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Pancreatic ductal adenocarcinoma (PDAC), the most deadly solid 
malignancy, is typically detected late and at an inoperable stage.  
Early or incidental detection is associated with prolonged survival, but 
screening asymptomatic individuals for PDAC using a single test remains 
unfeasible due to the low prevalence and potential harms of false positives. 
Non-contrast computed tomography (CT), routinely performed for 
clinical indications, offers the potential for large-scale screening, however, 
identification of PDAC using non-contrast CT has long been considered 
impossible. Here, we develop a deep learning approach, pancreatic cancer 
detection with artificial intelligence (PANDA), that can detect and classify 
pancreatic lesions with high accuracy via non-contrast CT. PANDA is trained 
on a dataset of 3,208 patients from a single center. PANDA achieves an area 
under the receiver operating characteristic curve (AUC) of 0.986–0.996 
for lesion detection in a multicenter validation involving 6,239 patients 
across 10 centers, outperforms the mean radiologist performance 
by 34.1% in sensitivity and 6.3% in specificity for PDAC identification, 
and achieves a sensitivity of 92.9% and specificity of 99.9% for lesion 
detection in a real-world multi-scenario validation consisting of 20,530 
consecutive patients. Notably, PANDA utilized with non-contrast CT shows 
non-inferiority to radiology reports (using contrast-enhanced CT) in 
the differentiation of common pancreatic lesion subtypes. PANDA could 
potentially serve as a new tool for large-scale pancreatic cancer screening.

Pancreatic ductal adenocarcinoma (PDAC) is the deadliest solid 
malignancy worldwide, and causes approximately 466,000 deaths 
per year1. Despite the poor prognosis of PDAC, its early or incidental 
detection has been shown to substantially improve patient survival2–7.  

Recent studies indicate that high-risk individuals with screen- 
detected PDAC have a median overall survival of 9.8 years, substantially 
longer than the 1.5 years for those diagnosed outside of surveillance 
(for example, via standard clinical diagnostic techniques)6. As such, 
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safe and effective detection of early-stage malignancies missed by 
standard of care diagnostic techniques, and in some cases will enable 
timely treatment with intent to cure. Our study first evaluates PANDA 
internally on abdominal non-contrast CT scans and compares its per-
formance with results from two reader studies involving 48 radiolo-
gists on non-contrast and contrast CT imaging, respectively. We then 
validate PANDA on a large external multicenter test cohort (n = 5,337) 
to assess its generalizability to various settings. To increase the range 
of applicable patient populations, we study the feasibility of applying 
PANDA on chest CT. Finally, to validate the critical issues related to 
realistic clinical translation, we explore the integration of PANDA into 
large-scale real-world multi-scenarios of routine clinical processes, 
involving 20,530 consecutive patients from four settings (that is, 
physical exam, emergency, outpatient, and inpatient) with available 
abdominal or chest non-contrast CT scans.

Results
The PANDA network
We present a deep learning model, PANDA, to detect and diagnose 
PDAC and seven subtypes of non-PDAC lesions (Methods), that is, pan-
creatic neuroendocrine tumor (PNET), solid pseudopapillary tumor 
(SPT), intraductal papillary mucinous neoplasm (IPMN), mucinous 
cystic neoplasm (MCN), serous cystic neoplasm (SCN), chronic pan-
creatitis, and ‘other’ (cf. Supplementary Table 1), from abdominal and 
chest non-contrast CT scans. Our model can detect the presence or 
absence of a pancreatic lesion, segment the lesion, and classify the 
lesion subtypes (Fig. 1a).

PANDA was trained on a training set of abdominal non-contrast 
CT scans of 3,208 patients from a high-volume pancreatic cancer insti-
tution, Shanghai Institution of Pancreatic Diseases (SIPD), directly 

screening of PDAC holds the greatest promise to reduce PDAC-related 
mortality8. However, due to the relatively low prevalence of PDAC, effec-
tive screening in the general population requires high sensitivity and 
exceptionally high specificity to mitigate the risk of over-diagnosis. 
Current screening techniques are limited in this regard, and thus can-
not be implemented in the general population as urgently needed9,10.

Non-contrast computed tomography (CT) is widely used in physi-
cal examination centers and hospitals in low-resource regions. Com-
pared with contrast-enhanced CT (the primary imaging modality for 
diagnosing PDAC9), non-contrast CT exposes patients to lower radia-
tion doses and eliminates the risk of adverse reactions to the contrast 
agents. In addition to abdominal non-contrast CT routinely used in 
emergency departments and community hospitals, chest non-contrast 
CT also can fully or partially scan the pancreas region and is the most 
frequently performed CT exam (that is, it accounts for nearly 40% of all 
performed CT exams)11 in multiple clinical scenarios, such as for lung 
cancer screening. Although identifying PDAC from non-contrast CT 
is challenging even for experienced radiologists, recent studies have 
shown that artificial intelligence (AI) can match or surpass human 
experts on various medical image analysis tasks12–17; moreover, AI 
is capable of synthesizing contrast-enhanced medical images from 
regular images18–21. AI-based opportunistic screening22 via non-contrast 
CT has the potential to advance early detection of PDAC in the vast 
population of asymptomatic patients under several clinical domains, 
with minimal additional cost and exposure to radiation.

In this study we show that our proposed AI approach, PANDA 
(pancreatic cancer detection with AI, Fig. 1), is capable of detecting 
and diagnosing PDAC and non-PDAC lesions on non-contrast CT with 
high accuracy and can be readily utilized for opportunistic screening 
in large-scale asymptomatic patient populations. This will result in 
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Fig. 1 | Overview of PANDA’s development, evaluation and clinical translation. 
a, Model development. PANDA takes non-contrast CT as input and outputs the 
probability and the segmentation mask of possible pancreatic lesions, including 
PDAC and seven non-PDAC subtypes; PANDA was trained with pathology-
confirmed patient-level labels and lesion masks annotated on contrast 
CT images. CP, chronic pancreatitis. b, Model evaluation. We evaluate the 

performance of PANDA on the internal test cohort, two reader studies (on non-
contrast and contrast CT, respectively), external test cohorts consisting of nine 
centers, a chest CT cohort, and real-world multi-scenario studies (the clinical  
trial includes two real-world studies; chictr.org.cn, ChiCTR2200064645).  
c, Model clinical translation. The real-world clinical evaluation answers five 
critical questions to close the clinical translational gap for PANDA.
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affiliated with a tertiary hospital (a major comprehensive academic 
medical center in Shanghai, China). The patient characteristics are 
listed in Extended Data Table 1. The ground truth labels were confirmed 
either by surgical pathology for lesions or by a 2 year follow-up for 
normal controls. PANDA was also supervised by pixel-wise annota-
tions, including both the pancreas and the lesion, transferred by image 
registration from annotations on paired contrast-enhanced CT scans 
in which tumors were more visible. Dataset and annotation details are 
given in the Methods section.

PANDA consists of a cascade of three network stages that increase 
in model complexity and the difficulty level of the tasks performed 
(Extended Data Fig. 1; Methods). The first stage (Stage 1) involves pan-
creas localization, using an nnU-Net model23. The second stage (Stage 2)  
carries out lesion detection, and we build convolutional neural net-
works (CNNs) together with a classification head to distinguish the 
subtle texture change of lesions in non-contrast CT. We tune the 
Stage 2 model to achieve a specificity of 99% for lesion detection on 
cross-validation of the training set to reduce false-positive predic-
tions. The third stage (Stage 3) involves the differential diagnosis of 
pancreatic lesions if any abnormalities are detected in the second 
stage, integrated with an auxiliary memory transformer branch24,25 to 
automatically encode the feature prototypes of the pancreatic lesions, 
such as local texture, position and pancreas shape, for more accurate 
fine-grained classification.

We mainly evaluate the performance of PANDA on three tasks 
(Methods). The first task is lesion detection: that is, lesion versus nor-
mal, which also includes detection rates stratified by lesion type and 
by cancer stage. The second task is primary diagnosis: PDAC versus 
non-PDAC versus normal, which also includes evaluation of one versus 
others, for example, PDAC identification (PDAC versus non-PDAC + nor-
mal). The third task is differential diagnosis: that is, classification of 
PDAC and seven non-PDAC lesion subtypes.

