, specificity and AUC of lesion detection with too few samples to be studied reliably (<10) are omitted and marked as not
inthe external center cohorts (sites A-1,n = 5,337). e, Proportion of different applicable (n/a).

Generalization to external multicenter test cohorts pipeline are given in Supplementary Table 13 and Supplementary

To assess the generalizability of PANDA to different patient popu-  Fig. 7b, respectively.
lations and imaging protocols we validated our model on external
multicenter (n=9) test cohorts, which consisted of preoperative  Feasibility study of lesion detection on chest computed
non-contrast abdominal CT scans of 5,337 patients (2,737 with PDAC, tomography
932 with non-PDAC and 1,668 normal controls) from China, Taiwan = PANDA's ability can be coupled with established clinical indications
ROC and the Czech Republic (Extended Data Table 1; Methods). The  suchaschest CT for lung cancer screening. We validated the feasibility
patient labels were confirmed by surgical or biopsy pathology diag-  of pancreaticlesion detection using PANDA on chest CT (Fig.4). From
nosis reports or a2 year follow-up visit diagnosis. PANDA achievedan  SIPD we collected non-contrast chest CT scans of 492 patients, consist-
AUC of 0.984 (95% C10.980-0.987, Fig. 2a), sensitivity of 93.3% (95% ing of 63 with PDAC, 51 with non-PDAC, and 378 normal controls, as a
C192.5-94.1%) and specificity of 98.8% (95% C1 98.3-99.4%) for lesion  test cohort independent of the training data. The patient labels were
detection. For the PDAC patient subgroup, the detectionratewas 96.5%  confirmed by surgical pathology or a 2 year follow-up visit diagnosis
(95% C195.8-97.2%) overall, 95.6% (95% C193.9-97.0%; Fig. 2c) for stage  (Methods).
I, and 96.5% (95% Cl1 95.3-97.8%; Fig. 2¢) for stage Il. For small PDAC Without tuning on any chest CT scans, PANDA achieved an AUC of
lesions (diameter <2 cm, T1 stage), the sensitivity for detectionwas  0.979 (95% C10.962-0.993), a sensitivity of 86.0% (95% C179.4-91.9%)
92.2% (95% C189.0-95.4%; n=283; Fig.2c). Thelesion detectionresults  and a specificity of 98.9% (95% ClI 97.8-100%) for lesion detection
for each center are shownin Fig.2d and the performance stratifiedby  (Fig. 4c), and a sensitivity of 92.1% (95% CI 85.7-98.4%) for the PDAC
lesion subtypeisgiveninFig. 2e. For PDAC identification, the sensitiv-  subgroup. Depending on detailed chest CT protocols, certain pancre-
ity was 90.1% (95% C189.0-91.2%) and the specificity was 95.7% (95% Cl  atic lesions could not be completely scanned. We analyzed the lesion
94.9-96.5%; Fig. 2b). scanning completeness in chest CT by referring to the lesion location
For differential diagnosis (Fig. 2f, n=3,669) our model achieves  incontrast-enhanced abdominal CT scans (Fig.4a), and found that 67%
an accuracy of 81.4% (95% CI 80.2-82.6%) and a balanced accuracy of patients with PDAC and 43% of patients with non-PDAC were not fully
of 52.6% (95% CI1 50.0-55.1%). The confusion matrices, accuracy and  scanned (Fig. 4b). For those patients whose pancreatic lesions were
balanced accuracy of each external center with pathology-confirmed not capturedin the CT scan’s field of view (and thus were not directly
lesion types are shown in Supplementary Fig. 6 and Supplementary  observable), 75% of PDAC cases in these patients were detected by
Table 12. The results for IPMN subtype classification and the full PANDA, thatis, the patients were classified as having alesion (Fig. 4d)
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Fig. 4| Validation on chest non-contrast CT. a, Schematic diagram of the
proportion of the pancreatic lesion scanned in chest non-contrast CT. We
categorize all cases into three categories, that is, lesion not scanned, lesion
partially scanned, and lesion fully scanned, based on the relative position of the
lowest scanned slice and the lesion. b, The proportion of the three categories in
PDAC and non-PDAC cases. ¢, ROC curve for lesion detection on non-contrast
chest CT.d, Proportion of lesions detected by PANDA in the PDAC (n = 63)

and non-PDAC cases (n =51). Error bars indicate 95% CI. The center shows the

computed mean of the metric specified by the respective axis labels. The results
of subgroups with too few samples to be studied reliably (<10) are omitted and
marked as ‘n/a’. e, lllustration of how PANDA can detect lesions that are not
scanned in chest CT. Two scans of the same patient showing that PANDA can
detectdilated pancreatic duct (usually caused by PDAC) even when the PDAC is
notscanned. f, PANDA can detect early-stage PDACs and metastatic cancer that
was initially misdetected by the radiologists on chest non-contrast CT (COVID-19
prevention CT).

via secondary signs of the disease such as dilation of the pancreatic
duct (Fig.4e).

Real-world clinical evaluation

The above experiments validate the clinical utility of PANDA, but they
are limited to pathology-confirmed pancreaticlesions (thus with higher
risk) and a moderate number of normal cases. It is unclear whether
PANDA could be generalized well to the real-world population, includ-
ing patients with lesions of lower risk (for example, chronic pancrea-
titisand branch-duct IPMN) and the large, diverse set of subjects with

normal pancreas. To close the clinical translation gap, evaluation in
real-world application settingsis required to answer the following criti-
cal questions: first, what is the true performance of PANDA when used
for consecutive real-world patient populations, possibly containing
unseen lesionsubtypes, collected from varying CT imaging protocols
and clinical scenarios (that is, physical examination, emergency, out-
patient, and inpatient); second, can the tool detect malignancies that
were not previously detected by the standard of care clinical diagnosis;
third, can patients benefit from such detection (for example, if the
malignancy was detected at its surgically resectable stage?®); fourth,
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can the tool be clinically safe and efficient, without a large number of
false-positive findings that require unnecessary follow-up tests and
extra time for being ruled out; and last, can the benchtop-derived Al
be further improved according to bedside clinical requirements?.

We deployed PANDA at the SIPD by seamlessly integrating it into
the existing clinical infrastructure and workflow (Supplementary Fig. 9
and Methods ‘Real-world deployment’), and performed two rounds
oflarge-scale, real-world, retrospective studies enrolling consecutive
patients (clinical trial ChiCTR2200064645, chictr.org.cn; includes
both studies) (Fig. 5a, Extended Data Fig. 5 and Extended Data Fig. 6;
Methods). Due to the retrospective nature of the study we used two
timeframes for the standard of truth for each patient (Fig. 5a): the
initial standard of care, that is, the clinical diagnosis at the initial visit
when the non-contrast CT was acquired; and the follow-up standard
of care, that is, the clinical diagnosis obtained at follow-up (after the
initial visit and before the PANDA evaluation study).

First real-world evaluation cohort. For the first real-world evalua-
tion cohort (RW1, n=16,420), the first four questions were assessed:
performance; change in standard of care diagnosis; patient benefit;
and safety and efficiency.

Performance. RWlincluded 44 PDACs and 135 non-PDACs. For lesion
detection, PANDA achieved an overall sensitivity of 84.6% (95% CI
79.4%-89.9%) and specificity of 99.0% (95% Cl 98.9%-99.2%) (Fig. 5b),
and for PDAC identification PANDA achieved an overall sensitivity of
95.5% (95% CI189.3%-100%), specificity of 99.8% (95% C199.7%-99.9%)
and positive predictive value (PPV) of 56.0% (95% CI 44.8%-67.2%)
(Fig. 5¢). Of the four scenarios (that is, physical examination, emer-
gency, outpatient, and inpatient), inpatient had the highest sensitivity
0f 88.6% (95% C178.0%-99.1%) and physical examination had the high-
est specificity 0f 99.8% (95% C199.7%-99.9%), for lesion detection. The
multi-disciplinary team found that 51% (80 of 156) of the false positives
by Al were actually (peri-)pancreatic diseases (Fig. 5h and Supple-
mentary Fig. 8) requiring attention from radiologists®®. Considering
that these findings might be signs of pathology, they were excluded
from the results, which were adjusted as below: for lesion detection
the overall adjusted specificity increased to 99.5% (Fig. 5b), and for
PDAC identification the adjusted specificity increased to 99.9% and
the adjusted PPV, to 68.9% (Fig. 5¢). More detailed results are shown
inSupplementary Figs.10-14.

Change in standard of care diagnosis. PANDA detected 26 pancreatic
lesions that were not detected by the initial standard of care (Fig. 5i
and Extended Data Table 3), consisting of 1 PDAC, 1PNET, 3 IPMNs,
1metastatic cancer, 6 cases of pancreatitis, 1 peri-pancreatic tumor and
13 SCN/cysts (10-33 mm). The opportunistic screening with PANDA
could advance the early detection of (peri-)pancreatic malignancies
and high-risk lesions.

Patient benefit. Of the aforementioned 26 lesions first detected by
PANDA, eight were detected by follow-up standard of care before
this retrospective study, including one T2 stage PDAC and one
aneurysm (Fig. 5i and Extended Data Table 3). Nevertheless, ear-
lier detection of some of these lesions by PANDA might benefit the
patients’ management and treatment. The remaining patients were
invited to undergo magnetic resonance imaging (MRI) but only one

(a57-year-old) complied (due to the COVID-19 pandemic), undergo-
ing contrast-enhanced MRI followed by minimally invasive surgery
with curative intent (Extended Data Fig. 7). The surgical pathology
confirmedthe lesion as a G1PNET with asize of 1.5 cm.

Safety and efficiency. Only 0.5% of patients (n = 76) had false-positive
Alfindings (Supplementary Table 14), of which 92% (70 of 76) were easy
torule out by the radiologists. Of the false negatives (n = 28),89% were
benign cysts (n = 25), most of which (n =19) were <10 mmin diameter;
the remaining three consisted of aPNET, a case of chronic pancreatitis,
and alesion of undetermined type.

Second real-world evaluation cohort. To further optimize PANDA for
real-world usage, that s, reduce false positives and enable the detection
of previously unseen disease types (for example, acute pancreatitis
in the emergency scenario), we utilized hard example mining and
incremental learning to upgrade PANDA (the resulting model is named
PANDA Plus; see Methods). PANDA Plus was evaluated on the second
real-world evaluation cohort (RW2, n = 4,110) to assess the fifth ques-
tion regarding improvement of the model.

Model evolution. RW2included 32 PDACs and 134 non-PDACs. PANDA
Plusretained the same sensitivity as PANDA but significantly reduced
the false positives by more than 80%, reaching an adjusted specificity
0f 99.9% for both lesion detection (95% Cl 99.8%-100%) and PDAC
identification (95% CI 99.7%-100%) (Fig. Se-g and Supplementary
Figs. 15-19). In addition, for the newly learned disease type (that is,
acute pancreatitis), the sensitivity for detection was 90.0% (95% CI
80.7%-99.3%) for the 40 patients with acute pancreatitis (Fig. 5d).
PANDA Plus detected five pancreatic lesions that were missed by
the initial standard of care, consisting of 1 PDAC (T2 stage), 1 PNET
and 3 cysts (10-32 mm) (Extended Data Table 3). In addition, the
real-world evaluation showed that PANDA maintained robust perfor-
manceinlow-risk lesions despite being originally trained on surgical
pathology-confirmed lesions. Specifically, our model had a sensitiv-
ity of 92.6% for detecting IPMN and 99.0% for chronic pancreatitisin
RW1and RW2 combined (Fig. 5d), although 22 (81%) of the 27 IPMNs
and 94 (97%) of the 97 cases of chronic pancreatitis were not biopsied
or resected.

