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Gene therapy (GT) provides a potentially curative treatment option for
patients with sickle cell disease (SCD); however, the occurrence of myeloid
malignancies in GT clinical trials has prompted concern, with several
postulated mechanisms. Here, we used whole-genome sequencing to track
hematopoietic stem cells (HSCs) from six patients with SCD at pre- and
post-GT time points to map the somatic mutation and clonal landscape

of gene-modified and unmodified HSCs. Pre-GT, phylogenetic trees were
highly polyclonal and mutation burdens per cell were elevated in some,

but not all, patients. Post-GT, no clonal expansions were identified among
gene-modified or unmodified cells; however, anincreased frequency of
potential driver mutations associated with myeloid neoplasms or clonal
hematopoiesis (DNMT3A- and EZH2-mutated clones in particular) was
observed in both genetically modified and unmodified cells, suggesting
positive selection of mutant clones during GT. This work sheds light on HSC
clonal dynamics and the mutational landscape after GT in SCD, highlighting
the enhanced fitness of some HSCs harboring pre-existing driver mutations.
Future studies should define the long-term fate of mutant clones, including
any contribution to expansions associated with myeloid neoplasms.

GT treatments for various diseases are becoming increasingly avail-  combined immunodeficiency, adenosine deaminase-deficient severe
ableto patients, with hundreds of clinical trials currently activeinthe  combined immunodeficiency, leukodystrophies and other genetic
United States alone'. Pioneering studies laid the groundwork forusing  disorders® ™. Early successes in this field were initially dampened by
GT to cure difficult-to-treat monogenic diseases such as X-linked severe  reports of patients who developed vector insertion-related leukemias
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Table 1| Patient characteristics and colony sequencing information

Patient ID Age inyears, sex Genotype CD34' cells Infused CD34" cell dose Sequencing No. colonies
transduced (106 cells per kg) depth sequenced
SCD1 7, male BS/B° 62.0% 4.86 13.3x 354
SCD2 13, female BS/B° 81.7% 3.55 13.5x 312
SCD3 16, female BS/B° 100% 8.26 13.0x 287
SCD4 20, male B%/B° 95.8% 5.07 12.9x 687
SCD5 24, male BS/B° 95.5% 515 12.9x 447
SCD6 26, male BS/B° 98.6% 6.70 11.9x 505

directly linked to the viral platform used for transgene delivery™ s,

Althoughinsertional mutagenesis risk hasbeen reduced by improved
vector design', the development of myelodysplastic syndrome (MDS)
and acute myeloid leukemia (AML) at 3-5.5 years post-transplantation
in 2 of 47 patients who had undergone GT for SCD*° > has generated
renewed concerns. In contrast to previously reported leukemogenesis
events, the causative geneticlesionsin these GT recipients do not seem
to be linked to insertional mutagenesis. The factors promoting the
development of these blood cancers therefore remain unknown. In
these and otherinstances of GT-related malignancies, disease-specific
or genetic factors may play arole. These adverse events have high-
lighted the need to understand pre- and post-GT genomic landscapes
and stem cell dynamics. Inthis study, we used whole-genome sequenc-
ing (WGS) of individual hematopoietic stem and progenitor cells
(HSPCs) to explore the genetic consequences of SCD and GT on the
stem cell pool.

Results

There are anumber of mechanisms by which the risk of leukemic trans-
formationin SCD GT trials could be increased: (1) an elevated mutation
rate due to SCD itself; (2) mutations resulting from ex vivo manipulation
and transplantation of HSCs, including insertional mutagenesis; (3)
mutations in any surviving residual HSC fraction due to condition-
ing chemotherapy unrelated to vector insertions; and (4) positive
selective pressure on HSCs containing pre-existing driver mutations.
We explored each of these possibilities using our recently developed
approach that permits the study of human HSC clonal dynamics and
relatedness using somatic mutations as unique molecular barcodes.
Our study cohort consisted of six individuals aged 7-26 years old who
had been diagnosed with severe SCD (HbSS or HbSB°-thalassemia) and
had undergone GT (Table 1). The clinical trial (NCT03282656) utilized
plerixafor-mobilized CD34" peripheral blood cells transduced with
ashort hairpin RNA embedded in a microRNA (shmiR) that induces
knockdown of BCL11A,leadingto the de-repression of y-globin expres-
sion and induction of fetal hemoglobin®. DNA was extracted from
HSPC-derived colonies grown in MethoCult medium from fresh or
viably frozen samples and WGS was performed at an average sequenc-
ing depth of 12.7x on 315-888 colonies per individual (Extended Data
Fig.1a).Forall patients, colonies were derived from samples collected
atboth pre- and post-GT time points (Extended Data Fig. 1b and Sup-
plementary Table 1). Across the 2,592 whole genomes, we identified
843,305 independently acquired single-nucleotide variants (SNVs)
and 20,228 insertions and deletions (indels).

Somatic mutations in patients with SCD

Somatic mutations accumulate in HSCs linearly over time, with approx-
imately 14-18 SNVs and 0.65-0.77 indels acquired in each HSC per
year’* 8, In pre-GT samples, we observed a significant elevationin
mutation burden in four of six patients compared to what would be
expected for individuals matching these patients’ ages (Fig. 1a and
Extended Data Fig. 2). Of note, the healthy control data used for com-
parison here are not ancestry-matched to our patient cohort, so we

cannotexclude the possibility that other germline factors may influence
mutation burden. Mutational signature analysis revealed evidence of
the well-described ‘HSPC signature’ (ref. 27), but also several signatures
not previously found in hematopoietic cells that accounted for the
excess mutation burden in some individuals (Fig. 1b). There were no
universal new mutational signatures present across all patients, indi-
cating that the disease itself does not seem to be associated with one
specific mutational process (Extended Data Fig. 2d). A new signature
most notable for unusual T>A or T > G transversionsina TTA or TTG
trinucleotide context (labeled ‘Sig.5’; Fig. 1b) was identified inanumber
of patients (Extended Data Fig. 3). Looking across patient history fora
potential cause, the only parameter we found that was associated with
this signature was hydroxycarbamide (HC) exposure (P=0.02, linear
regression including age as covariate), although a definitive relation-
ship between mutational burdenand HC was not established. Notably,
absolute contributions of this signature to overall mutation burden
arerelatively small (Extended Data Fig. 2d). Other mutational patterns
were observed in some patients (Extended Data Fig. 2), including the
proliferation-associated signature SBS1 (patient SCD1) and SBS19
(unknown etiology, patients SCD2 and SCD3). Larger chromosomal
abnormalities were also observed at slightly higher rates than expected
for individuals of this age (Extended Data Fig. 4).