Internal evaluation
Our independent internal test cohort consisted of 291 patients  
(108 patients with PDAC, 67 patients with non-PDAC, and 116 normal 
controls) from the SIPD (Extended Data Table 1; Methods). These patient 
labels were confirmed on surgical pathology or a 2 year follow-up. For 
lesion detection, PANDA achieved an area under the receiver operat-
ing characteristic curve (AUC) of 0.996 (95% confidence interval (CI) 
0.991–1.00, Fig. 2a), a sensitivity of 94.9% (95% CI 91.4–97.8%) and a 
specificity of 100% (95% CI 100–100%); for the PDAC subgroup the 
sensitivity for detection was 97.2% (95% CI 93.5–100%) overall, 97.1% 
(95% CI 91.4–100%; n = 35; Fig. 2c) for stage I, and 96.2% (95% CI 90.4–
100%; n = 52; Fig. 2c) for stage II. For small PDACs (diameter <2 cm, T1 
stage), the sensitivity for detection was 85.7% (95% CI 64.3–100%; n = 14;  
Fig. 2c). For PDAC identification, the AUC was 0.987 (95% CI 0.975–
0.996, Fig. 2b), the sensitivity was 92.6% (95% CI 87.3–97.0%) and the 
specificity was 97.3% (95% CI 94.6–99.5%, Fig. 2b).

For the internal differential diagnosis cohort (n = 786; Extended 
Data Table 1; Methods), PANDA achieved an accuracy of 79.6% (95% CI 
76.8–82.6%) and a balanced accuracy (averaged class-level accuracy) 
of 60.7% (95% CI 55.7–65.4%). The accuracy is non-inferior (P = 0.0018 
at a pre-specified 5% margin) to the second-reader radiology reports 
(Fig. 2f, Supplementary Fig. 1 and Supplementary Table 4), which is 
a secondary analysis of a primary standard of care clinical radiology 
report that includes access to the contrast-enhanced CT, clinical 
information and patient history, and represents the standard of care 
of pancreatic lesion management practice in the internal center. The 
results for IPMN subtype classification (main or mixed-duct versus 
branch-duct IPMN) and the full pipeline (detection + diagnosis) in 
the internal cohorts are given in Supplementary Table 13 and Sup-
plementary Fig. 7a, respectively.

Ablation studies were conducted to analyze the performance of 
PANDA’s Stage 2 and Stage 3 modules on the internal training cohort 

(n = 3,208) (Extended Data Fig. 2; Methods). Stage 2 and Stage 3 had 
significantly better performance than their related baseline methods 
(P = 0.00022 and P = 0.0002, respectively). We also analyzed the effect 
of training data size on the performance of PANDA. More training data 
led to better performance for all tasks, and the margins of improve-
ment increased as the tasks became more challenging (Extended Data 
Fig. 3). PANDA is an interpretable AI model that directly outputs the 
segmentation mask of the pancreas and the detected lesion (see Sup-
plementary Table 5 for segmentation accuracy). Additional analyses 
of interpretability via the visualization of the Stage 2 activation maps 
and Stage 3 attention maps are provided in Extended Data Fig. 4 and 
the Methods section.

Reader studies
We conducted two reader studies (Methods and Extended Data  
Table 2). The aim of the first study was to compare PANDA with 
non-contrast CT readers consisting of pancreatic imaging special-
ists, general radiologists and radiology residents, and validate whether 
PANDA could assist them in making more accurate decisions. The 
second reader study was designed to compare PANDA, using only 
non-contrast CT, with a clinical expert upper-bound set-up, that is,  
a pancreatic imaging specialist reading a contrast-enhanced CT.

In the first reader study, 33 readers from 12 institutions inter-
preted 291 non-contrast CT scans in the internal test cohort. Alongside 
the CT images, readers were provided with each patient’s age and sex, 
and rated each case as PDAC, non-PDAC or normal (Supplementary 
Fig. 2). For lesion detection, the performance values of all 33 readers 
fell below PANDA’s receiver operating characteristic (ROC) curve 
(Fig. 3a). PANDA significantly outperformed the average reader per-
formance by 14.7% (95% CI 10.8–18.8%, P = 0.0002) in sensitivity and 
6.8% (95% CI 5.6–8.1%, P = 0.0002) in specificity for lesion detection 
(Supplementary Table 6a), and by a significant margin of 34.1% (95% 
CI 29.3–38.9%, P = 0.0002) in sensitivity and 6.3% (95% CI 4.1–8.4%, 
P = 0.0002) in specificity for PDAC identification (Supplementary 
Table 6b). Notably, for PDAC identification the sensitivity was as low 
as 16.7–35.2% for some radiology residents who were not specialized 
in pancreatic imaging.

After at least a 1 month washout period, readers were addition-
ally provided with the AI lesion segmentation and primary diagnosis 
probabilities (Supplementary Fig. 3) and re-rated each patient. With AI 
assistance, for lesion detection the mean reader performance was sig-
nificantly improved by 8.5% in sensitivity (95% CI 6.5–10.3%, P = 0.0002) 
and 5.3% in specificity (95% CI 4.3–6.3%, P = 0.0002; Supplementary 
Table 7a). For PDAC identification, the mean reader performance was 
significantly improved by 20.5% (95% CI 17.8–23.4%, P = 0.0002) in 
sensitivity and by 3.1% (95% CI 2.1−4.1%, P = 0.0002) in specificity (Sup-
plementary Table 7b). Overall, the largest improvement was observed 
in readers not specialized in pancreatic imaging. The residents’ per-
formance with AI could even approach that of pancreatic radiology 
specialists (evaluated using balanced accuracy in Fig. 3d,e and Sup-
plementary Tables 7 and 9). Detailed confusion matrices are given in 
Supplementary Figs. 2 and 4.

In the second reader study, another 15 pancreatic imaging 
specialists from the internal center (SIPD) interpreted multi-phase 
contrast-enhanced CT scans of the same 291 patients. Each reader was 
provided with the non-contrast, arterial, and venous phase of CT images 
along with the age and sex information and carried out the same rating 
(Supplementary Fig. 5). PANDA (on non-contrast CT imaging) did better 
than the mean performance of the specialists (using contrast-enhanced 
CT scans) by 2.9% (95% CI 0.1–5.8%, P = 0.0002 for non-inferiority) in 
sensitivity and by 2.1% (95% CI 1.4–3.0%, P = 0.0002 for difference) in 
specificity, for lesion detection (Supplementary Tables 10a and 11a); and 
by a margin of 13.0% (95% CI 8.5–17.8%, P = 0.0002 for difference) in sen-
sitivity and 0.5% (95% CI −0.7 to 1.9%, P = 0.0002 for non-inferiority) in 
specificity, for PDAC identification (Supplementary Tables 10b and 11b).
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Generalization to external multicenter test cohorts
To assess the generalizability of PANDA to different patient popu-
lations and imaging protocols we validated our model on external 
multicenter (n = 9) test cohorts, which consisted of preoperative 
non-contrast abdominal CT scans of 5,337 patients (2,737 with PDAC, 
932 with non-PDAC and 1,668 normal controls) from China, Taiwan 
ROC and the Czech Republic (Extended Data Table 1; Methods). The 
patient labels were confirmed by surgical or biopsy pathology diag-
nosis reports or a 2 year follow-up visit diagnosis. PANDA achieved an 
AUC of 0.984 (95% CI 0.980–0.987, Fig. 2a), sensitivity of 93.3% (95% 
CI 92.5–94.1%) and specificity of 98.8% (95% CI 98.3–99.4%) for lesion 
detection. For the PDAC patient subgroup, the detection rate was 96.5% 
(95% CI 95.8–97.2%) overall, 95.6% (95% CI 93.9–97.0%; Fig. 2c) for stage 
I, and 96.5% (95% CI 95.3–97.8%; Fig. 2c) for stage II. For small PDAC 
lesions (diameter <2 cm, T1 stage), the sensitivity for detection was 
92.2% (95% CI 89.0–95.4%; n = 283; Fig. 2c). The lesion detection results 
for each center are shown in Fig. 2d and the performance stratified by 
lesion subtype is given in Fig. 2e. For PDAC identification, the sensitiv-
ity was 90.1% (95% CI 89.0–91.2%) and the specificity was 95.7% (95% CI 
94.9–96.5%; Fig. 2b).

For differential diagnosis (Fig. 2f, n = 3,669) our model achieves 
an accuracy of 81.4% (95% CI 80.2–82.6%) and a balanced accuracy 
of 52.6% (95% CI 50.0–55.1%). The confusion matrices, accuracy and 
balanced accuracy of each external center with pathology-confirmed 
lesion types are shown in Supplementary Fig. 6 and Supplementary 
Table 12. The results for IPMN subtype classification and the full  

pipeline are given in Supplementary Table 13 and Supplementary  
Fig. 7b, respectively.