Discussion

We present PANDA, an Almodel that detects the seven most common
pancreatic lesions and ‘other’, and diagnoses the lesion subtypes in
routine non-contrast CT scans. This task has long been considered
impossible for radiologists and, as such, contrast-enhanced CT and/
or MRI and endoscopic ultrasound (EUS) have been used as the rec-
ognized and recommended diagnostic imaging modalities. We show
that by curating a large dataset covering common pancreatic lesion
types confirmed by pathology, transferring lesion annotations from
contrast-enhanced to non-contrast CT, designing a deep learning
approachthatincorporates acascade network architecture for lesion
detection and a memory transformer for pancreas lesion diagnostic
information modeling, and learning from the real-world feedback,
PANDA, which uses only non-contrast CT asinput, achieves high sensi-
tivity and exceptionally high specificity in the detection of pancreatic
lesions, with a significantly higher accuracy than radiologists in the
primary diagnosis between PDAC and non-PDAC, and non-inferior

Fig. 5| Real-world clinical evaluation. a, The data collection process of two
real-world datasets, thatis, RW1and RW2, for the original PANDA model and

the upgraded PANDA Plus model, respectively. SOC, standard of care. b,c,e f,
The sensitivity, specificity and PPV on RW1(n =16,420) and RW2 (n=4,110). The
superscript * represents adjusted results if we exclude cases of (peri-)pancreatic
findings. d, Proportion of different lesion types detected in RW1(n =179) and
RW2 (n=166).g, The comparison between PANDA and PANDA Plus on RW2

(n=4,110). Error bars indicate 95% CI. The center shows the computed mean of
the metric specified by the respective axis labels. The results of subgroups with
too few samples to be studied reliably (<10) are omitted and marked as ‘n/a’.

h, Examples of (peri-)pancreatic findings (left) and the number detected by
PANDA (right). CBD, common bile duct. i, Examples of cases in which the lesion
was missed by the initial SOC but was detected by PANDA.
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accuracy toradiology reportsin the differential diagnosis of the eight
aforementioned pancreatic lesion subtypes.

PANDA exhibits effective generalizability to external centers,
varying imaging protocols (Extended Data Table 1) and real-world
populations. The favorable generalizability of PANDA canbe attributed
tothe following factors. First, the training data are fromahigh-volume
tertiary hospital, encompassing adiverse representation of the Chinese
population. Second, non-contrast CT is likely to be amore generalizable
modality for Almodels than contrast-enhanced CT. Third, our approach
combines segmentation (capturing the local pathological basis) and
classification, reducing the overfitting risk of pure classification-based
Almodels. Fourth, the model hasbeen tunedtoyield a 99% specificity
during cross-validation onthe large training set (n = 3,208), to achieve
reliable control of false positives. Fifth, the Almodel’s continual learn-
ing” enhances specificity to 99.9% by fine-tuning with false positives
from external centers and the real world. And last, regarding training
data, the cases and controls have similar CT imaging protocols (for
example, slice thickness, CT dose index, oral water), thereby forcing
the model to focus on the primary learning objectives rather than fit-
ting to shortcuts or confounders.

PANDA exceeds the performance upper bound of human expert
radiologists when reading only in non-contrast CT. This can be attrib-
uted to two mainreasons. First, duringits learning, PANDA is equipped
with two informative supervisions that do not existin non-contrast CT,
however, radiologists have not been systematically trained for lesion
detection and diagnosis in non-contrast CT. Specifically, one supervi-
sion consists of our curated expert lesion annotations transferred from
contrast-enhanced CT; the other is the pathology-confirmed lesion
types. Second, deep learning algorithms are more sensitive to subtle
imaging grayscale intensity changes than human eyes, which are better
atusing color rather than intensity changes to interpretimages®. Unlike
generative deep learning methods to synthesize contrast or color'®™?,
wetrainsupervised learning models, which effectively capture subtle
image details and directly learn downstream lesion detection and
diagnosis tasks based on these detailed characteristics. Therefore,
PANDA outperforms or matches radiologists on contrast-enhanced
CT, the performance of whichisin concordance with recent studies®

PANDA is an interpretable deep model that outputs the lesion
boundaries and lesion subtype probabilities. Although radiologists
usually do not diagnose pancreatic lesions from non-contrast CT
alone, when assisted by PANDA their performance could be drasti-
callyincreased regardless of experience, especially for the task of PDAC
identification. Radiology residents with less experience benefit the
most from PANDA’s assistance, and can reach alevel comparable with
pancreas specialists. Although general radiologists might still doubt
the Al results, their performance could be improved to a level close
to that of pancreas specialists. Note that non-contrast CT is widely
performedinnon-tertiary hospitals and physical examination centers,
where radiologists are usually less experienced or not specialized in
pancreas imaging diagnosis. In tertiary hospitals, non-contrast CT is
commonly performed as well, such as chest CT for lung nodule detec-
tionand abdominal CT inthe emergency room. Taken together, PANDA
couldbewidely used toincrease the level of pancreas cancer diagnosis
expertisein medical centers, especially by detecting more pancreatic
malignancies at an earlier stage.

To assess the added value of PANDA for real-world clinical misde-
tection, we used the stricter standard of care clinical diagnosis as the
standard of truth, which accounted for the entire patient management
scenario, beyond theradiology reportalone. Even so, of the 20,530 con-
secutive patients evaluated retrospectively, PANDA detected five cancers
and 26 other pancreatic lesions that were missed by the initial standard
of care, and enabled curative treatment of one patient with PNET.

Despite its high mortality rate, PDAC is relatively uncommon.
Screening for PDAC in the asymptomatic population was not recom-
mended because existing diagnostic methods would lead to a large

number of false positives, resulting in considerable ramifications and
costs. Although Aladvancement in the areas of pancreatic lesion detec-
tion and diagnosis has occurred with the use of contrast-enhanced CT
and EUS***** thelevel of specificity isinsufficient,and applying these
imaging techniquesto the general populationisimpractical due totheir
invasiveness, cost, and the need for iodine contrast. Liquid biopsy for
cancer detection’**>*® has shown specificities of more than 99% but the
sensitivity for early-stage pancreatic cancer detectionis only satisfac-
tory (approx.50-60%, refs.35,36). PANDA Plus (hereinafter referred to
as PANDA) was highly sensitive (>96%) for early-stage PDAC and yielded
an exceptional specificity of 99.9% in the large-scale real-world evalu-
ation, which equates to approximately one false positive out of 1,000
tests. On the one hand, such a performance enables opportunistic
screening in asymptomatic populations. Considering the prevalence
of PDAC (13 cases per 100,000 adults), the PPV for PDAC identification
will be approximately 10% (11 true positives and 100 false positives in
100,000 tests). Thisis even higher than the PPVs of some other cancer
screeningtests currently recommended by the Preventive Services Task
Force (USPSTF), for example, mammography for breast cancer, witha
PPV of 4.4% (ref. 37), stool DNA for colorectal cancer, witha PPV of 3.7%
(ref. 38), and low-dose CT for lung cancer, with a PPV of 3.8% (ref. 39).
Our experiments also show that when PANDA was applied in routine
multi-scenario CT examinations, PDAC detection in asymptomatic
adults could potentially be considered at no additional cost, with no
extraexamination or radiation exposure. Ideally, even if 10 Al-identified
patients with PDAC underwent follow-up exams to confirm one PDAC
at a10% PPV, the overall cost per PDAC found remains manageable.
Forexample, the price ranges from US$1,264 to US$1,685 in Shanghai,
China, for10 exams, depending on the specific type of follow-up exam,
thatis, contrast-enhanced CT, MRI or EUS, although the price could be
higherin Western countries. Nevertheless, further prospective studies
are needed to assess the risk-benefit ratio and cost-effectiveness in
the future. On the other hand, PANDA could also be used in designed
screening in high-risk populations*° (Supplementary Methods 1.4).In
suchascenario, the sensitivity of (particularly early-stage) PDACiden-
tification can be further improved by adjusting the model threshold
atthe cost of aslight decrease in specificity. Inboth opportunistic and
designed screening scenarios, PANDA is meant to be used in screening,
a pre-step before diagnosis, and not to replace existing diagnostic
imaging modalities. Nevertheless, PANDA's reliable initial diagnosis
can better assist physicians in triaging and managing patients with
pancreatic lesions, a frequent dilemmaiin clinical practice*..

PANDA is trained on a continual learning approach using multi-
center data, butincludes only limited data outside the East Asian popu-
lation and hospitals. The model should be further validated in external
real-world centers, more international cohorts, and prospective stud-
ies. PANDA exhibited relatively low accuracy for PNET. PNET tumors are
rare and highly diverse in appearance, and the model may primarily
miss some cases with very low image contrast in non-contrast CT.

PANDA has already demonstrated its potential for accurate detec-
tion of other cancers, especially cancer types (esophagus*, liver*,
stomach**) for which no guideline-recommended screening tests are
available for average-risk individuals. This opens up an exciting pos-
sibility of universal cancer detection at both high sensitivity and high
specificity levels, while requiring only anon-invasive, low-cost, widely
adopted non-contrast CT scanning procedure. We hope that PANDA
and its variations will help transform the current cancer-detection
paradigm from late-stage diagnosis, when symptoms first present, to
early-stage screening in which cancers can be detected before symp-
toms appear.
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Methods

Ethics approval

Theretrospective collection of the patient datasets ineach cohort was
approved by theinstitutional review board (IRB) ateachinstitution with
awaiver for informed consent: the Shanghai Institution of Pancreatic
Diseases (SIPD) IRB, Shengjing Hospital of China Medical University
(SHCMU) IRB, First Affiliated Hospital of Zhejiang University (FAHZU)
IRB, Xinhua Hospital (XH) of Shanghai Jiao Tong University School of
Medicine IRB, Fudan University Shanghai Cancer Center (FUSCC) IRB,
Tianjin Medical University Cancer Institute and Hospital (TMUCIH)
IRB, Sun Yat-Sen University Cancer Center (SYUCC) IRB, Guangdong
Provincial People’s Hospital (GPPH) IRB, Linkou Chang Gung Memorial
Hospital (CGMH) IRB, and General University Hospital in Prague (GUHP)
IRB. All data in this study were de-identified prior to model training,
testing and reader studies.

Dataset description

This multicenter retrospective study involved five patient cohorts: an
internal training cohort, on which the Almodels were built; aninternal
test cohort, on which the model performance and reader study were
assessed (together with an additional internal differential diagnosis
cohorttoincrease statistical power for the evaluation of the model’s
performance on differential diagnosis); an external multicenter (n =9)
test cohort, on which the generalization across multiple centers was
assessed; achest non-contrast CT test cohort, on which the generaliza-
tion to chest CT scans was assessed; and a real-world clinical evalua-
tion cohort, onwhich critical questions about the clinical translation
were assessed.