Mutation burden and HSC relatedness before gene therapy
Patterns of shared and unique somatic mutations were next used
to construct pre-GT phylogenetic trees for each individual (Fig. 1c).
These phylogenetic trees provide dataonthe HSClineage relationships
between ancestors of the HSPCs sequenced. Branch points on these
trees, termed ‘coalescences’, indicate historic stem cell self-renewal
divisions where one HSC has given rise to two daughter HSCs. We
were interested in establishing whether the trees of patients with
SCD showed any evidence of postnatal expanded clones (operation-
ally defined as an ancestral HSC from after in utero development that
contributes >1% of colonies at the time of sampling?).

The pre-GT phylogenetic trees of all patients were highly poly-
clonal, similar to phylogenies from young healthy individuals, and in
contrast to the patterns observed in elderly patients or those with a
hematological malignancy®**. Considering WGS data from 147-266
colonies per patient, we observed that almost all colonies were unre-
lated to one another following fetal development. We did not observe
any clonal expansions, with no more than two colonies deriving from
the same postnatal clone (<1% of the total number of colonies). These
datasuggest that steady-state hematopoiesis in younger patients with
SCD is maintained by a large and diverse population of HSCs.

Mutation burdenin post-gene therapy HSCs

Next, we compared HSC mutation burden pre- and post-GT to deter-
mineifthe manipulations required for cell manufacturing, lentiviral
integration and engraftmentinduce mutations. On average, mutation
burdens from post-GT time points had increases of between 9 and 42
SNVs per HSC compared to pre-GT samples (Fig. 2a); however, when
adjusted for normal aging, we observed no significant difference
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Fig.1|Landscape of somatic mutations in SCD. a, Dot-plot showing the
number of mutations per HSPC for each patient plotted against the patient age
at the time of sampling. SNV mutation burdens of individual HSPC colonies

from before GT, with correction for coverage, are displayed per patient. Mean
mutation burdens per individual are indicated by a cross. The black line indicates
the expected mean mutation burden by age from a previous study looking at
hematopoietically healthy individuals®. The average total number of mutations
per HSPC above (+)/below (-) the expected value is indicated in the colored
boxes. The mutation burdens for each patient were individually tested against the
reference mutation set using a linear mixed-effects model with ‘age’ and ‘patient/
reference status’as fixed effects, and ‘individual’ as arandom effect, to see if the
‘patient/reference status’ term was significant (*P < 0.05, **P < 0.01, ***P < 0.001).
Exact Pvalues for SCD1to SCD6 were 9.5x107,1.1x1073,9.7x10°%,0.41,1.0 x 1072

and 0.54, respectively. b, Mutational signature analysis reflecting the underlying
mutational processes that have been active within sequenced HSPCs. Signatures
incorporate the base substitution types in the context of the bases immediately
5”and 3’ to the mutated bases. Interpretation of each signature, by comparison
with known signatures, is shown to the right of each profile. The contributions of
eachsignature to each sample are shown in Extended Data Fig. 2c. Sig., signature.
¢, Phylogenies showing relatedness of the pre-GT colonies from each individual.
Branches are scaled by the number of mutations allocated to that branch and
corrected for sequencing depth such that branch lengths reflect the number

of mutations acquired in that ancestral lineage. Given the fairly constant rate

of mutation acquisition, this is asurrogate for time passed in that lineage and is
termed ‘molecular time’.
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Fig. 2| Gene therapy induces few additional somatic mutations. a, SNV
mutation burdens of HSPC colonies (n =1,564) from six individual patients
plotted against the time point of colony sampling (relative to the GT procedure).
The box-and-whisker plots show the distribution of mutational burden per
colony per time point within each individual, with the boxes indicating median
and interquartile range (IQR). The upper whisker extends from the hinge to
the largest value no further than1.5 x IQR from the hinge and the lower whisker
extends from the hinge to the smallest value at most 1.5 x IQR of the hinge.

The overlaid points are the jittered observed mutational burden of individual
colonies. The solid blue line represents the inferred correlation between the
mutation burden and the time point (simple univariate linear model), with the
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gray-shaded area showing the 95% confidence interval of this correlation. Time O
represents data from samples taken at baseline for all patients. b, Estimate of the
number of excess SNV mutations acquired from the GT procedure for individual
patients. ¢, Excess indel mutations acquired from the GT procedure. For b and

¢, dots represent the difference in mean age-adjusted values between pre-and
post-GT samples (n =1,564 total colonies) and the bars show the 95% confidence
interval of the estimated true difference between mean values (two-sided ¢-test).
Pvalues for SNV comparisons were 0.0051, 0.54, 0.52, 0.41,0.067 and 0.090 for
SCD1to SCD6, respectively. Pvalues for indel comparisons were 0.18, 0.19, 0.41,
0.61,0.72and 0.71for SCD1to SCD6, respectively. *P < 0.05.

between pre- and post-GT time points for any patients except SCD1,
who had an excess of 14 mutations above that expected for their age
(7-21,95% ClI), equivalent to approximately 1 year of aging in an oth-
erwise healthy individual (Fig. 2b and Extended Data Fig. 5a). There
was no evidence of additional indels beinginduced by GT manipula-
tions (Fig. 2¢).