Feasibility study of lesion detection on chest computed 
tomography
PANDA’s ability can be coupled with established clinical indications 
such as chest CT for lung cancer screening. We validated the feasibility 
of pancreatic lesion detection using PANDA on chest CT (Fig. 4). From 
SIPD we collected non-contrast chest CT scans of 492 patients, consist-
ing of 63 with PDAC, 51 with non-PDAC, and 378 normal controls, as a 
test cohort independent of the training data. The patient labels were 
confirmed by surgical pathology or a 2 year follow-up visit diagnosis 
(Methods).

Without tuning on any chest CT scans, PANDA achieved an AUC of 
0.979 (95% CI 0.962–0.993), a sensitivity of 86.0% (95% CI 79.4–91.9%) 
and a specificity of 98.9% (95% CI 97.8–100%) for lesion detection 
(Fig. 4c), and a sensitivity of 92.1% (95% CI 85.7–98.4%) for the PDAC 
subgroup. Depending on detailed chest CT protocols, certain pancre-
atic lesions could not be completely scanned. We analyzed the lesion 
scanning completeness in chest CT by referring to the lesion location 
in contrast-enhanced abdominal CT scans (Fig. 4a), and found that 67% 
of patients with PDAC and 43% of patients with non-PDAC were not fully 
scanned (Fig. 4b). For those patients whose pancreatic lesions were 
not captured in the CT scan’s field of view (and thus were not directly 
observable), 75% of PDAC cases in these patients were detected by 
PANDA, that is, the patients were classified as having a lesion (Fig. 4d) 
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Fig. 3 | Reader studies. a, Comparison between PANDA and 33 readers with 
different levels of expertise on non-contrast CT for lesion detection. b, Lesion 
detection performance of the same set of readers with the assistance of PANDA 
on non-contrast CT. c, Comparison between PANDA using non-contrast CT  
and 15 pancreas specialists using contrast-enhanced CT for lesion detection.  

d,e, Balanced accuracy improvement in radiologists with different levels of 
expertise for lesion detection (d) and PDAC identification (e). f, Examples  
of early-stage PDACs and a case of autoimmune pancreatitis (AIP) missed by 
readers on non-contrast CT and on contrast CT but detected by PANDA.
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via secondary signs of the disease such as dilation of the pancreatic 
duct (Fig. 4e).

Real-world clinical evaluation
The above experiments validate the clinical utility of PANDA, but they 
are limited to pathology-confirmed pancreatic lesions (thus with higher 
risk) and a moderate number of normal cases. It is unclear whether 
PANDA could be generalized well to the real-world population, includ-
ing patients with lesions of lower risk (for example, chronic pancrea-
titis and branch-duct IPMN) and the large, diverse set of subjects with 

normal pancreas. To close the clinical translation gap, evaluation in 
real-world application settings is required to answer the following criti-
cal questions: first, what is the true performance of PANDA when used 
for consecutive real-world patient populations, possibly containing 
unseen lesion subtypes, collected from varying CT imaging protocols 
and clinical scenarios (that is, physical examination, emergency, out-
patient, and inpatient); second, can the tool detect malignancies that 
were not previously detected by the standard of care clinical diagnosis; 
third, can patients benefit from such detection (for example, if the 
malignancy was detected at its surgically resectable stage26); fourth, 
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can the tool be clinically safe and efficient, without a large number of 
false-positive findings that require unnecessary follow-up tests and 
extra time for being ruled out; and last, can the benchtop-derived AI 
be further improved according to bedside clinical requirements27.

We deployed PANDA at the SIPD by seamlessly integrating it into 
the existing clinical infrastructure and workflow (Supplementary Fig. 9  
and Methods ‘Real-world deployment’), and performed two rounds 
of large-scale, real-world, retrospective studies enrolling consecutive 
patients (clinical trial ChiCTR2200064645, chictr.org.cn; includes 
both studies) (Fig. 5a, Extended Data Fig. 5 and Extended Data Fig. 6; 
Methods). Due to the retrospective nature of the study we used two 
timeframes for the standard of truth for each patient (Fig. 5a): the 
initial standard of care, that is, the clinical diagnosis at the initial visit 
when the non-contrast CT was acquired; and the follow-up standard 
of care, that is, the clinical diagnosis obtained at follow-up (after the 
initial visit and before the PANDA evaluation study).

First real-world evaluation cohort. For the first real-world evalua-
tion cohort (RW1, n = 16,420), the first four questions were assessed: 
performance; change in standard of care diagnosis; patient benefit; 
and safety and efficiency.

Performance. RW1 included 44 PDACs and 135 non-PDACs. For lesion 
detection, PANDA achieved an overall sensitivity of 84.6% (95% CI 
79.4%–89.9%) and specificity of 99.0% (95% CI 98.9%–99.2%) (Fig. 5b), 
and for PDAC identification PANDA achieved an overall sensitivity of 
95.5% (95% CI 89.3%–100%), specificity of 99.8% (95% CI 99.7%–99.9%) 
and positive predictive value (PPV) of 56.0% (95% CI 44.8%–67.2%)  
(Fig. 5c). Of the four scenarios (that is, physical examination, emer-
gency, outpatient, and inpatient), inpatient had the highest sensitivity 
of 88.6% (95% CI 78.0%–99.1%) and physical examination had the high-
est specificity of 99.8% (95% CI 99.7%–99.9%), for lesion detection. The 
multi-disciplinary team found that 51% (80 of 156) of the false positives 
by AI were actually (peri-)pancreatic diseases (Fig. 5h and Supple-
mentary Fig. 8) requiring attention from radiologists28. Considering 
that these findings might be signs of pathology, they were excluded 
from the results, which were adjusted as below: for lesion detection 
the overall adjusted specificity increased to 99.5% (Fig. 5b), and for 
PDAC identification the adjusted specificity increased to 99.9% and 
the adjusted PPV, to 68.9% (Fig. 5c). More detailed results are shown 
in Supplementary Figs. 10–14.

Change in standard of care diagnosis. PANDA detected 26 pancreatic 
lesions that were not detected by the initial standard of care (Fig. 5i  
and Extended Data Table 3), consisting of 1 PDAC, 1 PNET, 3 IPMNs,  
1 metastatic cancer, 6 cases of pancreatitis, 1 peri-pancreatic tumor and 
13 SCN/cysts (10–33 mm). The opportunistic screening with PANDA 
could advance the early detection of (peri-)pancreatic malignancies 
and high-risk lesions.

Patient benefit. Of the aforementioned 26 lesions first detected by 
PANDA, eight were detected by follow-up standard of care before 
this retrospective study, including one T2 stage PDAC and one 
aneurysm (Fig. 5i and Extended Data Table 3). Nevertheless, ear-
lier detection of some of these lesions by PANDA might benefit the 
patients’ management and treatment. The remaining patients were 
invited to undergo magnetic resonance imaging (MRI) but only one  

(a 57-year-old) complied (due to the COVID-19 pandemic), undergo-
ing contrast-enhanced MRI followed by minimally invasive surgery 
with curative intent (Extended Data Fig. 7). The surgical pathology 
confirmed the lesion as a G1 PNET with a size of 1.5 cm.

Safety and efficiency. Only 0.5% of patients (n = 76) had false-positive 
AI findings (Supplementary Table 14), of which 92% (70 of 76) were easy 
to rule out by the radiologists. Of the false negatives (n = 28), 89% were 
benign cysts (n = 25), most of which (n = 19) were < 10 mm in diameter; 
the remaining three consisted of a PNET, a case of chronic pancreatitis, 
and a lesion of undetermined type.

Second real-world evaluation cohort. To further optimize PANDA for 
real-world usage, that is, reduce false positives and enable the detection 
of previously unseen disease types (for example, acute pancreatitis 
in the emergency scenario), we utilized hard example mining and 
incremental learning to upgrade PANDA (the resulting model is named 
PANDA Plus; see Methods). PANDA Plus was evaluated on the second 
real-world evaluation cohort (RW2, n = 4,110) to assess the fifth ques-
tion regarding improvement of the model.

Model evolution. RW2 included 32 PDACs and 134 non-PDACs. PANDA 
Plus retained the same sensitivity as PANDA but significantly reduced 
the false positives by more than 80%, reaching an adjusted specificity 
of 99.9% for both lesion detection (95% CI 99.8%–100%) and PDAC 
identification (95% CI 99.7%–100%) (Fig. 5e–g and Supplementary 
Figs. 15–19). In addition, for the newly learned disease type (that is, 
acute pancreatitis), the sensitivity for detection was 90.0% (95% CI 
80.7%–99.3%) for the 40 patients with acute pancreatitis (Fig. 5d). 
PANDA Plus detected five pancreatic lesions that were missed by 
the initial standard of care, consisting of 1 PDAC (T2 stage), 1 PNET 
and 3 cysts (10–32 mm) (Extended Data Table 3). In addition, the 
real-world evaluation showed that PANDA maintained robust perfor-
mance in low-risk lesions despite being originally trained on surgical 
pathology-confirmed lesions. Specifically, our model had a sensitiv-
ity of 92.6% for detecting IPMN and 99.0% for chronic pancreatitis in 
RW1 and RW2 combined (Fig. 5d), although 22 (81%) of the 27 IPMNs 
and 94 (97%) of the 97 cases of chronic pancreatitis were not biopsied 
or resected.