PDAC and seven non-PDAC lesion subtypes (PNET, SPT, IPMN,
MCN, SCN, chronic pancreatitis and ‘other’)**"*> were targeted in
this study. In the first four cohorts, PDAC and non-PDAC lesions were
confirmed by surgical or biopsy histopathology. The patient-level label
of the surgical pathology was determined based on the 2019 World
Health Organization Classification of Tumors - 5th edition, Digestive
System Tumors. For biopsy pathology, definitive evidence was required
for diagnosis. Patients with mixed neoplasms were not included.
The normal controls were confirmed as being free of pancreatic or
peri-pancreatic disease at 2 year follow-up (details of the collection
processare givenin Supplementary Methods1.1.1). Patients with acute
pancreatitis and a history of abdominal treatment were excluded. Inthe
real-world cohort, pathology or the standard of care clinical diagnosis
was used as the ground truth. All of the patientsinthe five cohorts were
staged according to the eighth edition of the AJCC (American Joint
Committee on Cancer) cancer staging system. The characteristics
of the study participants are listed in Extended Data Table 1 (patient
and CT characteristics), Supplementary Table 2 (reference standard
of lesion types) and Supplementary Table 3 (lesion size stratified by
lesion type). More details of the datasets included in this study are
givenbelow and in Supplementary Methods1.1.2-1.1.7.

Internal training cohort. The internal training cohort consisted of
3,208 patients (1,431 with PDAC, 140 with PNET, 98 with SPT, 254 with
IPMN (163 with main/mixed-duct IPMN and 91 with branch-ductIPMN),
37 with MCN, 110 with chronic pancreatitis, 134 with SCN, 66 with
‘other’ (Supplementary Table 1) and 938 normal controls) who had
been treated between January 2015 and October 2020 at the SIPD,
China. Consecutive patients (except for those who had chest CT before
surgery, refer to the ‘Chest computed tomography test cohort’ section)
with pancreaticlesions confirmed onsurgical pathology were included.

Lesion and pancreas annotation. Besides the patient-level label,
we also annotated pixel-level segmentation masks of the lesion and
pancreas. We required only manual annotation of the lesion masks.
Due to the difficulty of, and issues with reliability regarding, direct
lesion annotation by radiologists using only non-contrast images,

we additionally collected paired contrast-enhanced CT scans for anno-
tation purposes. Pancreatic lesion annotations on non-contrast CT
images were obtained by image registration from an experienced
radiologist’s manual annotations on the contrast-enhanced CT phase
images, where tumors were more visible. The pancreas annotations
were obtained via an improved version of our annotation-efficient
semi-supervised learning approach*, which uses only publicly avail-
able pancreas annotations (Supplementary Methods 1.1.3).

Internal test and differential diagnosis cohorts. We used the testing
set of our prior work* as the source of the internal test cohort of the
current study, given that interpretations on this set by 11 readers had
been collected. Furthermore, we excluded ampullary and common
bile duct cancer cases because they were usually not categorized as
pancreatic lesions in the literature**, In addition, one normal par-
ticipant was re-categorized as having chronic pancreatitis (actually
autoimmune pancreatitis, but treated as chronic pancreatitis in our
study) after carefully checking the patient records; and one normal
participant was excluded due to a severe pancreatic duct dilation. As
aresult, the internal test cohort contained CT scans of 291 patients
randomly collected between December 2015 and June 2018 at the
SIPD, China, consisting of 108 with PDAC, 9 with SPT, 5 with PNET, 22
with IPMN (11 with main or mixed-duct IPMN and 11 with branch-duct
IPMN), 2 with MCN, 10 with SCN, 13 with chronic pancreatitis, 6 with
‘other’, and 116 normal controls.

To enhance the statistical power of the differential diagnosis evalu-
ation, we also collected an internal addition cohort consisting of 611
consecutive patients who underwent surgery between November 2020
and October 2021 at SIPD (367 with PDAC, 53 with PNET, 30 with SPT, 65
with IPMN (40 with main or mixed-duct IPMN and 25 with branch-duct
IPMN), 21 with MCN, 32 with chronic pancreatitis, 19 with SCN, and 24
with ‘other’). These 611 patients, and the 175 patients with pancreatic
lesions in the internal test cohort, constitute the internal differential
diagnosis cohort (n=786). All patients underwent multi-phase CT,
including non-contrast, arterial, venous, and delay. We used only the
non-contrast phase for PANDA testing and the first reader study. The
multi-phase CT scans of the internal test cohort were used for the
second reader study.

External multicenter test cohorts. The external test cohorts were
collected from nine centers, of which seven were located in China,
one in Taiwan ROC (CGMH, Site H), and one in the Czech Republic
(GUHP, SiteI). The seven centers from China are distributed widely in
geographical area: oneinthe northeast (SHCMU, Site A), four in the east
(FAHZU, Site B; XH, Site C; FUSCC, Site D; TMUCIH, Site E), and two in the
south (SYUCC, Site F; GPPH, Site G). Inclusion criteria were as follows:
non-contrastabdominal CT fully covering the pancreas region before
treatment; ground truth lesion type confirmed on either surgical or
biopsy pathology; and normal control confirmed on at least 2 years
of follow-up. Normal controls in most centers were randomly selected
from the same time period as that of lesion collection. Patients with
low image quality due to artifacts caused by metal in stents or drastic
motion during imaging were excluded. The multicenter test cohort,
consisting of non-contrast CT scans of 5,337 patients (2,737 with PDAC,
932 withnon-PDAC, and 1,668 normal), was used forindependent vali-
dation when no model parameters were tuned or adjusted.

Chest computed tomography test cohort. To evaluate the model’s
generalizability to chest CT, we collected a non-contrast chest CT test
cohort with pathology-confirmed PDAC and non-PDAC and normal
controls confirmed on 2 year follow-up, from SIPD, which is affiliated
with a major tertiary hospital. Specifically, for patients with PDAC or
non-PDAC confirmed by surgical pathology, we searched for their near-
est chest CT images for up to 1 year before surgery. For patients with
chest CT reports of normal pancreas, we searched for their follow-up
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records of normal pancreas for at least 2 years. By doing so, we collected
acohort of 63 patients with PDAC, 51 with non-PDAC, and 378 normal
controls spanning from November 2015 to May 2022 at SIPD. These
non-contrast chest CT scans of PDAC and non-PDAC were acquired
4 days (range, —20t0191 days) before the contrast-enhanced abdominal
CT diagnosis, and most of them were acquired during the COVID-19
pandemic for prevention purposes inthis tertiary hospital. We ensured
thatall patients wereindependent of the patientsin the training cohort.

Real-world evaluation cohorts. Thereal-world, retrospective studies
consisted of two rounds (RW1 and RW2) of evaluations between July
2022 and October 2022 at the SIPD. The clinical trial was complete and
registered with http://www.chictr.org.cn, ChiCTR2200064645, and
included both RW1and RW2. PANDA was evaluated on RW1, and PANDA
Plus (thatis, the upgrade of PANDA by learning from the internal, exter-
nal and RW1 feedback) was evaluated on RW2. The inclusion criterion
was the availability of a non-contrast CT scan covering the pancreas
region, for example, lung, esophagus, liver or kidney CT. Patients
with acute pancreatitis (in RW1), abdominal cancer treatment, severe
ascites, abdominal trauma, and low imaging quality were excluded.
The process of the standard of truth determination is described in
Extended Data Figs. 5and 6.

Our real-world data were collected from four scenarios, that is,
physical examination, emergency, inpatient, and outpatient depart-
ment (Supplementary Methods 1.1.7). Because the patientindications,
the CTimage background complexity, the pancreaticlesion prevalence,
andthe experience of the (first-line) radiologists varied widely between
these four scenarios, we conducted separate evaluations to determine
the feasibility of opportunistic screening using PANDA. These results
can serve as a valuable reference when applied to different countries
orinstitutions based on the sources of patients.

The original RW1 consisted of 18,654 consecutive individuals
whosenon-contrast CT scans were examined between1and 31 Decem-
ber 2021, from four differentclinical scenarios at the SIPD. After exclu-
sion (n=2,234,12%),16,420 individuals remained (that s, 9,429, 3,027,
2,311 and 1,653 from the physical examination, emergency, outpa-
tient and inpatient scenarios, respectively). RW1 included 44 PDACs,
6 PNETs, 1 SPT, 15 IPMNs, 1 MCN, 42 cases of chronic pancreatitis,
11SCNs and 59 cases of ‘other’ (mostly benign cysts).

The original RW2 consisted of 4,815 consecutive individuals
between1and 10 February 2022, from the four clinical scenarios at
the SIPD. The exclusion criteria were the same as for RW1, except that
weincluded acute pancreatitis for RW2. After exclusion (n = 705,15%),
4,110 individuals remained (1,854, 969, 688 and 599 from the physical
examination, emergency, outpatient, and inpatient scenarios, respec-
tively). RW2 included 32 PDACs, 5 PNETs, 1SPT, 12 IPMNSs, 4 MCNs, 55
cases of chronic pancreatitis, 2 SCNs, 15 cases of ‘other’, and 40 cases
of acute pancreatitis.

Al model: PANDA

PANDA consists of three stages (Extended Data Fig. 1) and was trained
by supervised machine learning. Given the input of anon-contrast CT
scan, we firstlocalize the pancreas, then detect possible lesions (PDAC
or non-PDAC), and finally classify the subtype of the detected lesion
if any. The output of PANDA consists of two components, that is, the
segmentation mask of the pancreas and the potential lesion, and the
classification of the potential lesion associated with probabilities of
eachclass.

Pancreas localization. The aim of the first stage (Stage 1) isto localize
the pancreas. Because the pancreaticlesionis usually asmall regionin
the CT scan, the localization of the pancreas can accelerate the lesion
finding process and prune out unrelated information for the special-
ized training of the pancreatic region. In this stage we train an nnU-Net*
to segment the whole pancreas (the union mask of healthy pancreas

tissue and the potential lesions) from the input non-contrast CT scan.
Specifically, the three-dimensional (3D) low-resolution nnU-Net,
whichtrains UNet on downsampled images, is used as the architecture
because of its efficiency ininference. The model trainingis supervised
by the voxel-wise annotated masks of the pancreas and lesion. More
details on the training and inference for PANDA Stage 1are given in
Supplementary Methods1.2.1.

Lesion detection. The aim of the second stage (Stage 2) is to detect
the lesion (PDAC or non-PDAC). We trained a joint segmentation and
classification network to simultaneously segment the pancreas and
potential lesion, as well as classify the patient-level abnormality label,
thatis, abnormal or normal. The benefit of the classification branchis
to enforce global-level supervision and produce a patient-level prob-
ability score, whichis absentin semantic segmentation models. Similar
designs had been used in previous studies, such as for cancer detec-
tion*”*8and outcome prediction. The network architectureis shown
in Extended Data Fig. 1b. This is a joint segmentation and classifica-
tion network with a full-resolution nnU-Net?* backbone (left partin
Extended DataFig.1b). We extract five levels of deep network features,
apply global max-pooling, and concatenate the features before carry-
ing out the final classification. We output both the segmentation mask
ofthe potential lesion and pancreas, and the probabilities of abnormal
ornormal forenhanced interpretability. This network was supervised
by acombination of segmentation loss and classification loss:

L= Lseg +als @

where the segmentationloss £, was an even mixture of Dicelossand
voxel-wise cross-entropy loss, and the classification loss was the
cross-entropy loss. a was set to 0.3 to balance the contribution of the
two loss functions. More details on the training and inference of PANDA
Stage2are givenin Supplementary Methods 1.2.2.