Alongside somatic mutation tracking, our approach allows con-
comitantidentification of integrated vector sequences, thereby permit-
ting us to distinguish gene-modified from unmodified HSPCs. For each
colony, we determined whether the founder cellhad been gene modi-
fied and quantified the number of vector copiesintegrated (Extended
Data Fig. 5c). Overall, -48% of colonies from post-GT samples were
gene modified (range, 29-72%, 12-36 months post-transplantation).
Asreported in other GT trials, the proportion of modified HSPCs was
higher in the drug product than in follow-up samples isolated from
12-36 months post-infusion (Extended Data Fig. 5d). Independent
data from this clinical trial have shown that vector copy number has
stabilized over the follow-up period for all patients**°. No specific
mutational signature was found in post-GT colonies and the mutation
burden of gene-modified colonies was the same as that of unmodified
colonies (Extended Data Fig. 5e,f). High doses of alkylating agents
similar to busulfan have been shown to cause somatic mutations with
specific mutational signatures®**. Therefore, if any of the coloniesin
our dataset derived from non-transplanted clones that had survived
the myeloablative busulfan conditioning®, we would expect to see
evidence of thisin their mutation profiles. The absence of such colonies
suggests that the majority of post-GT colonies, including unmodified
ones, were derived from transplanted clones. We cannot exclude the
possibility that cells exposed to conditioning are less able to form
colonies and are therefore under-represented in our dataset.

HSC number and clonal relatedness post-gene therapy

In addition to building phylogenetic trees for patients before GT, we
explored HSC relatedness within post-GT samples. After constructing
trees, we observed that post-GT HSPC samples mapped back across
theentirety of theinitial tree (Fig. 3a and Extended Data Fig. 6) with no
significant phylogenetic clustering (Extended Data Fig. 7), indicating
no selection for specific embryonic subsets of related HSCs.

The number of engrafting HSCs in the GT procedure is not well
established. Population bottlenecks, such as those occurring during
transplantation of limited numbers of stem cells, leave characteristic
features in the phylogenetic structure that can be used to estimate
historic population sizes***, Accordingly, smaller numbers of trans-
planted stem cells would result in more late-branching events as this
small population expands to repopulate the bone marrow. lllustrating
this, Fig. 3a shows patient SCD4 with three post-GT late-branching
events which can be used to estimate the transplanted HSC pool size
(Fig. 3a and Extended Data Fig. 6; red stars). Using an approximate
Bayesian computational (ABC) framework (Extended Data Fig. 8 and
Online Methods), we estimated the number of engrafting long-term
repopulating cells that remained active in the progenitor compartment
atthe time of sampling. We assume that engrafted clones that contrib-
ute new HSPCs 2-3 years post-transplantation have demonstrated
long-term hematopoietic output as previously reported*** and can ret-
rospectively be considered long-term repopulating cells. The estimates
fromthe ABC revealed considerable variation between patients, with
the lowest estimate for SCD2 of 3,100 (1,200-18,800, 95% prediction
interval) and highest estimate for SCDS5 of 70,240 (24,800-100,000,
95% prediction interval) (Fig. 3b and Extended Data Fig. 9a). Notably,
SCD2 had the lowest infused CD34" cell dose per kg (Table1). Estimates
were comparable to those obtained via standard vector integration site
(VIS) analyses (Extended Data Fig. 9b).

Driver mutations in pre- and post-gene therapy HSCs

Recent occurrences of myeloid transformation events**** not asso-
ciated with insertional oncogenesis have highlighted the need for
more detailed information about genetic predisposition to leukemia
and the potential occurrence of mutations in the post-GT pool of
engrafting HSPCs. None of the patients in our study had detectable
driver mutations in any follow-up samples using a Clinical Labora-
tory Improvement Amendments (CL1A)-certified 95-gene rapid heme
panel with a variant allele fraction (VAF) sensitivity >1% (ref. 37). We
surveyed individual colony genomes of all patients for the presence
of potential cancer-associated mutations and identified 12 possible
pathogenic mutations in RUNXI, TP53, CDKN2A, DNMT3A, SIK3, EZH2
(threeindependent mutations), TET2, CBLC, MGA and PPMI1D (Fig.4a,b
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Fig. 3| Combined phylogenies of pre- and post-gene therapy colonies and
estimates of the number of engrafting long-term repopulating cells.

a, Phylogeny of HSPC colonies sampled pre- and post-GT from the individual SCD4.
Tips of pre-GT samples are shown in light gray, whereas those of post-GT samples
areshownin purple. Branches from pre-GT samples only are shownin light gray

and branches from post-GT samples (or both) are shown in dark gray. Branches are
scaled according to the number of mutations allocated to that branch. Blue stars
highlight post-embryonic late-branching events occurring before GT; red stars
highlight post-embryonic branching events occurring after GT. b, Density plot
showing estimates of the number of engrafting HSCs for each individual.

and Supplementary Table 2). All but one of these were detected in
post-GT colonies and appeared in both modified and unmodified cells.
Assessed together, these data revealed a post-GT increase in the pro-
portion of colonies carrying a possible driver mutation from1in1,161
(0.1%) pre-GTto12in1,431(0.8%) post-GT (P = 0.016; Fisher’s exact test).
Although normal aging may contribute, the short follow-up periods of

the post-GT samples (maximum 3 years) alone would not be anticipated
toresultin detectable increases in driver mutations.