Discussion
We present PANDA, an AI model that detects the seven most common 
pancreatic lesions and ‘other’, and diagnoses the lesion subtypes in 
routine non-contrast CT scans. This task has long been considered 
impossible for radiologists and, as such, contrast-enhanced CT and/
or MRI and endoscopic ultrasound (EUS) have been used as the rec-
ognized and recommended diagnostic imaging modalities. We show 
that by curating a large dataset covering common pancreatic lesion 
types confirmed by pathology, transferring lesion annotations from 
contrast-enhanced to non-contrast CT, designing a deep learning 
approach that incorporates a cascade network architecture for lesion 
detection and a memory transformer for pancreas lesion diagnostic 
information modeling, and learning from the real-world feedback, 
PANDA, which uses only non-contrast CT as input, achieves high sensi-
tivity and exceptionally high specificity in the detection of pancreatic 
lesions, with a significantly higher accuracy than radiologists in the 
primary diagnosis between PDAC and non-PDAC, and non-inferior 

Fig. 5 | Real-world clinical evaluation. a, The data collection process of two 
real-world datasets, that is, RW1 and RW2, for the original PANDA model and 
the upgraded PANDA Plus model, respectively. SOC, standard of care. b,c,e,f, 
The sensitivity, specificity and PPV on RW1 (n = 16,420) and RW2 (n = 4,110). The 
superscript * represents adjusted results if we exclude cases of (peri-)pancreatic 
findings. d, Proportion of different lesion types detected in RW1 (n = 179) and 
RW2 (n = 166). g, The comparison between PANDA and PANDA Plus on RW2 

(n = 4,110). Error bars indicate 95% CI. The center shows the computed mean of 
the metric specified by the respective axis labels. The results of subgroups with 
too few samples to be studied reliably (≤10) are omitted and marked as ‘n/a’.  
h, Examples of (peri-)pancreatic findings (left) and the number detected by 
PANDA (right). CBD, common bile duct. i, Examples of cases in which the lesion 
was missed by the initial SOC but was detected by PANDA.
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accuracy to radiology reports in the differential diagnosis of the eight 
aforementioned pancreatic lesion subtypes.

PANDA exhibits effective generalizability to external centers, 
varying imaging protocols (Extended Data Table 1) and real-world 
populations. The favorable generalizability of PANDA can be attributed 
to the following factors. First, the training data are from a high-volume 
tertiary hospital, encompassing a diverse representation of the Chinese 
population. Second, non-contrast CT is likely to be a more generalizable 
modality for AI models than contrast-enhanced CT. Third, our approach 
combines segmentation (capturing the local pathological basis) and 
classification, reducing the overfitting risk of pure classification-based 
AI models. Fourth, the model has been tuned to yield a 99% specificity 
during cross-validation on the large training set (n = 3,208), to achieve 
reliable control of false positives. Fifth, the AI model’s continual learn-
ing27 enhances specificity to 99.9% by fine-tuning with false positives 
from external centers and the real world. And last, regarding training 
data, the cases and controls have similar CT imaging protocols (for 
example, slice thickness, CT dose index, oral water), thereby forcing 
the model to focus on the primary learning objectives rather than fit-
ting to shortcuts or confounders.

PANDA exceeds the performance upper bound of human expert 
radiologists when reading only in non-contrast CT. This can be attrib-
uted to two main reasons. First, during its learning, PANDA is equipped 
with two informative supervisions that do not exist in non-contrast CT, 
however, radiologists have not been systematically trained for lesion 
detection and diagnosis in non-contrast CT. Specifically, one supervi-
sion consists of our curated expert lesion annotations transferred from 
contrast-enhanced CT; the other is the pathology-confirmed lesion 
types. Second, deep learning algorithms are more sensitive to subtle 
imaging grayscale intensity changes than human eyes, which are better 
at using color rather than intensity changes to interpret images29. Unlike 
generative deep learning methods to synthesize contrast or color18–21, 
we train supervised learning models, which effectively capture subtle 
image details and directly learn downstream lesion detection and 
diagnosis tasks based on these detailed characteristics. Therefore, 
PANDA outperforms or matches radiologists on contrast-enhanced 
CT, the performance of which is in concordance with recent studies30–32.

PANDA is an interpretable deep model that outputs the lesion 
boundaries and lesion subtype probabilities. Although radiologists 
usually do not diagnose pancreatic lesions from non-contrast CT 
alone, when assisted by PANDA their performance could be drasti-
cally increased regardless of experience, especially for the task of PDAC 
identification. Radiology residents with less experience benefit the 
most from PANDA’s assistance, and can reach a level comparable with 
pancreas specialists. Although general radiologists might still doubt 
the AI results, their performance could be improved to a level close 
to that of pancreas specialists. Note that non-contrast CT is widely 
performed in non-tertiary hospitals and physical examination centers, 
where radiologists are usually less experienced or not specialized in 
pancreas imaging diagnosis. In tertiary hospitals, non-contrast CT is 
commonly performed as well, such as chest CT for lung nodule detec-
tion and abdominal CT in the emergency room. Taken together, PANDA 
could be widely used to increase the level of pancreas cancer diagnosis 
expertise in medical centers, especially by detecting more pancreatic 
malignancies at an earlier stage.

To assess the added value of PANDA for real-world clinical misde-
tection, we used the stricter standard of care clinical diagnosis as the 
standard of truth, which accounted for the entire patient management 
scenario, beyond the radiology report alone. Even so, of the 20,530 con-
secutive patients evaluated retrospectively, PANDA detected five cancers 
and 26 other pancreatic lesions that were missed by the initial standard 
of care, and enabled curative treatment of one patient with PNET.

Despite its high mortality rate, PDAC is relatively uncommon. 
Screening for PDAC in the asymptomatic population was not recom-
mended because existing diagnostic methods would lead to a large 

number of false positives, resulting in considerable ramifications and 
costs. Although AI advancement in the areas of pancreatic lesion detec-
tion and diagnosis has occurred with the use of contrast-enhanced CT 
and EUS30,33,34, the level of specificity is insufficient, and applying these 
imaging techniques to the general population is impractical due to their 
invasiveness, cost, and the need for iodine contrast. Liquid biopsy for 
cancer detection26,35,36 has shown specificities of more than 99% but the 
sensitivity for early-stage pancreatic cancer detection is only satisfac-
tory (approx. 50–60%, refs. 35,36). PANDA Plus (hereinafter referred to 
as PANDA) was highly sensitive (>96%) for early-stage PDAC and yielded 
an exceptional specificity of 99.9% in the large-scale real-world evalu-
ation, which equates to approximately one false positive out of 1,000 
tests. On the one hand, such a performance enables opportunistic 
screening in asymptomatic populations. Considering the prevalence 
of PDAC (13 cases per 100,000 adults), the PPV for PDAC identification 
will be approximately 10% (11 true positives and 100 false positives in 
100,000 tests). This is even higher than the PPVs of some other cancer 
screening tests currently recommended by the Preventive Services Task 
Force (USPSTF), for example, mammography for breast cancer, with a 
PPV of 4.4% (ref. 37), stool DNA for colorectal cancer, with a PPV of 3.7% 
(ref. 38), and low-dose CT for lung cancer, with a PPV of 3.8% (ref. 39). 
Our experiments also show that when PANDA was applied in routine 
multi-scenario CT examinations, PDAC detection in asymptomatic 
adults could potentially be considered at no additional cost, with no 
extra examination or radiation exposure. Ideally, even if 10 AI-identified 
patients with PDAC underwent follow-up exams to confirm one PDAC 
at a 10% PPV, the overall cost per PDAC found remains manageable. 
For example, the price ranges from US$1,264 to US$1,685 in Shanghai, 
China, for 10 exams, depending on the specific type of follow-up exam, 
that is, contrast-enhanced CT, MRI or EUS, although the price could be 
higher in Western countries. Nevertheless, further prospective studies 
are needed to assess the risk–benefit ratio and cost-effectiveness in 
the future. On the other hand, PANDA could also be used in designed 
screening in high-risk populations40 (Supplementary Methods 1.4). In 
such a scenario, the sensitivity of (particularly early-stage) PDAC iden-
tification can be further improved by adjusting the model threshold 
at the cost of a slight decrease in specificity. In both opportunistic and 
designed screening scenarios, PANDA is meant to be used in screening, 
a pre-step before diagnosis, and not to replace existing diagnostic 
imaging modalities. Nevertheless, PANDA’s reliable initial diagnosis 
can better assist physicians in triaging and managing patients with 
pancreatic lesions, a frequent dilemma in clinical practice41.