Differential diagnosis. The aim of the third stage network (Stage 3)
is the differential diagnosis of pancreatic lesion type, which is formu-
lated as the classification of eight sub-classes, that is, PDAC, PNET, SPT,
IPMN, MCN, chronic pancreatitis, SCN and ‘other’. Due to the subtle
texture change in pancreatic diseases, especially on non-contrast CT
scans, we incorporate a separate memory path network thatinteracts
with the UNet path to enhance the ability to model global contextual
information, which is usually associated with the diagnosis of pan-
creatic lesions by radiologists. As shown in Extended Data Fig. 1c, we
use adual-path memory transformer network. This designisinspired
by Max-Deeplab®. The architecture of the UNet branch is the same as
that of Stage 2, implemented as a full-resolution nnU-Net. The UNet
branch takes the input of the cropped 3D pancreas bounding box,
whichis cropped with afixed input size of (160,256, 40). The memory
branch starts with learnable memories designed to store both posi-
tional and texture-related prototypes of the eight types of pancreatic
lesion, andisinitialized as200 tokens with 320 channels. The memory
pathiteratively interacts with multi-level UNet features (plus ashared
learnable positional embedding across layers) via cross-attention and
self-attention layers. Through this process the memory vectors were
automatically updated to encode both the texture-related informa-
tion from the UNet features and the positional information from the
learnable positional embedding, for example, relative positions of
the pancreaticlesioninside the pancreas, resulting in distinguishable
descriptors for each type of pancreatic lesion.

The mechanism of the cross-attention and self-attention used
in the model is formally described in Supplementary Methods 1.2.3,
together with more details on modelinstantiation, training and infer-
ence of PANDA Stage 3.

Additionally, we trained an IPMN subtype classifierina cascaded
fashion following PANDA Stage 3, with the aim of binary classification
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between main or mixed-duct IPMN and branch-duct IPMN (Supple-
mentary Methods1.2.3).

Generalization of PANDA to chest computed tomography. One major
difference between chest CT and abdominal CT is that the pancreatic
and lesion regions are sometimes partially scanned in chest CT, depend-
ing on the different scanning ranges of the protocol and the anatomy
of the patient. This difference could induce domain shift issues for
machinelearning models if our Almodel was trained only on abdominal
CT scans. Toaddress this issue we propose a data augmentation method
that randomly (with a probability) cuts off the pancreas region in the
axial plane to simulate theimaging scenarioinwhich the pancreasis not
fully scanned in the chest CT. This data augmentation is applied to the
training process of Stages 2 and 3. This simple simulation of the chest CT
effectively helps our model generalize to chest non-contrast CT without
the addition of any chest CT datato the training set, while maintaining
high performance on abdominal non-contrast CT.

Real-world deployment and model evolution. In the real-world
clinical evaluation, PANDA was deployed at SIPD by integratingitinto
the clinical infrastructure and workflow (Supplementary Fig. 9). The
deployment facilitates large-scale retrospective real-world studies in
the hospital environment by securing data privacy, efficiently utilizing
computational resources, and accelerating the process of large data
inference and clinical evaluation. Specifically, we deploy PANDA in a
local server located in the hospital (Supplementary Methods 1.2.4),
whichenablesradiologists to visualize each case using our user-friendly
DAMO Intelligent Medical Imaging user interface (IMIUI; Supplemen-
tary Fig. 9), easily review all results and access necessary informa-
tion from their daily work environment. After RW1we again collected
non-contrast CT data of false positives and negatives and cases of acute
pancreatitis fromtheinternal, externaland RW1cohorts. In the field of
machinelearning this is known as hard example mining and incremen-
tallearning. The evolved model was named PANDA Plus and tested on
RW2.The collection and annotation of these new training data and the
fine-tuning schedule are described in Supplementary Methods 1.2.5.

Evaluation metrics

Lesion detection metrics. Lesion detection is a binary classification
task to distinguish whether the patient has a pancreatic lesion or not.
Having a lesion is defined as the ‘positive’ class for calculation of the
AUC, sensitivity, specificity, accuracy and balanced accuracy. In addi-
tion, we evaluate the lesion detection rates stratified by lesion type.
Particularly for the PDAC cases, we assess the sensitivity for detection
stratified by cancer stage (stages I-1V) and tumor stage (T1-4).

Primary diagnosis metrics. Primary diagnosis is a three-class classi-
fication task to distinguish PDAC versus non-PDAC versus normal. We
use the top-1accuracy and three-class balanced accuracy to present the
detailed results of the three-class classification. In addition, we define a
PDAC identification task because PDACis a unique lesion type with the
most dismal prognosis. Distinguishing it fromother types, thatis, PDAC
versus non-PDAC + normal, is always the primary question to answer
for doctors and is the key task for cancer screening. Having a PDAC is
defined as the ‘positive’ class for calculation of the AUC, sensitivity,
specificity, PPV, accuracy and balanced accuracy.

Differential diagnosis metrics. Differential diagnosis is an eight-class
classification task for the seven most common pancreaticlesiontypes
and ‘other’, following the pancreatic tumor-cyst classification task**,
without normal patients included and with each patient having a
lesion type assigned. The confusion matrices are used to present the
detailed classification results. Wereport the overall top-laccuracy and
multi-class balanced accuracy for the classification of all of the lesion
types, tofacilitate the comparison of the Almodel’s performance with

second-reader radiology reports and across external multiple centers.
The second-reader radiology report is a secondary analysis of a pri-
mary standard of care clinical radiology report, in which radiologists
have complete access to the patient’s clinical history (for example,
contrast-enhanced CT examinationindicated for chronic pancreatitis
follow-up), and the results of other clinical examinations (for example,
tumor biomarkers). In addition, we also report the performance of
the full pipeline (lesion detection + differential diagnosis), that is,
nine-class classification consisting of normal and eight lesion types.

Ablation studies

We performthree ablation studies. For PANDA Stage 2 we compare our
multi-task CNN model with a volume-based classifier on the nnU-Net
segmentation model (Extended Data Fig. 2a). This baseline model
uses the volume of the segmented lesion by an nnU-Net as an indica-
tor for the existence of the lesion. For PANDA Stage 3 we compare our
dual-path transformer model with the Stage 2 multi-task CNN model.
Inaddition, we demonstrate theimportance of the quantity of training
dataondifferent tasks of our problem (Extended Data Fig. 3). We first
retrain the PANDA model under four settings, using 10%, 25%, 50% and
75% of the training dataset, respectively, and then test the modelineach
setting on the internal and external test cohorts.

Reader studies
Twogroups of readers participated in two independent reader studies.

Reader study on non-contrast computed tomography. The aim of the
firstreader study was to assess the readers’ performance in detecting
pancreatic lesions and diagnosing whether the lesion was a PDAC on
non-contrast CT. The study was conducted in two sessions. The first
session compared PANDA’s performance with that of radiologists with
varying levels of expertise in pancreatic imaging. The second session
investigated whether PANDA would be capable of assisting radiolo-
gists. There was awashout period of at least 1 month between the two
rounds for each reader.

A total of 33 readers from 12 institutions were recruited in this
study, consisting of 11 pancreatic imaging specialists, 11 general radi-
ologists who are not specialized in pancreatic imaging, and 11 radiol-
ogyresidents. These readers had practiced for an average of 8.3 years
(range, 2-31years) in various radiology departments, and had read
an average of 510 pancreatic CT scans (range, 100-2,600) in the year
before the reader study (Extended Data Table 2).

In the first session each reader was trained to use the ITK-SNAP
software*® for the visualization of the CT images. Basic functions of this
softwareinclude butare not limited to HU (Hounsfield unit) windowing,
zoomingin and out, and axial, sagittal and coronal view simultaneous
display. Ininterpretingthe 291randomly ordered cases from the inter-
naltest cohort, non-contrast CT images and information on age and sex
were provided. The readers were informed that the study dataset was
enriched with more positive patients than the standard prevalence of
pancreaticlesions in daily practice. However, they were not informed
aboutthe proportionsof each class. Eachreader interpreted the image
without time constraints and classified each case as PDAC, non-PDAC or
normal. Inaddition to the patient-level label, each reader alsorecorded
the location of the detected tumor in the format of pancreatic head/
uncinate, neck, and body/tail. The performance of each readeris listed
inSupplementary Tables 6 and 8.

In the second session the same group of readers interpreted the
291 cases again using ITK-SNAP. In addition to the non-contrast CT
images and the information on age and sex, the readers were provided
with PANDA’s case-level prediction probability of PDAC, non-PDAC or
normal, aswell as the corresponding lesion segmentation masks. Some
examples of the provided PANDA predictions (in interactive video
format) are shownin Supplementary Fig. 3. Theimprovement of each
reader between the two sessions is measured.
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Reader study on contrast-enhanced computed tomography.
The second reader study compared PANDA’s (non-contrast CT) per-
formance with that of pancreatic imaging specialists' readings on
contrast-enhanced CT. Atotal of15additional pancreaticimaging spe-
cialists from a high-volume pancreatic cancer institution (SIPD) were
recruited in this study. These readers had practiced for an average of
9.5 years (range, 6-19 years) in the radiology department at SIPD, and
hadread anaverage of 907 pancreatic CT scans (range, 400-3,000) in
theyear prior to the reader study (Extended Data Table 2).

Each reader was first trained to use the same software for visu-
alizing multi-phase CT images. Next, they were provided with the
non-contrast, arterial and venous phase CT images of the same 291
patients from theinternal test cohort, as well asinformation on age and
sex. Theinterpretation rules were the same as those of the first reader
study. We also measured individual differences between non-contrast
CT and contrast-enhanced CT (Supplementary Methods 1.3.1).

Interpretability of the Almodel

Our Al model jointly outputs the probability of the abnormality,
the prediction of the subtype classification (if any abnormality is
detected), and the segmentation mask of the detected abnormality
lesion. Unlike other Al-based classification models®** that require the
visualization of the network feature map to acquire the abnormality’s
positional cues, our model directly outputs the segmentation mask
of the detected mass together with the patient-level probability,
which provides straightforward and advanced interpretability. The
correspondence between the segmented lesion and the ground
truth lesion was evaluated using the Dice coefficient (DSC) and the
95th percentile of Hausdorf distance (HD95). The segmentation
performance of the pancreas and each type of pancreatic lesion
was evaluated.

Inaddition, we visualized the heatmap of the convolutional feature
map of PANDA Stage 2 classification using Grad-CAM* (Extended Data
Fig.4a), tounderstand which part of the feature map contributed most
to lesion detection. For PANDA Stage 3 lesion differential diagnosis,
we plotted the attention map of the memory tokens, which showed
the activation of the top activated tokens (Extended Data Fig. 4b) to
interpret the model’s attention.