Toexamine theacquisition of additional driver mutationsin more
detail, we performed targeted high-depth duplex sequencing®** on
pre-GT and at least two post-GT bulk myeloid cell samples from each
patient. As part of this panel, we targeted nine putative driver mutations
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Fig. 4| The proportion of colonies harboring driver mutations increases
post-gene therapy. a, Dot-plot showing the proportion of HSPC colonies
sampled pre- and post-GT with a potentially pathogenic driver mutationin each
individual (n=2,592 total colonies sampled). Pre-GT samples were taken at
baseline for all patients; post-GT datainclude all post-GT time points analyzed
for each patient. Dots show the exact proportion and error bars indicate the 95%
confidence interval (exact binomial test). b, Table of potential driver mutations
detected in the single-cell colony sequencing data. Where sequencing of pre- and
post-GT samples was performed, we show whether the clone was substantially
larger after GT and the fold change. The ‘time point’ column indicates when the
samples were taken from each patient (years post-GT). The ‘gene mod. column
indicates whether the mutation was found in a gene-modified or unmodified
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HSPC colony. ¢, Dot-plots showing the clonal trajectories of nine driver clones
from pre-GT (time, 0, baseline only), through to the last available time of
follow-up. The patient ID numbers and mutated gene are indicated for each plot.
Dots show the exact VAF (number of variant reads divided by total coverage at
thatsite) and error bars show the 95% confidence interval (binomial test).

d, Lollipop plot showing the locations of altered amino acids in EZH2 (n =7) and
DNMT3A (n =11) caused by missense mutations called in high-depth duplex
targeted sequencing for individuals SCD2, SCD4, SCD5 and SCDé. e, Bar plots
showing the total burden of DNMT3A (top) and £ZH2 (bottom) mutations from
pre-GT (time point, 0) through to the last follow-up sample available. The center
ofthe error bars is the sum of the VAFs of each individual mutation. Error bars
show the 95% confidence interval of this value (Bayesian inference approach).
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identified in our individual colony analysis (Fig. 4b). For each branch
with a putative driver, we also identified 40 additional unique SNVs
to act as further indicators of that clone contributing to blood cell
production (mean duplex depth of 12,392x%; Extended Data Fig. 10a
and Supplementary Table 3). The presence of the driver itself, or any
of the additional 40 branch-specific mutations, allows us to identify
how much that clone was contributing at the time of sampling. This
method provides the power to detect clones with frequencies of <lin
20,000 cells in most cases.

Using this approach, all nine driver-containing clones were
detected in post-GT samples and five of nine driver-containing
clones were detected in pre-GT samples (Fig. 4c and Extended Data
Fig. 10b). The inability to detect some driver-containing clones in
pre-GT samplesislikely due to the level of detection of the assay rather
than the non-existence of the clone. We used established methods to
retrospectively determine the order of mutation acquisition within
a clone. Given the depth of sequencing, this approach could be used
for clones with a VAF > 0.05% (ref. 40). We could thus infer that the
drivers from two of the four clones that were undetectable in the
pre-GT samples were nonetheless likely to have been present before
GT (Extended Data Fig.10c). Following engraftment, the VAFs of five of
ninedriver-containing clones (PPM1D p.R552*%, TP53 p.R273H, DNMT3A
p.L648R, EZH2 p.E649K and EZH2 p.N673I) significantly increased
by the final post-GT time point compared to pre-GT, with 55- and
95-fold minimum increases observed for the two £ZH2 mutant clones
(Fig. 4b). More modest increases of 1.24-, 2.7- and 4.5-fold were seen
forthe DNMT3A, PPM1D and TP53 mutant clones, respectively. Of note,
the EZH2 p.N673I clonein SCD5 demonstrated ongoing expansion up
to the final 3.5-year post-GT time point (Fig. 4b,c). Notably, for all of
these mutations, the increases are below the sensitivity threshold of
the clinical targeted sequencing panel used during follow-up and the
clinical relevance is not known at this point.

In addition to tracking mutations previously identified in the
tree-building phase of this study, we also performed de novo mutation
calling from the duplex sequencing data across a panel of 39 myeloid
cancer-associated genes (Supplementary Table 4). This identified 49
somatic mutations predicted to have at least a moderate functional
impact (Extended Data Fig.10d and Supplementary Table 5). DNMT3A
(n=11)and EZH2 (n =7) were most commonly mutated, with mutations
inthelatter clustered intwo specific gene regions (Fig. 4d). The burden
of DNMT3A or EZH2 mutant cells showed asignificantincrease through
genetherapyinfour of sixindividuals, from undetectable pre-GT,up to
~0.1% combined VAF post-GT (equivalent to~1in 500 cells) correspond-
ingtoa6-to180-foldincrease (Fig. 4e and Extended Data Fig.10e). Two
EZH2 mutations had the largest post-GT VAFs (EZH2 p.E649K, 0.03%
(95% C1 0.01-0.07%) at 3.5 years in SCD4, EZH2 p.N6731, 0.5% (95% CI
0.4-0.6%) at 3 years in SCDS5). This trend was not seen in synonymous
orintronic mutations (Extended Data Fig. 10f), suggesting that these
increases are the result of positive selection. Combined, these data
suggest that the ex vivo manipulations during the GT procedure or
the process of engraftment selects for clones with pre-existing driver
mutations.

Discussion

Our large-scale whole-genome study of >2,500 single-cell-derived
colonies has revealed a number of genomic features in the context of
SCD, several of which have wider implications for the HSC GT field.
First, some individuals with SCD have additional genomic damage
at baseline. Second, we estimate that up to tens of thousands of
HSCs contribute to both pre- and post-GT hematopoiesis and clonal
expansions larger than 1% are not observed in these patients. Third,
somatic mutation burden does not seemto be substantially increased
asaresultofthe GT procedure. Onthe other hand, increased frequen-
cies of clones harboring driver mutations post-GT suggest selective
pressure on HSPC clones withincreased fitness, rather thanincreased

gene therapy-related mutation acquisition, as a potentially important
mechanism for clonal expansion. This latter point indicates aneed to
understand the various aspects of the GT process including mobiliza-
tion, ex vivo manipulation, transplantation and engraftment-based
expansion, which may impose a selective pressure on different HSC
clones and several of these processes are common to different types
of GT approaches (viral vector-based and gene-based editing strate-
gies). Although the relevance of clonal expansionin the setting of GT
totherisk of hematological malignancy is currently unknown, our data
reinforce the need for long-termfollow-up for any patient receiving GT.

Previous work has suggested that individuals with SCD may be
at increased risk of developing myeloid malignancies***. While we
detected very few myeloid neoplasm-associated mutations at baseline
in HSPCs, we did observe anincreased total number of mutations per
HSPC in four of six patients compared to healthy cohorts. Consistent
with other recent reports***, the specific mutagenic processes driv-
ing this seem to be heterogeneous between patients, with no unique
molecular signature associated with SCD. Elevated HSPC proliferation
dueto highred-cell turnover and common treatments may contribute
for some individuals, though further study is needed to investigate
theserelationships.