PANDA is trained on a continual learning approach using multi-
center data, but includes only limited data outside the East Asian popu-
lation and hospitals. The model should be further validated in external 
real-world centers, more international cohorts, and prospective stud-
ies. PANDA exhibited relatively low accuracy for PNET. PNET tumors are 
rare and highly diverse in appearance, and the model may primarily 
miss some cases with very low image contrast in non-contrast CT.

PANDA has already demonstrated its potential for accurate detec-
tion of other cancers, especially cancer types (esophagus42, liver43, 
stomach44) for which no guideline-recommended screening tests are 
available for average-risk individuals. This opens up an exciting pos-
sibility of universal cancer detection at both high sensitivity and high 
specificity levels, while requiring only a non-invasive, low-cost, widely 
adopted non-contrast CT scanning procedure. We hope that PANDA 
and its variations will help transform the current cancer-detection 
paradigm from late-stage diagnosis, when symptoms first present, to 
early-stage screening in which cancers can be detected before symp-
toms appear.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
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Methods
Ethics approval
The retrospective collection of the patient datasets in each cohort was 
approved by the institutional review board (IRB) at each institution with 
a waiver for informed consent: the Shanghai Institution of Pancreatic 
Diseases (SIPD) IRB, Shengjing Hospital of China Medical University 
(SHCMU) IRB, First Affiliated Hospital of Zhejiang University (FAHZU) 
IRB, Xinhua Hospital (XH) of Shanghai Jiao Tong University School of 
Medicine IRB, Fudan University Shanghai Cancer Center (FUSCC) IRB, 
Tianjin Medical University Cancer Institute and Hospital (TMUCIH) 
IRB, Sun Yat-Sen University Cancer Center (SYUCC) IRB, Guangdong 
Provincial People’s Hospital (GPPH) IRB, Linkou Chang Gung Memorial 
Hospital (CGMH) IRB, and General University Hospital in Prague (GUHP) 
IRB. All data in this study were de-identified prior to model training, 
testing and reader studies.

Dataset description
This multicenter retrospective study involved five patient cohorts: an 
internal training cohort, on which the AI models were built; an internal 
test cohort, on which the model performance and reader study were 
assessed (together with an additional internal differential diagnosis 
cohort to increase statistical power for the evaluation of the model’s 
performance on differential diagnosis); an external multicenter (n = 9) 
test cohort, on which the generalization across multiple centers was 
assessed; a chest non-contrast CT test cohort, on which the generaliza-
tion to chest CT scans was assessed; and a real-world clinical evalua-
tion cohort, on which critical questions about the clinical translation 
were assessed.

PDAC and seven non-PDAC lesion subtypes (PNET, SPT, IPMN, 
MCN, SCN, chronic pancreatitis and ‘other’)33,41,45 were targeted in 
this study. In the first four cohorts, PDAC and non-PDAC lesions were 
confirmed by surgical or biopsy histopathology. The patient-level label 
of the surgical pathology was determined based on the 2019 World 
Health Organization Classification of Tumors - 5th edition, Digestive 
System Tumors. For biopsy pathology, definitive evidence was required 
for diagnosis. Patients with mixed neoplasms were not included. 
The normal controls were confirmed as being free of pancreatic or 
peri-pancreatic disease at 2 year follow-up (details of the collection 
process are given in Supplementary Methods 1.1.1). Patients with acute 
pancreatitis and a history of abdominal treatment were excluded. In the 
real-world cohort, pathology or the standard of care clinical diagnosis 
was used as the ground truth. All of the patients in the five cohorts were 
staged according to the eighth edition of the AJCC (American Joint 
Committee on Cancer) cancer staging system. The characteristics 
of the study participants are listed in Extended Data Table 1 (patient 
and CT characteristics), Supplementary Table 2 (reference standard 
of lesion types) and Supplementary Table 3 (lesion size stratified by 
lesion type). More details of the datasets included in this study are 
given below and in Supplementary Methods 1.1.2–1.1.7.

Internal training cohort. The internal training cohort consisted of 
3,208 patients (1,431 with PDAC, 140 with PNET, 98 with SPT, 254 with 
IPMN (163 with main/mixed-duct IPMN and 91 with branch-duct IPMN), 
37 with MCN, 110 with chronic pancreatitis, 134 with SCN, 66 with 
‘other’ (Supplementary Table 1) and 938 normal controls) who had 
been treated between January 2015 and October 2020 at the SIPD, 
China. Consecutive patients (except for those who had chest CT before 
surgery, refer to the ‘Chest computed tomography test cohort’ section) 
with pancreatic lesions confirmed on surgical pathology were included.

Lesion and pancreas annotation. Besides the patient-level label, 
we also annotated pixel-level segmentation masks of the lesion and 
pancreas. We required only manual annotation of the lesion masks. 
Due to the difficulty of, and issues with reliability regarding, direct 
lesion annotation by radiologists using only non-contrast images,  

we additionally collected paired contrast-enhanced CT scans for anno-
tation purposes. Pancreatic lesion annotations on non-contrast CT 
images were obtained by image registration from an experienced 
radiologist’s manual annotations on the contrast-enhanced CT phase 
images, where tumors were more visible. The pancreas annotations 
were obtained via an improved version of our annotation-efficient 
semi-supervised learning approach46, which uses only publicly avail-
able pancreas annotations (Supplementary Methods 1.1.3).

Internal test and differential diagnosis cohorts. We used the testing 
set of our prior work47 as the source of the internal test cohort of the 
current study, given that interpretations on this set by 11 readers had 
been collected. Furthermore, we excluded ampullary and common 
bile duct cancer cases because they were usually not categorized as 
pancreatic lesions in the literature41,45. In addition, one normal par-
ticipant was re-categorized as having chronic pancreatitis (actually 
autoimmune pancreatitis, but treated as chronic pancreatitis in our 
study) after carefully checking the patient records; and one normal 
participant was excluded due to a severe pancreatic duct dilation. As 
a result, the internal test cohort contained CT scans of 291 patients 
randomly collected between December 2015 and June 2018 at the 
SIPD, China, consisting of 108 with PDAC, 9 with SPT, 5 with PNET, 22 
with IPMN (11 with main or mixed-duct IPMN and 11 with branch-duct 
IPMN), 2 with MCN, 10 with SCN, 13 with chronic pancreatitis, 6 with 
‘other’, and 116 normal controls.

To enhance the statistical power of the differential diagnosis evalu-
ation, we also collected an internal addition cohort consisting of 611 
consecutive patients who underwent surgery between November 2020 
and October 2021 at SIPD (367 with PDAC, 53 with PNET, 30 with SPT, 65 
with IPMN (40 with main or mixed-duct IPMN and 25 with branch-duct 
IPMN), 21 with MCN, 32 with chronic pancreatitis, 19 with SCN, and 24 
with ‘other’). These 611 patients, and the 175 patients with pancreatic 
lesions in the internal test cohort, constitute the internal differential 
diagnosis cohort (n = 786). All patients underwent multi-phase CT, 
including non-contrast, arterial, venous, and delay. We used only the 
non-contrast phase for PANDA testing and the first reader study. The 
multi-phase CT scans of the internal test cohort were used for the 
second reader study.

External multicenter test cohorts. The external test cohorts were 
collected from nine centers, of which seven were located in China, 
one in Taiwan ROC (CGMH, Site H), and one in the Czech Republic 
(GUHP, Site I). The seven centers from China are distributed widely in 
geographical area: one in the northeast (SHCMU, Site A), four in the east 
(FAHZU, Site B; XH, Site C; FUSCC, Site D; TMUCIH, Site E), and two in the 
south (SYUCC, Site F; GPPH, Site G). Inclusion criteria were as follows: 
non-contrast abdominal CT fully covering the pancreas region before 
treatment; ground truth lesion type confirmed on either surgical or 
biopsy pathology; and normal control confirmed on at least 2 years 
of follow-up. Normal controls in most centers were randomly selected 
from the same time period as that of lesion collection. Patients with 
low image quality due to artifacts caused by metal in stents or drastic 
motion during imaging were excluded. The multicenter test cohort, 
consisting of non-contrast CT scans of 5,337 patients (2,737 with PDAC, 
932 with non-PDAC, and 1,668 normal), was used for independent vali-
dation when no model parameters were tuned or adjusted.