Statistical analysis

The performance of the binary classification task was evaluated using
the AUC, sensitivity, specificity, PPV, accuracy and balanced accu-
racy metrics. The performance of the multi-class classification task
was evaluated using accuracy and balanced accuracy. Cohen’s kappa
coefficient x was also computed between the Al prediction and the
standard of truth for differential diagnosis. The confidence intervals
were calculated based on1,000 bootstrap replications of the data. The
significance comparisons of sensitivity, specificity, accuracy and bal-
anced accuracy were conducted using permutation tests to calculate
two-sided P values with 10,000 permutations. For non-inferiority
comparisons, a 5% absolute margin was pre-specified before the test
setwasinspected. The significance of the difference between the AUCs
of the Al model and nnU-Net was assessed using the Delong test. The
threshold to determine statistical significanceis P< 0.05. Data analysis
was conducted in Python using the numpy (v1.20.3), scipy (v1.8.1) and
scikit-learn (v0.24.2) packages.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Sample data and an interactive demonstration are given at http://
panda.medofmind.com/. The remaining datasets used in this study
are currently not permitted for public release by the respective

institutional review boards. Requests for access to aggregate data
and supporting clinical documents will be reviewed and approved by
anindependent review panel on the basis of scientific merit. All data
provided are anonymized to protect the privacy of the patients who
participated in the studies, in line with applicable laws and regula-
tions. Data requests pertaining to the study may be made to the first
author (Kai Cao; mdkaicaol63@163.com). Requests will be processed
within 6 weeks.

Code availability

The code used for the implementation of PANDA has dependencies
on internal tooling and infrastructure, is under patent protection
(application numbers: CN202210575258.9,US 18046405), and thusis
notabletobe publicly released. All experiments and implementation
details are described in sufficient detail in the Methods and Supple-
mentary Information (Methods) sections to support replication with
non-proprietary libraries. Several major components of our work are
availablein open-source repositories: PyTorch (https://pytorch.org/)
and nnU-Net (https://github.com/MIC-DKFZ/nnUNet).
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Extended Data Fig. 2| Ablation studies of the 5-fold cross-validation on the
training set (n=3,208). a, nnUNet vs. PANDA Stage-2 network (multi-task CNN)
for lesion detection, where PANDA achieved significantimprovementin AUC
score (P=0.00022). At the same (desired) specificity level of 99.0%, PANDA
Stage-2 outperformed nnUNet in sensitivity by 4.9% (95.2% vs. 90.3%) (marked
inred dotted line). b, Multi-task CNN baseline (same as PANDA Stage-2 network

PANDA predicted lesion type

withnnUNet backbone and classification head) vs. PANDA Stage-3 (dual-path
transformer) for differential diagnosis, where PANDA achieved significant
improvementin both accuracy (Acc.) and balanced accuracy (Bal. acc.). The
significance test comparing the AUCs of the Almodel and nnUNet is conducted
using the Delong test. Two-sided permutation tests were used to compute the
statistical differences of accuracy and balanced accuracy.
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Extended Data Fig. 4 | Analysis of interpretability. a, we visualize the
noncontrast CT, contrast-enhanced CT, and the radiologist’s annotated mask and
compare them with the PANDA segmentation map and the Grad-CAM heatmap
of PANDA Stage-2 classification for lesion detection. PANDA correctly predicted
the position of the PDAC (PANDA segmentation map) and made positive
classification based on the local features of the PDAC (Grad-CAM heatmap). b, we
visualize the top activated attention maps of the Transformer branch of PANDA
Stage-3 tointerpret how PANDA classified the lesions. The memory tokens of the
Transformer not only attended to the lesion locations but also considered the

secondary signs for lesion diagnosis as utilized by the radiologists. E.g. APDAC
caused pancreatic duct dilation and pancreatic atrophy; ASPT was circumscribed
with the heterogeneity of both solid and cystic regions; ASCN had a pattern of
central stellate scar and so-called honeycomb pattern; APNET had isoattenuating
mass and peripheral calcification; A CP was associated with calcification,

dilated duct, and pancreatic atrophy; An IPMN lesion was connected to the
pancreatic duct; AMCN had the thick cystic wall and no visual connection with
the pancreatic duct. The heatmaps of multiple slices were displayed for the CP,
IPMN, and MCN.
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Extended DataFig. 7 | Flowchart describing the successful discovery and
intervention of a patient with pancreatic neuroendocrine tumors (PNET)
in the real-world clinical evaluation. Noncontrast chest CT was performed on
this patientin the physical examination center in Month 0, where the standard
of care did not report any pancreatic findings. This patient was included in the
real-world study in Month 7 and was reported as non-PDAC (95% probability)
by PANDA. After the case was reviewed by MDT, the patient was recalled for

contrast-enhanced MRIand was considered as PNET in the radiology report.
The patient consented to surgery, which was later successfully performed in
Month 7. The post-surgical pathology report confirmed an early-stage PNET
(G1,1.5cm). The 6 month follow-up (Month 13) showed no relapse or metastasis.
The English translation of the MRl and pathology reports’ key results are
provided in green boxes.
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Extended Data Table 1| Dataset characteristics

Tnternal Tnternal Internal Site A Site B Site C Site D Site B Site F Site G Site H Site T host o wa
Train st Addition  (SHCMU)  (FAHZU) (XH) (FUSCC)  (TMUCIH) (SYUCC)  (GPPH)  (CGMH)  (GUHP) “hest L R
(n=3,208) (n=201) (n=611) (n=1,769)  (n=2,019) (n=870) (n=292) (n=60) (n=173) (n=92) (n=382) (n=180) (n=492)  (n=16,420) (n=4,110)
Patient Characteristics
Lesion types
Normal, no.(%) 938(20) 116(40) 0(0) 195(28) 513(25) 194(52) 38(13) 0(0 0(0) 19(53) 202(76) 87(48) 378(77) 16241(99)  3944(96)
PDAC, no.(%) 1431(45) 108(37) 367(60) 1023(58) 983(49) 115(31) 157(54) 60(100) 173(100) 43(47) 90(24) 93(52) 63(13) 144(0) 32(1)
PNET, no.(%) 140(4) 5(2) 53(9) 25(1) 86(4) 11(3) 38(13) 0(0) 0(0) 0(0) 0(0) 0(0) 11(2) 6(0) 5(0)
SPT, no.(%) 98(3) 0(3) 30(5) 20(1) 61(3) 4(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 6(1) 1(0) 1(0)
IPMN, no.(%) 254(8) 22(8) 65(11) 30(2) 118(6) 6(2) 18(6) 0(0) 0(0) 0(0) 0(0) 0(0) 16(3) 15(0) 12(0)
MON, no.(%) 37(1) 2(1) 21(3) 24(1) 19(2) 5(1) 12(4) 0(0) 0(0) 0(0) 0(0) 0(0) 2(0) 1(0) 4(0)
CP, no.(%) 110(3) 13(4) 32(5) 27(2) 87(4) 15(4) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 7(1) 12(0) 55(1)
SCN, no.(%) 134(4) 10(3) 19(3) 92(5) 78(4) 11(3) 29(10) 0(0) 0(0) 0(0) 0(0) 0(0) 7(1) 11(0) 2(0)
other, no.(%) 66(2) 6(2) 24(4) 33(2) 44(2) 9(2) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 2(0) 59(0) 15(0)
AP, no.(%) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 40(1)
Reference standard
on lesions
Surgical pathology, no.(%) ~ 2270(100)  175(100) 611(100)  1274(100) 918(61) 151(86) 254(100) 60(100) 173(100) 43(100) 90(100) 4(4) 114(100) 23(13) 18(11)
Bioposy pathology, no.(%) 0(0) 0(0) 0(0) 0(0) 588(39) 25(14) 0(0) 0(0) 0(0) 0(0) 0(0) 89(96) 0(0) 18(10) 20(12)
Clinical diagnosis, no.(%) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 138(77) 128(77)
Normal
Female, no.(%) 483(51) 65(56) o) 236(48) 255(50) 96(49) 38(100) o) 0(-) 15(31) 102(35) 33(38) 162(43) 5915(36) 1391(35)
Al QR 49 50 - 52 57 46 49 - - 60 53 73 37 38 58
ge(IQR) (39-60) (38-60) 8 (38-60) (46-66) (31-60) (39-55) O ) (54-66) (42°63) (66-78) (32-45) (33-47) 50-68)
Non-PDAC
Female, no.(%) 414(49) 34(51) 121(50) 149(59) 280(54) 33(54) 61(63) o) 0(-) () o) () 26(51) 56(41) 38(28)
Age(IQR) iy ) (@ B 4) (4 N 7) (4:5(: 1) (4 e ) ( A 7) (4;4: 2) o) ) o) ) 1) ( N ) ( ;;172) (574): 1)
( - 6 13- 6 15-6° 6-6- 5-66 50-6° -6 - - - - - 51-65) 51- 37-6¢
PDAC
Female, no.(%) 198(35) 48(44) 160(44) 415(41) 1422(43) 46(40) 76(48) 29(48) 68(39) (47) 41(46) 38(41) 25(40) 19(43) 8(25)
Age(IQR) 63 64 64 61 65 65 62 58 59 61 57 64 65 66 60
e (55-69) (57-70) (56-71) (55-68) (58-71) (60-70) (56-68) (51-62) (51-66) (54-69) (51-65) (59-70) (56-70) (51-72) (57-69)
T stage
T1, no.(%) 146(10) 14(13) 19(13) 118(12) 80(8) 14(12) 16(10) 11(18) 24(14) 3(7) 17(19) 0(0) 6(10) 10(23) 4(13)
T2, no.(%) 659(46) 63(58) 217(59) 1443(43) 381(39) 61(53) 59(38) 31(52) 97(56) 16(37) 60(67) 17(18) 10(63) 15(34) 12(38)
T3, no.(%) 433(30) 24(22) 98(27) 147(14) 153(16) 15(13) 35(22) 5(8) 144(25) (14) 9(10) 30(32) 16(25) 6(14) 3(9)
T4, no.(%) 15(1) 4(4) 3(1) 240(23) 320(33) 5(4) 16(20) 13(22) 3(2) 18(42) 3(3) 144(47) 1(2) 13(30) 12(38)
Missing data, no.(%) 178(12) 3(3) 0(0) 75(7) 9(5) 20(17) 1(1) 0(0) 5(3) 0(0) 1(1) 2(2) 0(0) 0(0) 1(3)
TNM stage
1, no.(%) 316(22) 35(32) 94(26) 364(36) 156(16) 144(38) 10(25) 21(35) 50(20) 4(9) 24(27) 4(4) 20(32) 11(25) 5(17)
11, no.(%) 601(42) 52(48) 181(49) 276(27) 241(25) 30(26) 66(42) 19(32) 86(50) (16) 16(51) 8(9) 29(46) 13(30) 4(13)
111, no.(%) 196(14) 13(12) 84(23) 267(26) 254(26) 7(6) 41(26) 19(32) 27(16) 25(58) 19(21) 13(14) 11(17) 10(23) 7(22)
IV, no.(%) 140(10) 5(5) 8(2) 41(4) 283(20) 14(12) 9(6) 1(2) 5(3) (16) 0(0) 66(71) 3(5) 10(23) 15(47)
Missing data, no.(%) 178(12) 3(3) 0(0) 75(7) 19(5) 20(17) 1(1) 0(0) 5(3) 0(0) 1(1) 2(2) 0(0) 0(0) 1(3)
Tocation
Head,/uncinate, no.(%) 776(54) 54(50) 226(62) 700(68) 410(42) 38(33) 80(51) 57(95) 114(66) 20(47) 0(0) 31(33) 41(65) 25(57) 18(56)
Neck, 10.(%) 17(1) 1(1) 4(1) 8(1) 97(10) 0(0) 8(5) 1(2) 13(8) 0(0) 0(0) 0(0) 0(0) 1(2) 2(6)
Body/tail, no.(%) 497(35) 40(37) 135(37) 245(24) 370(38) 25(22) 68(43) 2(3) 39(23) 23(53) 0(0) 59(63) 22(35) 18(41) 12(38)
‘Whole gland, no.(%) 0(0) 0(0) 0(0) 0(0) 38(4) (1) 1(1) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Missing data, no.(%) 141(10) 13(12) 2(1) 70(7) 65(7) 51(44) 0(0) 0(0) 5(3) 0(0) 90(100) 2(2) 0(0) 0(0) 00
TPMN types
Main/mixed-duct, no.(%) 163(64) 11(50) 10(62) 14(47) 58(49) 4(67) 6(33) () () () ) () 10(62) 3(20) 2(17)
Branch-duct, no.(%) 91(36) 11(50) 25(38) 16(53) 60(51) 2(33) 12(67) i ) ! -0 s 6(38) 12(80) 10(83)
Missing data, no.(%) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) - - - 0 -0 0(0) 0(0) 0(0)

CT characteristics
PixelSpacing (mm)

Lesion (IQR)

0.680 0.688
(0.647-0.717)  (0.648-0.727)  (C

0.671 0.724
0.644-0.720)  (0.684-0.772)

0.723 0.684 0.730
(0.684-0.764)  (0.648-0.733)  (0.662-0.780)

0.781
(0.781-0.781) (0.