Our approach of WGS and phylogenetic reconstruction of
single-cell-derived coloniesis particularly powerful for studying post-GT
samples as it permits the identification of driver mutations in both
gene-modified and unmodified progeny, the latter of which research-
ers are typically blind to unless the clone has expanded substantially.
We detected driver mutations equally in clones with or without vector
integration, suggesting that viral integration is not the primary cause
of the increased frequency of driver mutations we observed post-GT
in some patients. We also found that the GT procedure itself does not
contribute large numbers of additional somatic SNV mutations. This may
seemsurprisinggiven the stress of expansion required for hematopoietic
reconstitution, butitaccords with datafromallogeneic hematopoietic
celltransplants (HCTs) where no additional HCT-associated mutations
were observed®*.Itis further consistent with our finding of large num-
bers of engrafting cells, which might result in few additional divisions
per cell, combined with alow rate of cell division-associated mutationsin
HSCs".Nonetheless, these datademonstrate theimportance of monitor-
ing for clonal expansionsinboth gene-modified and unmodified clones,
as previous experience has shown in at least one case that malignancy
candevelop fromunmodified clones. Thismay also be relevant to other
transplantation settings as blood cancers have also been reported in
patients with SCD treated with HCT**,

While GT did not cause substantial numbers of additional muta-
tions, our de novo mutation tracking data indicate that the GT proce-
dure promotes the growth of pre-existing driver mutations, leading
to a selection of clones that increased in size from extremely small
(approximately1in 30,000 cells) toslightly larger (up to1in100-200
cells). While the fraction of cells with driver mutations remains small,
this represents a >100-fold expansion in a period of -3 years. While it
is formally possible that surviving clones may have expanded neu-
trally after the population bottleneck induced by the GT process, it is
unlikely that this can fully explain these expansions, as we do not see
the same trajectories for non-synonymous and intronic mutations
called using the same strategy and some of the expansions observed
are highly atypical of neutral expansions (>100-fold) given that the
estimated bottleneck is >10% (roughly 10,000-50,000 cells from the
estimated 100,000-200,000 active HSCs in other studies®**>*¢). Asa
comparison, this is considerably faster than expanding clones foundin
patients with myeloproliferative neoplasms, for which doubling times
inthis setting of malignancy are estimated at 8 months (equivalent to
a-22-fold expansionin3years)®. In the context of GT, this rapid expan-
sionrate may be atransient consequence of marrow repopulation, but
evenso, itincreases the pool of cells with potential to undergo further
clonal evolution. In our patient group, DNMT3A and EZH2 mutations
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demonstrated the largest clonal expansions. Mutationsin these genes
have been associated with clonal hematopoiesis and myeloid disor-
ders®”®, though neither were reported to be mutated in patients who
experienced post-GT myeloid malignancies**”, emphasizing the lack of
understanding of the clinical relevance and predictive nature for these
particular clones with VAFs <1%. Nevertheless, it suggests that some
aspect of the GT process, even in the absence of vector integration,
may exert selective pressure on particular clones with greater fitness,
leading to clonal expansion. This hypothesisis further supported by the
observation thatmutationsin EZH2and DNMT3A were notenrichedina
similar phylogeny-building study looking at mutations in patients who
had undergone allogeneic HCT®2. Notably, EZH2 mutations seem to be
under clear positive selectionin our dataset, but are rare in age-related
clonal hematopoiesis. This highlights that mutations selected forin the
setting of GT are not restricted to those associated with clonal hemat-
opoiesis. The relevance of this phenomenon to myeloid malignancy
following GT needs further study, including long-term follow-up.

Overall, our findings highlight an elevated mutation ratein some
patients with SCD and positive selective pressure on HSCs contain-
ing pre-existing driver mutations as mechanisms that could increase
leukemia risk in GT trials for SCD. This has a range of clinical implica-
tions. First, it raises the question of whether GT candidates should
be screened for driver mutations. Our data suggest that pre-existing
clones are often well below the detection limit of standard clinical
sequencing technologies, making screening by these methods limited
in utility. Equally, however, there is no firm evidence linking low-VAF
mutations (those detectable only by highly sensitive sequencing plat-
forms) with increased cancer risk. Discussion is therefore needed to
determine whether high-sensitivity methods should be used to screen
patients and limit eligibility for potentially curative autologous thera-
pies. Second, our study highlights the importance of minimizing the
risk of acquiring driver mutations before GT. To this end, GT may be
considered inyounger age groups, although this needs to be weighed
against the potential risks of early busulfan exposure given the greater
remaining lifespan. Finally, the development of a better understand-
ing of the specific processes contributing to the selective expansion
of clones harboring driver mutations, with the intent of minimizing
these processes, would greatly benefit the field.
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Methods

Patient samples and in vitro expansion of single HSPCs
Peripheral blood (PB) and/or bone marrow (BM) mononuclear cells
(MNCs) were obtained from six consented patients with clinically
severe SCD currently enrolled in clinical trial NCT03282656 (Boston
Children’sHospital; https://clinicaltrials.gov/ct2/show/NCT03282656).
Briefly, patients were treated with 240 pg kg™ of plerixafor and CD34"
cells were collected for drug product manufacturing®. After transduc-
tion and testing of cells with the BHC-BB694 BCL11A shmirR lentiviral
vector, trial participants received fully myeloablative intravenous
treatment of busulfan for four consecutive days before transduced
CD34" cells were infused®. Patient samples were selected for this
study based on (1) the availability of a large number of pre-GT col-
ony samples ready for sequencing and (2) the availability of >1-year
post-transplantation samples. Fresh or frozen pre-GT BM, mobilized PB
orpre-transplantationtransduced CD34" cells and post-transplantation
follow-up BM and PB samples, where available, were thawed and plated
asasingle-cell suspension (500 cells per well for CD34* BM and CD34"
mobilized PB; 750,000 cells per well for PB-MNCs) into MethoCult
H4434 (cat. no. 04434, STEMCELL Technologies). Resulting single
progenitor-derived colonies were picked at 14-21d into either Dul-
becco’s phosphate-buffered saline (cat. no. D8537, Sigma Aldrich) or
Proteinase K buffer (cat. no. KITO103, Arcturus PicoPure DNA extrac-
tion kit, Applied Biosystems). DNA was extracted using the Arcturus
PicoPure DNA extractionkitand stored at —20 °C for downstream WGS.
While biases may exist in terms of which HSPCs give rise to coloniesin
this assay, the expansion of HSPC-derived cells was required to provide
enough genetic material for WGS.