Chest computed tomography test cohort. To evaluate the model’s 
generalizability to chest CT, we collected a non-contrast chest CT test 
cohort with pathology-confirmed PDAC and non-PDAC and normal 
controls confirmed on 2 year follow-up, from SIPD, which is affiliated 
with a major tertiary hospital. Specifically, for patients with PDAC or 
non-PDAC confirmed by surgical pathology, we searched for their near-
est chest CT images for up to 1 year before surgery. For patients with 
chest CT reports of normal pancreas, we searched for their follow-up 
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records of normal pancreas for at least 2 years. By doing so, we collected 
a cohort of 63 patients with PDAC, 51 with non-PDAC, and 378 normal 
controls spanning from November 2015 to May 2022 at SIPD. These 
non-contrast chest CT scans of PDAC and non-PDAC were acquired 
4 days (range, −20 to 191 days) before the contrast-enhanced abdominal 
CT diagnosis, and most of them were acquired during the COVID-19 
pandemic for prevention purposes in this tertiary hospital. We ensured 
that all patients were independent of the patients in the training cohort.

Real-world evaluation cohorts. The real-world, retrospective studies 
consisted of two rounds (RW1 and RW2) of evaluations between July 
2022 and October 2022 at the SIPD. The clinical trial was complete and 
registered with http://www.chictr.org.cn, ChiCTR2200064645, and 
included both RW1 and RW2. PANDA was evaluated on RW1, and PANDA 
Plus (that is, the upgrade of PANDA by learning from the internal, exter-
nal and RW1 feedback) was evaluated on RW2. The inclusion criterion 
was the availability of a non-contrast CT scan covering the pancreas 
region, for example, lung, esophagus, liver or kidney CT. Patients 
with acute pancreatitis (in RW1), abdominal cancer treatment, severe 
ascites, abdominal trauma, and low imaging quality were excluded. 
The process of the standard of truth determination is described in 
Extended Data Figs. 5 and 6.

Our real-world data were collected from four scenarios, that is, 
physical examination, emergency, inpatient, and outpatient depart-
ment (Supplementary Methods 1.1.7). Because the patient indications, 
the CT image background complexity, the pancreatic lesion prevalence, 
and the experience of the (first-line) radiologists varied widely between 
these four scenarios, we conducted separate evaluations to determine 
the feasibility of opportunistic screening using PANDA. These results 
can serve as a valuable reference when applied to different countries 
or institutions based on the sources of patients.

The original RW1 consisted of 18,654 consecutive individuals 
whose non-contrast CT scans were examined between 1 and 31 Decem-
ber 2021, from four different clinical scenarios at the SIPD. After exclu-
sion (n = 2,234, 12%), 16,420 individuals remained (that is, 9,429, 3,027, 
2,311 and 1,653 from the physical examination, emergency, outpa-
tient and inpatient scenarios, respectively). RW1 included 44 PDACs,  
6 PNETs, 1 SPT, 15 IPMNs, 1 MCN, 42 cases of chronic pancreatitis,  
11 SCNs and 59 cases of ‘other’ (mostly benign cysts).

The original RW2 consisted of 4,815 consecutive individuals 
between 1 and 10 February 2022, from the four clinical scenarios at 
the SIPD. The exclusion criteria were the same as for RW1, except that 
we included acute pancreatitis for RW2. After exclusion (n = 705, 15%), 
4,110 individuals remained (1,854, 969, 688 and 599 from the physical 
examination, emergency, outpatient, and inpatient scenarios, respec-
tively). RW2 included 32 PDACs, 5 PNETs, 1 SPT, 12 IPMNs, 4 MCNs, 55 
cases of chronic pancreatitis, 2 SCNs, 15 cases of ‘other’, and 40 cases 
of acute pancreatitis.

AI model: PANDA
PANDA consists of three stages (Extended Data Fig. 1) and was trained 
by supervised machine learning. Given the input of a non-contrast CT 
scan, we first localize the pancreas, then detect possible lesions (PDAC 
or non-PDAC), and finally classify the subtype of the detected lesion 
if any. The output of PANDA consists of two components, that is, the 
segmentation mask of the pancreas and the potential lesion, and the 
classification of the potential lesion associated with probabilities of 
each class.

Pancreas localization. The aim of the first stage (Stage 1) is to localize 
the pancreas. Because the pancreatic lesion is usually a small region in 
the CT scan, the localization of the pancreas can accelerate the lesion 
finding process and prune out unrelated information for the special-
ized training of the pancreatic region. In this stage we train an nnU-Net23 
to segment the whole pancreas (the union mask of healthy pancreas 

tissue and the potential lesions) from the input non-contrast CT scan. 
Specifically, the three-dimensional (3D) low-resolution nnU-Net, 
which trains UNet on downsampled images, is used as the architecture 
because of its efficiency in inference. The model training is supervised 
by the voxel-wise annotated masks of the pancreas and lesion. More 
details on the training and inference for PANDA Stage 1 are given in 
Supplementary Methods 1.2.1.

Lesion detection. The aim of the second stage (Stage 2) is to detect 
the lesion (PDAC or non-PDAC). We trained a joint segmentation and 
classification network to simultaneously segment the pancreas and 
potential lesion, as well as classify the patient-level abnormality label, 
that is, abnormal or normal. The benefit of the classification branch is 
to enforce global-level supervision and produce a patient-level prob-
ability score, which is absent in semantic segmentation models. Similar 
designs had been used in previous studies, such as for cancer detec-
tion47,48 and outcome prediction49. The network architecture is shown 
in Extended Data Fig. 1b. This is a joint segmentation and classifica-
tion network with a full-resolution nnU-Net23 backbone (left part in 
Extended Data Fig. 1b). We extract five levels of deep network features, 
apply global max-pooling, and concatenate the features before carry-
ing out the final classification. We output both the segmentation mask 
of the potential lesion and pancreas, and the probabilities of abnormal 
or normal for enhanced interpretability. This network was supervised 
by a combination of segmentation loss and classification loss:

ℒ = ℒseg + αℒcls (1)

where the segmentation loss ℒseg was an even mixture of Dice loss and 
voxel-wise cross-entropy loss, and the classification loss was the 
cross-entropy loss. α was set to 0.3 to balance the contribution of the 
two loss functions. More details on the training and inference of PANDA 
Stage 2 are given in Supplementary Methods 1.2.2.

Differential diagnosis. The aim of the third stage network (Stage 3) 
is the differential diagnosis of pancreatic lesion type, which is formu-
lated as the classification of eight sub-classes, that is, PDAC, PNET, SPT, 
IPMN, MCN, chronic pancreatitis, SCN and ‘other’. Due to the subtle 
texture change in pancreatic diseases, especially on non-contrast CT 
scans, we incorporate a separate memory path network that interacts 
with the UNet path to enhance the ability to model global contextual 
information, which is usually associated with the diagnosis of pan-
creatic lesions by radiologists. As shown in Extended Data Fig. 1c, we 
use a dual-path memory transformer network. This design is inspired 
by Max-Deeplab25. The architecture of the UNet branch is the same as 
that of Stage 2, implemented as a full-resolution nnU-Net. The UNet 
branch takes the input of the cropped 3D pancreas bounding box, 
which is cropped with a fixed input size of (160, 256, 40). The memory 
branch starts with learnable memories designed to store both posi-
tional and texture-related prototypes of the eight types of pancreatic 
lesion, and is initialized as 200 tokens with 320 channels. The memory 
path iteratively interacts with multi-level UNet features (plus a shared 
learnable positional embedding across layers) via cross-attention and 
self-attention layers. Through this process the memory vectors were 
automatically updated to encode both the texture-related informa-
tion from the UNet features and the positional information from the 
learnable positional embedding, for example, relative positions of 
the pancreatic lesion inside the pancreas, resulting in distinguishable 
descriptors for each type of pancreatic lesion.

The mechanism of the cross-attention and self-attention used 
in the model is formally described in Supplementary Methods 1.2.3, 
together with more details on model instantiation, training and infer-
ence of PANDA Stage 3.

Additionally, we trained an IPMN subtype classifier in a cascaded 
fashion following PANDA Stage 3, with the aim of binary classification 
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between main or mixed-duct IPMN and branch-duct IPMN (Supple-
mentary Methods 1.2.3).