0.686 0.723 0.717 0.734
.661-0.742)  (0.684-0.772)  (0.682-0.771)  (0.680-0.800)

0.698 0.692
(0.678-0.745)  (0.654-0.741)

Normal (IQR) . 6 - 0.755 746 0.695 0.727 - - 0.755 0.764 0. 0.773 0.754
(0.666-0.721)  (0.668-0.708) ) (0.703-0.805)  (0.703-0.800)  (0.682-0.740)  (0.634-0.770) ) &) (0.703-0.805)  (0.684-0.750)  (0.733-0.842)  (0.771-0.850)  (0.703-0.834)  (0.689-0.814)
STice thickness (mm)
. 3.0 1.2 5.0 5.0 5.0
Lesion (IQR) (2.0-5.0) (1.2-2.0) (5.0-5.0) (5.0-5.0) (5.0-8.0)
- - - 5.0 5.0
Normal (IQR) ) 5.0) ) “) 5.0) (5.0-5.0)
Z-axis extent (mm)
Lesion (IQR) 198 195 210 215 450 285 261 233 250 414 261 216 315 225 248
(183-213) (178-209) (195-228) (168-445) (426-474) (275-326) (240-282) (232-261) (215-540) (211-454) (217-301) (192-278) (205-340) (195-320) (192-320)
Normal (IQR) 186 180 - 250 465 310 268 - - 415 210 450 320 330 320
(168-201) (168-195) &) (175-461) (445-490) (275-404) (245-204) &) &) (370-471) (195-235) (430-483) (300-340) (300-360) (285-360)
CTDI,; (mCy)
Lesion (IQR) 16.5 15.6 10.1 9.0 9.0 12.0 10.4 8.0 14.1 16.5
(14.2-16.5) (11.6-21.1) (8.6-15.0) (8.2-11.5) (4.8-12.0) (10.6-13.8) (7.9-14.2) (6.0-11.6) (10.8-15.3) (15.2-17.6)
Normal (IQR) 15.4 16 - 15.7 16.0 8.4 10.0 - - 13 10.4 4.1 124 14.1 14.1
(13.4-16.5) (13.8-16.5) 8 (11.8-20.9) (12.7-18.3) (5.2-12.6) (8.6-12.3) &) ) (11.3-17.9) (8.0-14.4) (3.3-5.5) (11.2-13.8) (13.2-16.8) (12.7-16.5)
Kvp
Lesion (IQR) 120 120 120 120 120 120 120 120 100 120 120 120 120 120 120
s (120-120) (120-120) (120-120) (120-120) (120-120) (120-120) (120-120) (120-120) (90-120) (120-120) (120-120) (120-120) (120-120) (120-120) (120-120)
Normal (IQR) 120 120 - 120 120 120 120 - - 120 120 130 120 120 120
(120-120) (120-120) ) (120-120) (120-120) (120-120) (120-123) ) &) (120-120) (120-120) (130-130) (120-120) (120-120) (120-120)
Tube Current (mA)
Lesion (IQR) 300 300 300 284 281 270 211 211 267 318 240 247 300 332
esio (300-353) (300-353) (300-339) (213-371) (247-362) (164-368) (151-365) (162-250) (200-336) (266-459) (168-336) (160-266) (250-360) (30 (300-422)
Normal (IQR) 338 300 - 311 271 191 193 B - 378 240 49 264 264 300
(329-430) (300-432) ) (243-387) (230-352) (128-270) (183-233) &) &) (300-496) (189-346) (39-66) (196-264) (250-313) (250-343)
Exposure (mAs)
Lesion (IQR) 150 150 150 184 206 200 157 132 150 180 36 123 186 187 203
(150-190) (150-190) (150-181) (147-234) (149-255) (98-305) (113-200) (120-169) (112-177) (156-215) (65-160) (81-134) (150-200) (150-221) (174-250)
Normal (IQR) 181 150 - 192 217 140 140 - - 165 140 36 149 150 156
(179-214) (150-180) ) (150-244) (118-258) (71-200) (114-160) &) ) (26-222) (73-160) (29-49) (129-148) (149-200) (149-200)
Enteric contrast
Lesion water water water water water water water water no water no no no water/no water/no
Normal water water -(-) water/no water/no water/no water/no - - water/no no no no water/no water/no

T stage (AJCC eighth edition), TNM stage (AJCC eighth edition), and location are displayed for the PDAC patients. no., number; IQR, interquartile range; Internal Addition, additional cohort

to enhance the evaluation of differential diagnosis, together with the 175 patients with pancreatic lesions in the internal test cohort, constitute the internal differential diagnosis cohort
(n=786); SHCMU, Shengjing Hospital of China Medical University; FAHZU, First Affiliated Hospital of Zhejiang University; XH, Xinhua Hospital; FUSCC, Fudan University Shanghai Cancer
Center; TMUCIH, Tianjin Medical University Cancer Institute and Hospital; SYUCC, Sun Yat-Sen University Cancer Center; GPPH, Guangdong Provincial People’s Hospital; CGMH, Chang Gung

Memorial Hospital; GUHP, General University Hospital in Prague; RW, real-world cohort.
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Extended Data Table 2 | Reader experience

Experience

CT read

Pancreatic CT

Reader ID (yr) per year read per year Traning/Expertise
Specialist 1 (S1) 17 7,500 950 Pancreatic radiology
Specialist 2 (S2) 14 3,000 550 Pancreatic radiology
Specialist 3 (S3) 14 15,000 1,500 Pancreatic radiology
Specialist 4 (S4) 7 20,000 2,000 Pancreatic radiology
Specialist 5 (S5) 7 12,000 460 Pancreatic radiology
Specialist 6 (S6) 7 12,000 1000 Pancreatic radiology
Specialist 7 (S7) 9 7500 340 Pancreatic radiology
Specialist 8 (S8) 12 11,000 450 Pancreatic radiology
Specialist 9 (S9) 13 16,565 2600 Pancreatic radiology

Specialist 10 (S10) 8 15,000 560 Pancreatic radiology
Specialist 11 (S11) 8 8000 1000 Pancreatic radiology
General 1 (G1) 13 3,000 150 General radiology
General 2 (G2) 31 5,000 300 General radiology
General 3 (G3) 9 13,000 200 General radiology
General 4 (G4) 9 3800 170 General radiology
General 5 (G5) 8 1,800 100 General radiology
General 6 (G6) 8 20,000 500 General radiology
General 7 (G7) 8 1500 100 General radiology
General 8 (G8) 10 15,000 300 General radiology
General 9 (G9) 9 3200 150 General radiology
General 10 (G10) 10 18,000 200 General radiology
General 11 (G11) 9 3000 150 General radiology
Resident 1 (R1) 2 4,500 300 General radiology
Resident 2 (R2) 3 5,000 350 General radiology
Resident 3 (R3) 2 1,000 200 General radiology
Resident 4 (R4) 2 12,000 1,000 General radiology
Resident 5 (R5) 2 500 100 General radiology
Resident 6 (R6) 4 6500 200 General radiology
Resident 7 (R7) 2 300 100 General radiology
Resident 8 (R8) 8 12,000 350 General radiology
Resident 9 (R9) 4 6000 200 General radiology
Resident 10 (R10) 2 1200 100 General radiology
Resident 11 (R11) 4 6000 200 General radiology
Specialist 12 (S12) 6 16,000 400 Pancreatic radiology
Specialist 13 (S13) 7 17,000 400 Pancreatic radiology
Specialist 14 (S14) 7 15,000 500 Pancreatic radiology
Specialist 15 (S15) 12 17,000 2,000 Pancreatic radiology
Specialist 16 (S16) 8 25,000 500 Pancreatic radiology
Specialist 17 (S17) 10 17,000 1,000 Pancreatic radiology
Specialist 18 (S18) 6 23,000 500 Pancreatic radiology
Specialist 19 (S19) 12 20,000 2,000 Pancreatic radiology
Specialist 20 (S20) 12 30,000 3,000 Pancreatic radiology
Specialist 21 (S21) 6 17,000 400 Pancreatic radiology
Specialist 22 (S22) 7 15,000 1,000 Pancreatic radiology
Specialist 23 (S23) 19 20,000 450 Pancreatic radiology
Specialist 24 (S24) 10 20,000 450 Pancreatic radiology
Specialist 25 (S25) 10 20,000 500 Pancreatic radiology
Specialist 26 (S26) 10 21,000 500 Pancreatic radiology

Specialists were radiologists who had >5years of experience in pancreatic imaging. Specialists 4 and 20 were highly regarded for their excellence within a high-volume pancreatic cancer
institution. General 1-General 11 were general radiologists who were practicing at community hospitals or other level hospitals and undergoing a refresher program in pancreatic radiology at
the SIPD center at the time of the reader study. Resident 2 was a radiology resident whose research interest was pancreatic imaging.
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Extended Data Table 3 | Cases that were misdetected by the initial standard of care (SOC) but were successfully detected
by PANDA in the real-world clinical evaluations