WGS and identification of somatic mutations

Library preparation and WGS was performed using amethod developed
forlow quantities of input DNA, as previously described®. Paired-end
sequencing reads (150 bp) were generated using the Illumina NovaSeq
6000 platformto atarget coverage of 10-15x, with a subset of samples
sequenced to a higher target coverage of 30-40x. SNVs and indels
were called against an unmatched synthetic reference genome using
standard pipelines®**>, BWA-MEM was used to align sequences to the
humanreference genome (v.0.7.17, NCBI build 37). Following alignment,
SNVsandindels were called against an unmatched synthetic reference
genome using the Sanger in-house pipelines CaVEMan (v.1.13.14) and
Pindel (v.3.3.0), respectively, using standard settings®*®. A total of
2,030 colonies underwent WGS. Of these, 10 were excluded due to low
sequencing coverage (<4x),291were excluded as being non-clonal and
149 were excluded as being duplicates from the same colony, leaving
atotal of 1,580 included in the final analysis (Online Methods and
Extended Data Fig. 1b).

For all mutations passing quality control filters in CaVEMan and
Pindel, matrices of variant and normal reads were determined for all
HSPC colonies using the cgpVAF software (v.5.6.1; https://github.com/
cancerit/vafCorrect). Post hoc filtering steps were then applied to
(1) remove artifacts associated with the low-input library prep pipe-
line such as cruciform DNA structures (SangerLCMFiltering, v.1.03;
https://github.com/MathijsSanders/SangerLCMFiltering); (2) remove
germline SNVs using an exact binomial filter to aggregate counts of
normaland variantreads across allsamples®®; (3) remove low-frequency
artifactual mutations for which count distributions across samples
did not come from an over-dispersed B-binomial distribution®*%; (4)
remove mutations at sites with abnormally high or low mean coverage
(mean depthbelow 8% or over 40x); (5) remove mutationsinconsistent
withatrue somatic mutation as determined by aggregating normal and
variant reads from positive samples (=3 variant reads) and then using a
one-sided exact binomial test to filter those with a Pvalue < 0.001; and
(6) retain mutations if at least one sample met minimum thresholds
for variant read count and total depth and had a VAF > 0.2. Addition-
ally, the datafor some colonies were removed from the dataset due to

low sequence coverage (coverage <4x, 10 samples), the presence of
technical duplicates (149 samples) and evidence of non-clonality or
contamination (291 samples). A peak VAF threshold of <0.4 was used
toidentify datafrom mixed colonies, with additional samples removed
following phylogeny-building by checking mutation VAFs against the
phylogeny and removing those inconsistent with a clonal sample.
Custom R scripts used for these filtering steps are available (https://
github.com/mspencerchapman/Gene_therapy). The following open
source R packages were used in the analyses presented throughout
this paper: data.table (v.1.12.8), ggplot2 (v.3.3.0), stringr (v.1.4.0),
seqinr (v.3.6-1), tidyr (v.1.0.2), dplyr (v.0.8.5), plotrix (v.3.7-7), phangorn
(v.2.5.5),RColorBrewer (v.1.1-2), ape (v.5.3), phytools (v.0.6-99), VGAM
(v.1.1-2), gridExtra (v.2.3) and pheatmap (v.1.0.12).

Identification of non-clonal samples

Hematopoietic colonies embedded within methylcellulose may grow
into one another or derive frommore than one founder cell, resulting
in colonies that are not single-cell-derived. As these samples inter-
fere with phylogeny building and have lower numbers of called muta-
tions, they were excluded from downstream analysis. Detection of
such colonies was conducted in two steps. The first step was based
on the principle that somatic mutations from clonal samples should
have a peak VAF density of 0.5. Therefore, following exclusion of ger-
mline mutations and recurrent artifacts using the exact binomial and
B-binomial-filtering steps, the VAF distribution of positive mutations
inasample were assessed. Samples with a maximum VAF distribution
density <0.4 (corresponding toasample purity of <80%) were excluded.
Thesecond step was performed following afirstiteration of phylogeny
building using all samples passing the first step. Each sample was tested
against the phylogeny to see whether the mutation VAFs across the tree
were as expected foraclonalsample. A clonal sample should have either
branches that are ‘positive’ (mutation VAFs ~0.5) or ‘negative’ (muta-
tions VAFs-0). Therefore, foreachbranchineachsample, variant and
total read counts were combined across all branch mutations. These
counts were then tested for how likely they were to come from either
(1) at least that expected for a heterozygous somatic mutation distri-
bution, with some contamination allowed (one-sided exact binomial
test, alternative hypothesis = less than probability, probability = 0.425);
or (2) no more than that expected for absent mutations, with some
false positives allowed (one-sided exact binomial test, alternative
hypothesis = greater than probability, probability = 0.05). If samples
had any branches with read counts that were highly inconsistent with
both tests (maximum g value < 0.05, Bonferroni correction) or had
three or more branches that were minorly inconsistent with both tests
(maximum Pvalue 0.05, no multiple hypothesis testing correction) the
sample was considered non-clonal and excluded. A second iteration
of phylogeny building was then performed without the non-clonal
samples. Asindicated, these steps have a degree of tolerance of mini-
mally contaminated samples and samples with >80-85% purity will
generally beretained; however, even this lower level of contamination
will have animpact onthe sensitivity of mutation calling and therefore
sample purity was takeninto account for mutation burden correction
(see below).