Generalization of PANDA to chest computed tomography. One major 
difference between chest CT and abdominal CT is that the pancreatic 
and lesion regions are sometimes partially scanned in chest CT, depend-
ing on the different scanning ranges of the protocol and the anatomy 
of the patient. This difference could induce domain shift issues for 
machine learning models if our AI model was trained only on abdominal 
CT scans. To address this issue we propose a data augmentation method 
that randomly (with a probability) cuts off the pancreas region in the 
axial plane to simulate the imaging scenario in which the pancreas is not 
fully scanned in the chest CT. This data augmentation is applied to the 
training process of Stages 2 and 3. This simple simulation of the chest CT 
effectively helps our model generalize to chest non-contrast CT without 
the addition of any chest CT data to the training set, while maintaining 
high performance on abdominal non-contrast CT.

Real-world deployment and model evolution. In the real-world 
clinical evaluation, PANDA was deployed at SIPD by integrating it into 
the clinical infrastructure and workflow (Supplementary Fig. 9). The 
deployment facilitates large-scale retrospective real-world studies in 
the hospital environment by securing data privacy, efficiently utilizing 
computational resources, and accelerating the process of large data 
inference and clinical evaluation. Specifically, we deploy PANDA in a 
local server located in the hospital (Supplementary Methods 1.2.4), 
which enables radiologists to visualize each case using our user-friendly 
DAMO Intelligent Medical Imaging user interface (IMI UI; Supplemen-
tary Fig. 9), easily review all results and access necessary informa-
tion from their daily work environment. After RW1 we again collected 
non-contrast CT data of false positives and negatives and cases of acute 
pancreatitis from the internal, external and RW1 cohorts. In the field of 
machine learning this is known as hard example mining and incremen-
tal learning. The evolved model was named PANDA Plus and tested on 
RW2. The collection and annotation of these new training data and the 
fine-tuning schedule are described in Supplementary Methods 1.2.5.

Evaluation metrics
Lesion detection metrics. Lesion detection is a binary classification 
task to distinguish whether the patient has a pancreatic lesion or not. 
Having a lesion is defined as the ‘positive’ class for calculation of the 
AUC, sensitivity, specificity, accuracy and balanced accuracy. In addi-
tion, we evaluate the lesion detection rates stratified by lesion type. 
Particularly for the PDAC cases, we assess the sensitivity for detection 
stratified by cancer stage (stages I–IV) and tumor stage (T1–4).

Primary diagnosis metrics. Primary diagnosis is a three-class classi-
fication task to distinguish PDAC versus non-PDAC versus normal. We 
use the top-1 accuracy and three-class balanced accuracy to present the 
detailed results of the three-class classification. In addition, we define a 
PDAC identification task because PDAC is a unique lesion type with the 
most dismal prognosis. Distinguishing it from other types, that is, PDAC 
versus non-PDAC + normal, is always the primary question to answer 
for doctors and is the key task for cancer screening. Having a PDAC is 
defined as the ‘positive’ class for calculation of the AUC, sensitivity, 
specificity, PPV, accuracy and balanced accuracy.

Differential diagnosis metrics. Differential diagnosis is an eight-class 
classification task for the seven most common pancreatic lesion types 
and ‘other’, following the pancreatic tumor–cyst classification task41,45, 
without normal patients included and with each patient having a 
lesion type assigned. The confusion matrices are used to present the 
detailed classification results. We report the overall top-1 accuracy and 
multi-class balanced accuracy for the classification of all of the lesion 
types, to facilitate the comparison of the AI model’s performance with 

second-reader radiology reports and across external multiple centers. 
The second-reader radiology report is a secondary analysis of a pri-
mary standard of care clinical radiology report, in which radiologists 
have complete access to the patient’s clinical history (for example, 
contrast-enhanced CT examination indicated for chronic pancreatitis 
follow-up), and the results of other clinical examinations (for example, 
tumor biomarkers). In addition, we also report the performance of 
the full pipeline (lesion detection + differential diagnosis), that is, 
nine-class classification consisting of normal and eight lesion types.

Ablation studies
We perform three ablation studies. For PANDA Stage 2 we compare our 
multi-task CNN model with a volume-based classifier on the nnU-Net 
segmentation model (Extended Data Fig. 2a). This baseline model 
uses the volume of the segmented lesion by an nnU-Net as an indica-
tor for the existence of the lesion. For PANDA Stage 3 we compare our 
dual-path transformer model with the Stage 2 multi-task CNN model. 
In addition, we demonstrate the importance of the quantity of training 
data on different tasks of our problem (Extended Data Fig. 3). We first 
retrain the PANDA model under four settings, using 10%, 25%, 50% and 
75% of the training dataset, respectively, and then test the model in each 
setting on the internal and external test cohorts.

Reader studies
Two groups of readers participated in two independent reader studies.

Reader study on non-contrast computed tomography. The aim of the 
first reader study was to assess the readers’ performance in detecting 
pancreatic lesions and diagnosing whether the lesion was a PDAC on 
non-contrast CT. The study was conducted in two sessions. The first 
session compared PANDA’s performance with that of radiologists with 
varying levels of expertise in pancreatic imaging. The second session 
investigated whether PANDA would be capable of assisting radiolo-
gists. There was a washout period of at least 1 month between the two 
rounds for each reader.

A total of 33 readers from 12 institutions were recruited in this 
study, consisting of 11 pancreatic imaging specialists, 11 general radi-
ologists who are not specialized in pancreatic imaging, and 11 radiol-
ogy residents. These readers had practiced for an average of 8.3 years 
(range, 2–31 years) in various radiology departments, and had read 
an average of 510 pancreatic CT scans (range, 100–2,600) in the year 
before the reader study (Extended Data Table 2).

In the first session each reader was trained to use the ITK-SNAP 
software50 for the visualization of the CT images. Basic functions of this 
software include but are not limited to HU (Hounsfield unit) windowing, 
zooming in and out, and axial, sagittal and coronal view simultaneous 
display. In interpreting the 291 randomly ordered cases from the inter-
nal test cohort, non-contrast CT images and information on age and sex 
were provided. The readers were informed that the study dataset was 
enriched with more positive patients than the standard prevalence of 
pancreatic lesions in daily practice. However, they were not informed 
about the proportions of each class. Each reader interpreted the image 
without time constraints and classified each case as PDAC, non-PDAC or 
normal. In addition to the patient-level label, each reader also recorded 
the location of the detected tumor in the format of pancreatic head/
uncinate, neck, and body/tail. The performance of each reader is listed 
in Supplementary Tables 6 and 8.

In the second session the same group of readers interpreted the 
291 cases again using ITK-SNAP. In addition to the non-contrast CT 
images and the information on age and sex, the readers were provided 
with PANDA’s case-level prediction probability of PDAC, non-PDAC or 
normal, as well as the corresponding lesion segmentation masks. Some 
examples of the provided PANDA predictions (in interactive video 
format) are shown in Supplementary Fig. 3. The improvement of each 
reader between the two sessions is measured.
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Reader study on contrast-enhanced computed tomography. 
The second reader study compared PANDA’s (non-contrast CT) per-
formance with that of pancreatic imaging specialists' readings on 
contrast-enhanced CT. A total of 15 additional pancreatic imaging spe-
cialists from a high-volume pancreatic cancer institution (SIPD) were 
recruited in this study. These readers had practiced for an average of 
9.5 years (range, 6–19 years) in the radiology department at SIPD, and 
had read an average of 907 pancreatic CT scans (range, 400–3,000) in 
the year prior to the reader study (Extended Data Table 2).

Each reader was first trained to use the same software for visu-
alizing multi-phase CT images. Next, they were provided with the 
non-contrast, arterial and venous phase CT images of the same 291 
patients from the internal test cohort, as well as information on age and 
sex. The interpretation rules were the same as those of the first reader 
study. We also measured individual differences between non-contrast 
CT and contrast-enhanced CT (Supplementary Methods 1.3.1).

Interpretability of the AI model
Our AI model jointly outputs the probability of the abnormality, 
the prediction of the subtype classification (if any abnormality is 
detected), and the segmentation mask of the detected abnormality 
lesion. Unlike other AI-based classification models51,52 that require the 
visualization of the network feature map to acquire the abnormality’s 
positional cues, our model directly outputs the segmentation mask 
of the detected mass together with the patient-level probability, 
which provides straightforward and advanced interpretability. The 
correspondence between the segmented lesion and the ground 
truth lesion was evaluated using the Dice coefficient (DSC) and the 
95th percentile of Hausdorf distance (HD95). The segmentation 
performance of the pancreas and each type of pancreatic lesion 
was evaluated.

In addition, we visualized the heatmap of the convolutional feature 
map of PANDA Stage 2 classification using Grad-CAM53 (Extended Data 
Fig. 4a), to understand which part of the feature map contributed most 
to lesion detection. For PANDA Stage 3 lesion differential diagnosis, 
we plotted the attention map of the memory tokens, which showed 
the activation of the top activated tokens (Extended Data Fig. 4b) to 
interpret the model’s attention.