Maximum

Age . Y Initial and Pathology/
Patient MDT di . t CT method Clinical bD‘:?gl;“’“d .dfi‘.mle;eorc*“ Method at follow-up P‘:NPA Contact/  Surgery TNM stage o
atien 1agnosIS hitial at initial SOC scenario Y S"og",",'“l’ f“;l‘ - so/c follow-up SOC ~ SOC interval P'eb‘“bf‘lf‘t‘/ Recall MRI type AJCC 8th utcome
soc ! © °(m':§) (months) probability edition
Real-world Study 1
PDAC Chest CT N Pancreas CT PDAC/ N
1 (head) 64 w/o contrast Outpatient Y 25.0/26.3 o st 1 PDAC/98% N/- PD ToNoNO Alive
SCN Rib three- . . o .
2 (hoadl) 67 Pk gegti Outpatient N 20.3/- - - nonPDAC/98% Y/N - - Alive
Pancreatic cyst Renal CT . Liver CT o,
3 (body) 80 w/o contrast Outpatient, Y 8.0/10.0 w/ contrast 1 nonPDAC/76% N/- - - Deceased
Pancreatic cyst Middle abdominal CT . .
4 oy T 52 /o contrast Outpatient N 17.6/- - - nonPDAC/76% Y/N - - Alive
Pancreatic cyst Chest CT . ‘Whole-body CT o "
5 (body) 68 w/o contrast Outpatient Y 13.1/14.2 angiography 3 nonPDAC/78% N/- - - Alive
Pancreatic
6 metastasis 65 Chest CT Inpatient Y 20.3/33.0 Chest CT 2 PDAC/54% N/- - - Deceased*
(body) w/ contrast w/ contrast
BD-IPMN Renal CT . .
7 (head) 62 ang?i‘;;‘_aphy Inpatient N 21.5/- . - nonPDAC/91% Y/N - - Alive
8 cp g2 Upper abdominal €T p i N -/- - - nonPDAC/74% Y/N - - Alive
w/o contrast
Chest CT " "
9 cp 63 . /o‘e;“u_ast Inpatient N -/- - - nonPDAC/79% Y/N - - Alive
CP: Calcificati Chest CT N .
10 (;eca‘d)m ton 52 w/o mest Inpatient N -/- - - nonPDAC/58% Y/N - - Alive
CP: Calcificati Chest CT . 5
11 agl)m ton 64 . /o‘ijmu_ast Inpatient N -/- . = nonPDAC/84% Y/N - - Alive
12 Pancreatic cyst 75 Abdominal €T Inpatient N 11.2/- - - nonPDAC/49% Y/N - - Alive
(neck) angiography
P P reati it R 1 CT . 9 9 a 5
13 ”“C(‘]f;j) s 85 m;‘;;‘_aphy Inpatient N 12.2/- . = nonPDAC/56% Y/N . - Alive
Pancreatic cyst Chest CT . o Pancreas MR .
14 Tondy) 63 o contrast Inpatient Y 19.3/19.0 o romtrast 7 nonPDAC/100% N/- - - Alive
15 Pancreatic cyst 7 Whele-body CT Inpatient N 33.0/- - - nonPDAC/59% Y/N - - Alive
(head) angiography
Low malignant N
16 pancreatic mass 56 Chest CT Physical N 12.2/- - - nonPDAC/95% Y/Y DP PNET Alive
(tail) w/o contrast exam G1/-
Hepatic
. . < Inter- e
17 Hepatic srietlal 03 st CF Physical Y 19.8/23.0 Fpleen (RI 6 nonPDAC/95% N/- ventional astierial Alive
aneurysm w/o contrast exam angiography ‘therapy aneurysm
a i
BD-IPMN Chest CT Physical o) N
18 (head) 96 w/o contrast exam N 16.5/- - - nonPDAC/57% Y/N - - Alive
BD-IPMN Chest CT Physical Pancreas MR ~ 07 "
19 (body) %0 w/o contrast exam Y 8.0/12.0 w)/ contrast 2 nonPDAC/50% N/- - N Alive
. Chest CT Physical Pancreas CT .
20 GFx AIP 63 w/o contrast exam Y -/ w/ contrast 2 PDAC/54% N/- N N S
21 cp 53 Chest CT Physical N -/- - - nonPDAC/57% Y/N - - Alive
w/o contrast exam
22 Pancreatic cyst 92 Chest CT Physfcal Y 17.5/18.0 MRCP 3 nonPDAC/64% N/- - - Alive
(tail) w/o contrast exam
Pancreatic cyst Chest CT Physical 5 \ .
23 pos 48 o contrast hysic: N 17.6/- - - nonPDAC/74% Y/N - - Alive
y Pancreatic cyst Chest CT Physical 5 .
24 (nead) 78 o contrast st N 12.9/- - - nonPDAC/81% Y/N - - Alive
Pancreatic cyst Chest CT Physical .
25 pes 54 i contrast, hysic: N 10.1/- - - nonPDAC/96% Y/N - - Alive
Pancreatic cyst Chest CT Physical . .
26 Tondy) 75 /o contrast hysie: N 14.6/- - - nonPDAC/58% Y/N - - Alive
Real-world Study 2
1 PNET 73 Thymus CT Outpatient N 24.2/- - . nonPDAC/61% Y/N - - Alive
w/ contrast P - !
PDAC Chest CT : " PDAC/ oot
2 (body) 67 o contrast, Inpatient N 21.0/- - 3 PDAC/99% Y/N DP TNV Alive
Pancreatic cyst Chest CT . Chest CT +
3 (head) 63 w/o contrast Inpatient Y 14.1/15.3 W/ contrast 1 nonPDAC/98% N/- - - Deceased
Pancreatic cyst Chest CT Physical .
4 Ty 30 o contrast hysic: N 9.7/- - - nonPDAC/95% Y/N - - Alive
Pancreatic cyst Chest CT i
5 am(r]?:a:lc) cys 7 w/o Zntrast Emergency N 32.0/- - - nonPDAC/87% Y/N - - Alive

The last outcome follow-up is in February 2023. *Died due to metastases originating from lung cancer. tDied due to lung cancer. ¥Underwent surgery in another hospital. + Died due to lung
cancer. MDT, multi-disciplinary team; AJCC, American Joint Committee on Cancer; PDAC, pancreatic ductal adenocarcinoma; BD-IPMN, branch duct intraductal papillary mucinous neoplasm;
AlP, autoimmune pancreatitis; CP: Chronic pancreatitis; MCN, mucinous cystic neoplasm; PNET, pancreatic neuroendocrine tumor; MRCP, magnetic resonance cholangiopancreatography;
DP, distal pancreatectomy; PD, pancreatoduodenectomy; Y, yes; N, no.
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Software and code

Policy information about availability of computer code

Data collection  Dicom files were handled with the open source libraries Pydicom (https://pydicom.github.io/, version 2.2.2), SimplelTK (https://
simpleitk.org/, version 2.0.2), and NiBabel (https://nipy.org/nibabel/, version 3.2.1). Custom Python (version 3.9.7) script was developed for
data de-identification.

Data analysis The code used for the implementation of PANDA has dependencies on internal tooling and infrastructure, is under patent protection
(application numbers: CN 202210575258.9, US 18046405), and thus is not feasible to be publicly released. All experiments and
implementation details are described in sufficient detail in the Methods and Supplementary Methods sections to support replication with
non-proprietary libraries. Several major components of our work are available in open-source repositories: PyTorch (https://pytorch.org/);
nnUNet (https://github.com/MIC-DKFZ/nnUNet). Data analysis was conducted in Python using the numpy (version 1.20.3), scipy (version
1.8.1), and scikit-learn (version 0.24.2) packages. The calculation of people needed to screen in the high-risk population was based on Test for
One-Sample Sensitivity and Specificity via PASS software (version 15).
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Sample data and interactive demo are displayed in the webpage (http://panda.medofmind.com/). The remaining datasets used in this study are currently not
permitted for public release by the respective Institutional Review Boards. Requests for access to aggregate data and supporting clinical documents will be reviewed
and approved by an independent review panel on the basis of scientific merit. All data provided are anonymized to respect the privacy of patients who have
participated in the studies, in line with applicable laws and regulations. Data requests pertaining to the manuscript may be made to the first author (Kai Cao;
mdkaicao163@163.com). Requests will be processed within 6 weeks.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We are using only retrospective data collected through clinical practice. Sex was assigned based on the government-issued
ID. The datasets used in the internal training and test cohorts, and the external multi-center test cohorts have sex
distributions reported in the paper. Sex-based analysis was not reported because sex was unrelated to model
implementation or deployment. Self-identification gender was not collected from the patients.

Reporting on race, ethnicity, or = We are using only retrospective data collected through clinical practice. Race, ethnicity, and other socially relevant groupings

other socially relevant were not collected from the patients and were unrelated to model implementation or deployment.
groupings
Population characteristics This retrospective study included five patient cohorts: an internal training cohort, an internal test cohort (together with an

additional internal differential diagnosis cohort), an external international multicenter test cohort, a chest noncontrast CT
test cohort, and a real-world clinical test cohort. In the first four cohorts, the pancreatic ductal adenocarcinoma (PDAC) and
nonPDAC lesions were confirmed by surgical or biopsy histopathology, which we used as the ground truth label for each
patient. The normal controls were confirmed without pancreatic or peri-pancreatic disease by a two-year follow-up. Patients
with acute pancreatitis and a history of abdominal treatment were excluded.

The internal training test cohort (normal controls: median age 49 years [IQR 39-60], nonPDAC: median age 55 years [IQR
44-64], PDAC: median age 63 [IQR 55-69]), internal test cohort (normal controls: median age 50 [IQR 38-60], nonPDAC:
median age 51 [IQR 43-64], PDAC: median age 64 [IQR 57-70]), internal additional test cohort (nonPDAC: median age 57 [IQR
45-67], PDAC: median age 64 [IQR 56-71]), chest noncontrast CT test cohort (normal controls: median age 37 [IQR 32-45],
nonPDAC: median age 59 [IQR 51-65], PDAC: median age 65 [IQR 56-70]), and the real-world clinical test cohort (RW1-normal
controls: median age 38 [IQR 33-47], nonPDAC: median age 61 [IQR 51-72], PDAC: median age 66 [IQR 51-72]; RW2-normal
controls: median age 58 [IQR 50-68], nonPDAC: median age 48 [IQR 37-64], PDAC: median age 60 [IQR 57-69]) were collected
from the internal center in Shanghai, China (Shanghai Institution of Pancreatic Diseases [SIPD]). The external test cohorts
were collected from nine centers, of which seven were located in China, one in Taiwan ROC (Linkou Chang Gung Memorial
Hospital [CGMH], normal controls: median age 53 [IQR 42-63], PDAC: median age 41 [IQR 51-65] -- Site H), and one in the
Czech Republic (General University Hospital in Prague [GUHP], normal controls: median age 73 [IQR 66-78], PDAC: median
age 64 [IQR 59-70] -- Site I). The seven centers from China are distributed widely in geographical areas: one in the Northeast
(Shengjing Hospital of China Medical University [SHCMU], normal controls: median age 52 [IQR 38-60], nonPDAC: median age
56 [IQR 46-64], PDAC: median age 61 [IQR 55-68] —- Site A), four in the East (First Affiliated Hospital of Zhejiang University
[FAHZU], normal controls: median age 57 [IQR 46-66], nonPDAC: median age 56 [IQR 45-66], PDAC: median age 65 [IQR
58-71] -- Site B; Xinhua Hospital [XH], normal controls: median age 46 [IQR 34-60], nonPDAC: median age 60 [IQR 50-67],
PDAC: median age 65 [IQR 60-70] --Site C; Fudan University Shanghai Cancer Center [FUSCC], normal controls: median age 49
[IQR 39-55], nonPDAC: median age 54 [IQR 42-62], PDAC: median age 62 [IQR 56-68]-- Site D; and Tianjin Medical University
Cancer Institute and Hospital[TMUCIH], PDAC: median age 58 [IQR 51-62]--Site E), and two in the South (Sun Vat-sen
University Cancer Center [SYUCC], PDAC: median age 59 [IQR 51-66] -- Site F; and Guangdong Provincial People's Hospital
[GPPH], normal controls: median age 60 [IQR 54-66], PDAC: median age 61 [IQR 54-69] -- Site G). For all patients included in
the multicenter test cohort, additional metadata for data characteristic was available, including patient age and sex. For the
patients with PDAC, the T stage and TNM stage (AJCC eighth edition) and the location of the lesion are available. For
example, 707 PDAC patients (25.8%) and 779 PDAC patients (28.5%) in the external test cohorts were TNM stage | cancer and
stage Il cancer, respectively. Further details are provided in the extended data.