Identification of colony duplicates

Some hematopoietic colonies grownin methylcellulose have anirregu-
lar branching appearance and are easily misinterpreted as multiple
separate colonies. This may result in several samples being inadvert-
ently picked from the same colony. Such samples seem highly related
on the phylogenetic tree, with only a few private mutations, repre-
senting predominantly in vitro-acquired mutations. Recognition of
these duplicatesis aided by the fact that (1) in many cases, duplicates
are picked into adjacent/nearby wells, as colony picking is performed
systematically around the well, and (2) in most biological scenarios,
such highly related sample pairs are extremely rare due to the larger
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short-term HSC/HSPC pool*; however, the first point may not always
be true and in the setting of a recent transplantation procedure we
expecttheretobe more genuine closely related samples representing
HSC/HSPCs that have undergone symmetric cell divisions during BM
repopulation. Given that the number of post-therapy coalescences
is crucial in estimating the number of engrafting stem cells, accurate
identification of colony duplicates was essential.

We therefore employed a strategy based on assessing the muta-
tional signatures of private mutations (Supplementary Fig. 1). For
colony duplicates, private mutations represent in vitro-acquired
mutations, whereas for sample pairs with close in vivo relation-
ships, they represent in vivo-acquired mutations. These have dis-
tinct mutational signatures. We first defined the in vitro signature
using mutations from confident duplicate pairs that are those from
adjacent/nearby wells. We then used the function ‘fit_to_signatures’
from the R package MutationalPatterns (v.3.14; https://doi.org/
doi:10.18129/B9.bioc.MutationalPatterns) on each set of private
mutations, using only the in vitro signature and ‘BM signature’ to
define optimal contributions of these two signatures that best fit-
ted the data (Extended Data Fig. 8a,b). Sample pairs where either
sample had <15 mutations contributed by the BM signature were
defined as colony duplicates.

Phylogenetic tree construction and branch assignment
Phylogenetic trees were reconstructed as previously described™.

Mutation burden correction

We used two different approaches to correct for sequencing coverage
and colony purity. The ‘asymptotic regression’ correction method and
the ‘sensitivity for germline polymorphisms’ correction method. Both
use the ‘peak VAF measure, either to exclude lower purity samples from
the analysis ortoincorporateintothe correctionitself. Thisis defined
here as the VAF value with the maximum density, assessing across all
somatic mutations called inthat sample and is agood measure of purity
in higher coverage samples.

(i) Asymptotic regression
We used this method for comparisons with published datasets
of non-diseased individuals, which used the same method>*’.
For clonal samples, the number of called mutations increases
with coverage initially, but then plateaus once the coverage
reaches levels of ~30x, at which point the majority of muta-
tions within callable regions of the genome are detected.
For each individual we selected ten pre-GT samples to be
sequenced to a higher 30-40x WGS coverage. We similarly
performed higher coverage WGS for ten post-GT samples for
SCD3 and SCD4 for one post-therapy time point (2 years and 1
year, respectively). Using the ‘NLSstAsymptotic’ function from
the R stats package, we fitted an asymptotic regression model
to the relationship between numbers of called mutations
and sequencing coverage, which we then used to correct the
mutation burden for samples from the same individual/time
point up to the level expected for 30x of sequencing coverage.
Given that such a correction does not take into account differ-
ences in sample purity, we only included those samples with
evidence of high purity (peak VAF > 0.46) and coverage (=10x)
in this correction step.

(ii) Sensitivity for germline polymorphisms
This method was used to estimate the number of gene
therapy-induced mutations and to correct phylogeny
branch lengths. It uses the sensitivity for calling germline
single-nucleotide polymorphisms (SNPs) or indels as a sur-
rogate for the sensitivity for calling somatic mutations and
thereby correct for sequencing coverage. This approach has
the advantage of being applicable to all samples even in the

absence of having a reference set of higher coverage samples
and can be applied to the phylogeny to correct branch lengths.
We also incorporated a sample purity correction step.

For each individual, reference sets of germline polymorphisms
(separate sets for SNVs and indels) were defined. These were muta-
tions that had been called in many samples (as mutation calling was
performed against an unmatched synthetic normal) and for which
aggregated variant/reference mutation counts across samples froman
individual were consistent with being present in the germline. These
wereidentified using the same exact binomial test as was used for filter-
ing germline variants from the somatic mutation identification pipe-
line.Inall cases the number of germline SNPs in the set was >100,000.
For each sample, the proportion of germline SNPs that were called by
CaVEMan and the LCM filtering pipelines was considered the ‘germline
SNV sensitivity’ and the proportion of germlineindels that were called
by Pindel was the ‘germline indel sensitivity’. For pure clonal samples,
the sensitivity for germline variants should be the same as for somatic
variants. Therefore, for samples with a peak VAF > 0.48 (correspond-
ing to a purity of >96%), this germline sensitivity was also considered
the ‘somatic variant sensitivity’ and was used to correct the number of
somatic variants; however, for less-pure samples (purity 80-96%), the
sensitivity for somatic variants will be lower than for germline variants
asthey will not be presentin all cells of the colony. Therefore, an addi-
tional ‘clonality correction’ step was applied. The expected number
of variant reads sequenced for a heterozygous somatic mutationina
non-clonal sample will be n,~Binomial(N,p) where Nis the sequencing
coverage at the mutation positionand pis the sample peak VAF (rather
than p = 0.5 as is the case for a pure clonal sample). The likelihood of
the mutation being called given n, variant reads and N total reads was
taken fromareference sensitivity matrix. This matrix was defined from
the germline polymorphism sensitivity dataacross 20 samples, where
for all combinations of n,and N, the proportion of mutations called in
each sample’s final mutation set was assessed. The sequencing cover-
age distribution across putative somatic mutations was considered
the same as that across the germline polymorphism set. Therefore,
for each value of N (the depths across all germline polymorphisms in
that sample), a simulated number of variant reads n, was taken as a
random binomial draw as described above, and whether this resulted
in a successful mutation call taken as a random draw based on the
probability defined in the sensitivity matrix. The total proportion of
simulated somatic mutations successfully called was defined as the
‘somatic variant sensitivity’ for that sample.