Statistical analysis
The performance of the binary classification task was evaluated using 
the AUC, sensitivity, specificity, PPV, accuracy and balanced accu-
racy metrics. The performance of the multi-class classification task 
was evaluated using accuracy and balanced accuracy. Cohen’s kappa 
coefficient κ was also computed between the AI prediction and the 
standard of truth for differential diagnosis. The confidence intervals 
were calculated based on 1,000 bootstrap replications of the data. The 
significance comparisons of sensitivity, specificity, accuracy and bal-
anced accuracy were conducted using permutation tests to calculate 
two-sided P values with 10,000 permutations. For non-inferiority 
comparisons, a 5% absolute margin was pre-specified before the test 
set was inspected. The significance of the difference between the AUCs 
of the AI model and nnU-Net was assessed using the Delong test. The 
threshold to determine statistical significance is P < 0.05. Data analysis 
was conducted in Python using the numpy (v1.20.3), scipy (v1.8.1) and 
scikit-learn (v0.24.2) packages.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sample data and an interactive demonstration are given at http://
panda.medofmind.com/. The remaining datasets used in this study 
are currently not permitted for public release by the respective 

institutional review boards. Requests for access to aggregate data 
and supporting clinical documents will be reviewed and approved by 
an independent review panel on the basis of scientific merit. All data 
provided are anonymized to protect the privacy of the patients who 
participated in the studies, in line with applicable laws and regula-
tions. Data requests pertaining to the study may be made to the first 
author (Kai Cao; mdkaicao163@163.com). Requests will be processed 
within 6 weeks.

Code availability
The code used for the implementation of PANDA has dependencies 
on internal tooling and infrastructure, is under patent protection 
(application numbers: CN 202210575258.9, US 18046405), and thus is 
not able to be publicly released. All experiments and implementation 
details are described in sufficient detail in the Methods and Supple-
mentary Information (Methods) sections to support replication with 
non-proprietary libraries. Several major components of our work are 
available in open-source repositories: PyTorch (https://pytorch.org/) 
and nnU-Net (https://github.com/MIC-DKFZ/nnUNet).
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Extended Data Fig. 1 | Network architecture. a, Overview. Our deep learning 
framework consists of three stages: pancreas localization using a segmentation 
UNet, abnormality detection using a multi-task CNN, and lesion subtype 
classification using a dual-path transformer. b, Architecture of the multi-task 
CNN for Stage-2. We extract multi-level features from the segmentation UNet, 
and concatenate the features after global pooling for abnormal and normal 

classification. c, Architecture of the dual-path transformer for Stage-3. Lesion-
related features are encoded into the learnable memory vectors from the UNet 
features and the learnable positional embeddings using cross-attention and 
self-attention. The response vectors of this procedure are then used for the 
classification of PDAC and seven non-PDAC subtypes.
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Extended Data Fig. 2 | Ablation studies of the 5-fold cross-validation on the 
training set (n = 3,208). a, nnUNet vs. PANDA Stage-2 network (multi-task CNN) 
for lesion detection, where PANDA achieved significant improvement in AUC 
score (P = 0.00022). At the same (desired) specificity level of 99.0%, PANDA 
Stage-2 outperformed nnUNet in sensitivity by 4.9% (95.2% vs. 90.3%) (marked 
in red dotted line). b, Multi-task CNN baseline (same as PANDA Stage-2 network 

with nnUNet backbone and classification head) vs. PANDA Stage-3 (dual-path 
transformer) for differential diagnosis, where PANDA achieved significant 
improvement in both accuracy (Acc.) and balanced accuracy (Bal. acc.). The 
significance test comparing the AUCs of the AI model and nnUNet is conducted 
using the Delong test. Two-sided permutation tests were used to compute the 
statistical differences of accuracy and balanced accuracy.
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Extended Data Fig. 3 | Influence of the proportion of training data. Influence of the proportion of training data tested on the internal test cohort (left) and the 
external test cohorts (right) on the task of a, lesion detection b, PDAC identification c, primary diagnosis d, differential diagnosis.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of interpretability. a, we visualize the 
noncontrast CT, contrast-enhanced CT, and the radiologist’s annotated mask and 
compare them with the PANDA segmentation map and the Grad-CAM heatmap 
of PANDA Stage-2 classification for lesion detection. PANDA correctly predicted 
the position of the PDAC (PANDA segmentation map) and made positive 
classification based on the local features of the PDAC (Grad-CAM heatmap). b, we 
visualize the top activated attention maps of the Transformer branch of PANDA 
Stage-3 to interpret how PANDA classified the lesions. The memory tokens of the 
Transformer not only attended to the lesion locations but also considered the 

secondary signs for lesion diagnosis as utilized by the radiologists. E.g. A PDAC 
caused pancreatic duct dilation and pancreatic atrophy; A SPT was circumscribed 
with the heterogeneity of both solid and cystic regions; A SCN had a pattern of 
central stellate scar and so-called honeycomb pattern; A PNET had isoattenuating 
mass and peripheral calcification; A CP was associated with calcification, 
dilated duct, and pancreatic atrophy; An IPMN lesion was connected to the 
pancreatic duct; A MCN had the thick cystic wall and no visual connection with 
the pancreatic duct. The heatmaps of multiple slices were displayed for the CP, 
IPMN, and MCN.
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Extended Data Fig. 5 | Overview of the workflow of the first real-world study (RW1).
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Extended Data Fig. 6 | Overview of the workflow of the second real-world study (RW2).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Flowchart describing the successful discovery and 
intervention of a patient with pancreatic neuroendocrine tumors (PNET) 
in the real-world clinical evaluation. Noncontrast chest CT was performed on 
this patient in the physical examination center in Month 0, where the standard 
of care did not report any pancreatic findings. This patient was included in the 
real-world study in Month 7 and was reported as non-PDAC (95% probability) 
by PANDA. After the case was reviewed by MDT, the patient was recalled for 

contrast-enhanced MRI and was considered as PNET in the radiology report. 
The patient consented to surgery, which was later successfully performed in 
Month 7. The post-surgical pathology report confirmed an early-stage PNET 
(G1, 1.5cm). The 6 month follow-up (Month 13) showed no relapse or metastasis. 
The English translation of the MRI and pathology reports’ key results are 
provided in green boxes.
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Extended Data Table 1 | Dataset characteristics

T stage (AJCC eighth edition), TNM stage (AJCC eighth edition), and location are displayed for the PDAC patients. no., number; IQR, interquartile range; Internal Addition, additional cohort 
to enhance the evaluation of differential diagnosis, together with the 175 patients with pancreatic lesions in the internal test cohort, constitute the internal differential diagnosis cohort 
(n=786); SHCMU, Shengjing Hospital of China Medical University; FAHZU, First Affiliated Hospital of Zhejiang University; XH, Xinhua Hospital; FUSCC, Fudan University Shanghai Cancer 
Center; TMUCIH, Tianjin Medical University Cancer Institute and Hospital; SYUCC, Sun Yat-Sen University Cancer Center; GPPH, Guangdong Provincial People’s Hospital; CGMH, Chang Gung 
Memorial Hospital; GUHP, General University Hospital in Prague; RW, real-world cohort.
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Extended Data Table 2 | Reader experience

Specialists were radiologists who had ≥5 years of experience in pancreatic imaging. Specialists 4 and 20 were highly regarded for their excellence within a high-volume pancreatic cancer 
institution. General 1 -General 11 were general radiologists who were practicing at community hospitals or other level hospitals and undergoing a refresher program in pancreatic radiology at 
the SIPD center at the time of the reader study. Resident 2 was a radiology resident whose research interest was pancreatic imaging.
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Extended Data Table 3 | Cases that were misdetected by the initial standard of care (SOC) but were successfully detected 
by PANDA in the real-world clinical evaluations

The last outcome follow-up is in February 2023. *Died due to metastases originating from lung cancer. †Died due to lung cancer. ‡Underwent surgery in another hospital. ± Died due to lung 
cancer. MDT, multi-disciplinary team; AJCC, American Joint Committee on Cancer; PDAC, pancreatic ductal adenocarcinoma; BD-IPMN, branch duct intraductal papillary mucinous neoplasm; 
AIP, autoimmune pancreatitis; CP: Chronic pancreatitis; MCN, mucinous cystic neoplasm; PNET, pancreatic neuroendocrine tumor; MRCP, magnetic resonance cholangiopancreatography; 
DP, distal pancreatectomy; PD, pancreatoduodenectomy; Y, yes; N, no.
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