Recruitment The internal training cohort included 3,208 patients (1,431 PDAC, 140 pancreatic neuroendocrine tumor [PNET], 98 solid
pseudopapillary tumor [SPT], 254 intraductal papillary mucinous neoplasm [IPMN], 37 mucinous cystic neoplasm [MCN], 110
chronic pancreatitis [CP], 134 serous cystic neoplasm [SCN], 66 'other', and 938 normal controls) who had been treated
between January 2015 to October 2020 at the Shanghai Institution of Pancreatic Diseases (SIPD), China. Consecutive patients
(except for who had chest CT before surgery) with pancreatic lesions confirmed by surgical pathology were included. Normal
controls confirmed by at least 2 years of follow-up were randomly selected from the same time period. All cases had
preoperative multi-phase contrast-enhanced CT images acquired by Philips, Siemens, Toshiba, or Vital scanners.

The internal test cohort contained CT scans of 291 patients randomly collected between December 2015 and June 2018 at
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the SIPD, China, including 108 PDAC, 9 SPT, 5 PNET, 22 IPMN, 2 MCN, 10 SCN, 13 CP, 6 'other', and 116 normal controls. We
additionally collected an internal addition cohort consisting of 611 consecutive patients who underwent surgery between
November 2020 and October 2021 at SIPD, including 367 PDAC, 53 PNET, 30 SPT, 65 IPMN, 21 MCN, 32 CP, 19 SCN, and 24
‘other'. These 611 patients, together with the 175 patients with pancreatic lesions in the internal test cohort, constitute the
internal differential diagnosis cohort (n=786). All patients took multi-phase CT including noncontrast, arterial, venous, and
delay.

In the multicenter test cohorts, the noncontrast CT scans of 5,337 patients, including 2,737 PDAC, 932 nonPDAC, and 1,668
normal, were collected from these centers. Site A, SHCMU, is a tertiary hospital in China. We consecutively collected 1,023
patients with PDAC and 251 patients with nonPDAC, and randomly selected 495 normal controls from January 2010 to May
2020. Site B, FAHZU, is a tertiary hospital in China. We consecutively collected 983 patients with PDAC and 523 patients with
nonPDAC from May 2020 July 2022, and randomly collected 513 normal controls from Dec 1 2021 to Dec 31 2021. Site C, XH,
is a tertiary hospital in China. We consecutively collected 115 patients with PDAC and 61 patients with nonPDAC, and
randomly selected 194 normal controls from January 2019 to December 2020. Site D, FUSCGC, is a tertiary hospital in China.
We collected 157 PDAC, 97 nonPDAC, and 38 normal controls from November 2016 to November 2020. Site E, TMUCIH, is a
tertiary hospital in China. We collected 60 patients with PDAC from January 2010 and November 2019. Site F, SYUCC, is a
tertiary hospital in China. We consecutively collected 173 patients with PDAC from March 2010 to April 2020. Site G, GPPH, is
a tertiary hospital in China. We collected 43 patients with PDAC and randomly selected 49 normal controls from January 2011
and August 2015. Site H, CGMH, is a hospital in Taiwan, ROC. Doctors from CGMH consecutively collected 90 patients with
PDAC and randomly selected 292 normal controls from March 2009 to November 2015. Site I, GUHP, is a hospital in the
Czech Republic. We consecutively collected 93 patients with PDAC and randomly selected 87 normal controls from August
2005 to March 2022.
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We collected noncontrast chest CT test cohort with pathology-confirmed PDAC and nonPDAC and two-year follow-up
confirmed normal controls. Specifically, for patients with PDAC or nonPDAC confirmed by surgical pathology, we searched for
their nearest chest CT images for up to one year before surgery. For patients with chest CT reports of normal pancreas, we
searched for their follow-up records of normal pancreas for at least two years. By doing so, we collected 63 PDAC, 51
nonPDAC, and 378 normal controls spanning from November 2015 and May 2022 at SIPD. These noncontrast CTs of PDAC
and nonPDAC were acquired before a mean of 7 days (range: -20--191 days) from the contrast-enhanced abdominal CT
diagnosis. We ensured that all patients were independent of the patients in the training cohort.

Potential Bias: The above experiments validated the clinical utility of our novel tool PANDA, but are limited to pathology-
confirmed pancreatic lesions (thus with higher risk) and a moderate number of normal cases. It is unclear by now whether
PANDA could generalize well on the real-world population, including patients with lesions of lower risk and the large, diverse
set of subjects with normal pancreas.

The real-world, retrospective clinical trial was complete and was registered with http://www.chictr.org.cn,
ChiCTR2200064645. We collected two sub-cohorts (real-world-1 [RW1] and real-world-2 [RW2]) at the SIPD. Inclusion criteria
was the availability of a noncontrast CT scan covering the pancreas region, e.g., lung, esophagus, liver, and kidney CT
Patients with acute pancreatitis (AP) (in RW1), abdominal cancer treatment, severe ascites, abdominal trauma, and low
imaging quality were excluded. The original RW1 consisted of 18,654 consecutive individuals whose noncontrast CT scans
were examined from December 1, 2021, to December 31, 2021, from four different clinical scenarios at the SIPD. After
exclusion (n=2,234, 12%), 16,420 individuals remained, including 9,429, 3,027, 2,311, and 1,653 from the physical
examination, emergency, outpatient, and inpatient department, respectively. RW1 included 44 PDAC, 6 PNET, 1 SPT, 15
IPMN, 1 MCN, 42 CP, 11 SCN, and 59 other (mostly benign cysts).The original RW2 consisted of 4,815 consecutive individuals
from February 1, 2022, to February 10, 2022, from the four clinical scenarios at the SIPD. The exclusion criteria was same as
RW1 except that we included AP for RW2. After exclusion (n=705, 15%), 4,110

individuals remained, including 1,854, 969, 688, and 599 from the physical examination, emergency, outpatient, and
inpatient department, respectively. RW2 included 32 PDAC, 5 PNET, 1 SPT, 12 IPMN, 4 MCN, 55 CP, 2 SCN, 15 other, and 40
AP.

Ethics oversight The retrospective collection of the patient datasets in each cohort was approved by the Institutional Review Board (IRB) at
each institution with a waiver for informed consent. The following review boards were used for each dataset: Site SIPD:
Shanghai Institution of Pancreatic Diseases IRB, Site A: Shengjing Hospital of China Medical University IRB, Site B: First
Affiliated Hospital of Zhejiang University IRB, Site C: Xinhua Hospital of Shanghai Jiao Tong University School of Medicine IRB,
Site D: Fudan University Shanghai Cancer Center IRB, Site E: Tianjin Medical University Cancer Institute and Hospital IRB, Site
F: Sun Yat-sen University Cancer Center IRB, Site G: Guangdong Provincial People’s Hospital IRB, Site H: Linkou Chang Gung
Memorial Hospital IRB, Site I: Charles University and General University Hospital IRB. All data in this study were de-identified
prior to model training, testing, and reader studies. The investigators followed the requirements of the Declaration of
Helsinki throughout the study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The internal training cohort includes 3,208 patients. We apply 5-fold cross validation where each fold randomly selected 80% for training and
20% for the validation purpose. This scheme follows machine learning convention for model tuning and hyperparameter selection.

The internal test cohort includes 291 patients, which is a random selection of patients and independent from the training cohort. The size was
selected due to time and budgetary constraints for the reader study on the same data, while maintaining sufficient positive and negative
patients to power statistical comparisons on the metric of sensitivity, specificity, and accuracy. This test cohort selection is also based on prior
work, as 11 readers' initial interpretations on this set had already been collected. The internal addition cohort include 611 patients. These
patients, along with the original internal test cohort patients, constitute a new cohort named the internal differential diagnosis cohort. The
minimal number of lesions (i.e., MCN) is 23, which is sufficient for the evaluation of differential diagnosis.

The external test cohorts include 5,337 patients is a larger independent test set and include a more representative population.

Data exclusions  Patients who comply one or more of the following criteria were excluded from the studies: (1) patients who underwent surgery that can
impact or alternate the anatomical structure of the pancreatic region, such as esophageal, gastric, pancreatic surgery or endoscopic
retrograde cholangiopancreatography procedure, etc; (2) patients who underwent treatment to cancer (chemotherapy, radiotherapy, and
chemoradiotherapy); (3) patients with low image quality due to artifacts caused by metal in stents or drastic motion during imaging; (4)
patients with ascites; (5) patients with pancreatic trauma; (6) patients with acute pancreatitis (except for those in the second real-world
clinical evaluation).

Replication All attempts at replication were successful. The performance of PANDA was consistent across the internal center and 9 external centers
across population (Asian and European), equipment manufacture (GE, Philips, Siemens, and Toshiba CT scanners), scanning protocols
(abdominal noncontrast CT and chest noncontrast CT), and application scenarios (physical examination centers, emergency department,
inpatient department, and outpatient department). In both of the reader studies, comparison between PANDA and human performance
revealed consistent trend.

Randomization  For the dataset in the internal training cohort and the internal test cohort, patients were randomly assigned into training and test splits. In the
internal training cohort, patients were randomly assigned to training and validation in the process of the cross-validation.

Blinding The internal test cohort, the external international multicenter test cohort, the chest noncontrast CT test cohort, and the real-world clinical
test cohort were not used for the development of PANDA. The second subset of real-world clinical test cohort (RW2) were not used for the
development of PANDA Plus. In the reader studies, readers were blinded to pathology results and other clinical information, except for
patient age and sex. Readers were also blinded to the data collection, exact ratio of the positive patients, and blinded to other readers.
Readers were blinded to the ground-truth labels and their performance after the study. In the real-world study, the two radiologists who were
responsible for the patients' record review were blinded to the results of Al.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  ChiCTR(chictr.org.cn): ChiCTR2200064645

Study protocol ChiCTR clinical trial protocols:
https://www.chictr.org.cn/showprojen.aspx?proj=169295

Data collection We retrospectively collected two sub-cohorts (real-world-1 [RW1] and real-world-2 [RW?2]) at the Shanghai Institution of Pancreatic
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Data collection

Outcomes

Diseases (SIPD). Inclusion criteria was the availability of a noncontrast CT scan covering the pancreas region, e.g., lung, esophagus,
liver, and kidney CT. Patients with acute pancreatitis (AP) (in RW1), abdominal cancer treatment, severe ascites, abdominal trauma,
and low imaging quality were excluded. The original RW1 consisted consecutive individuals whose noncontrast CT scans were
examined from December 1, 2021, to December 31, 2021, from the physical exam center, emergency department, inpatient
department, and outpatient department at the SIPD. The original RW2 consisted of 4,815 consecutive individuals from February 1,
2022, to February 10, 2022, from the same four clinical scenarios at the SIPD.

The primary outcomes were the AUCs, sensitivity, and specificity of the Al models. The secondary outcomes included the analysis of
number of false positives (safety), and detection of misdetection of standard-of-care (patient benefit) of the Al model under four
real-world clinical scenarios.
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