The somatic variant sensitivities were then used to correct
branch lengths of the phylogeny in the following manager. For pri-
vate branches, the SNV component of branch lengths was scaled
accordingto:

Nsny

Nesny = —-
4

Where n.,y is the corrected number of SNVs in sample i, nqy is the
uncorrected number of SNVs called in sample i and p; is the somatic
variant sensitivity in samplei.

For shared branches, it was assumed (1) that the regions of low
sensitivity were independent between samples and (2) if a somatic
mutationwas calledinat least one sample within the clade, it would be
‘rescued’ for other samples in the clade and correctly placed. Shared
branches were therefore scaled according to:

USYY

MW = T TT,a-p0)

Where the product is taken for 1 - p, for each sample i within the
clade. Neither of these assumptions are entirely true. First, areas of
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low coverage are non-random, and some genomic regions are likely
to have below average coverage in multiple samples. Second, while
many mutations will indeed be ‘rescued’ in subsequent samples once
they havebeen calledinafirst sample, because the treemut algorithm
v.L.1for mutation assignment goes back to the original read counts and
therefore evenasingle-variantreadin a subsequentsampleis likely to
lead to the mutation being assigned correctly to ashared branch, this
will not always be the case. Sometimes samples with very low depthata
givensite will have O variant reads by chance. Insuch cases, amutation
may beincorrectly placed. These factors both mean that the approach
may under-correct shared branches, but it is areasonable approxima-
tion. SNV burdens corrected by this approach were then taken as the
sum of corrected ancestral branch lengths for each sample, going
back to theroot.

Mutational signature extraction
Mutational signatures presentin the data were identified by perform-
ing signature extraction using a hierarchical Dirichlet process asimple-
mented in R package HDP (v.0.1.5; https://github.com/nicolaroberts/
hdp). This produced six signatures, labeled Sig.1-6 (Fig.1and Extended
Data Fig. 2). Mutational signatures that were similar to known signa-
tures or appeared as composites of known signatures were re-labeled
accordingly. Only Sig. N5had no resemblance to any known signatures
and was therefore classed as ‘new’. All mutational signatures reflect
underlying mutational processes that have been active in the HSPC
colonies and contributed to the somatic mutation burden. Each branch
on the phylogeny was treated as an independent sample and counts
of mutations at each trinucleotide context were calculated. Branches
with <50 mutations were excluded, as below this threshold random
sampling noise in the mutation proportions becomes problematic.
Plots of signature contributionsin each samplein Fig. 1c represent
the weighted means of signature contributions of individual branches
included within the sample (weighted by the branch length), with final
values then scaled by the sample total mutation burden to reflect the
absolute signature contributions. Notably, branches of <50 muta-
tions, primarily early embryonic branches and private branches of
duplicate colonies, were not included in this assessment of sample
signatures as they had been excluded from the signature extraction
step. This means that processes primarily operative inembryogenesis
areunder-represented in these estimates.

Correction for in vitro-acquired mutations

Ingeneral, invitro-acquired mutations acquired after the first 1-2 cells
divisions of colony growth will be present in <1 in 4 cells within the
colony, with expected VAFs of <0.125. The vast majority will therefore
be excluded from the final somatic mutation sets by including a VAF
cutoff of >0.2. This means that few in vitro-acquired mutations are
expected within the final mutation set.Indeed, studiesin fetal samples
with very low mutation rates have estimated the number of in vitro
mutations passing similar filtering steps to be ~four per colony®, and
other studies have not attempted to correct for in vitro mutations,
including the reference datafrom healthy individuals used as compari-
son?*?%, Nevertheless, we wanted to make sure that the excess somatic
mutation burden observed in our cohort was not related toincreased
rates of in vitro mutations. Therefore, we first defined an expanded
set of nine reference mutational signatures. This included the seven
mutational signatures extracted by HDP: the five putative in vivo signa-
tures (Fig.1b) and two putative in vitro signatures (Extended Data Fig.
2a); an ‘embryonic signature’ resembling SBS1, which was defined by
combining the mutations from embryonic branches across individu-
als (those in which the entire branch is <50 mutations of molecular
time); and an ‘in vitro signature’ defined by combining the mutations
across the private branches of colony duplicates across individuals
(Extended Data Fig. 8a). We then refitted the complete set of muta-
tions within each sample to the optimal linear combination of these

reference signatures using the function ‘fit_to_signatures’ from the R
package MutationalPatterns (v.3.14, https://doi.org/10.18129/B9.bioc.
MutationalPatterns). Contributions from any of the putative in vitro
signatures (NO, N6 or ‘in vitro signature’) were then subtracted from
the mutation burdens of each sample.

Lineage mixed-effects model to assess increase in mutation
rate from SCD

To formally assess the degree to which SCD increases the mutation
acquisition rate we used a linear mixed-effects (LME) regression
approach. We created acombined dataset of colony mutationburdens,
ages and disease status from our pre-GT data and a reference dataset
of hematopoietically healthy individuals®. This study, which we used
as areference dataset in several analyses, looks at a cohort of healthy
adults, from whom sequencing data were derived from colonies that
were grown from sorted CD34*CD38” HSCs/multipotent progenitors
(MPPs). Using the Ime function from R package ‘nlme’ (v.3.1; https://
cran.r-project.org/package=nlme) we first fitted a LME using only
age as a fixed effect and individual as a random effect. We then fit-
ted a second LME model adding in an age-disease status interaction
term to assess whether this significantly improved the model and the
magnitude of the excess mutation rate accounted for by having SCD.
The addition of theinteraction term did not significantlyimprove the
model for SNV mutations or indels.

Assessing vector copy number and vector integration sites

A custom human reference genome was defined by adding the antici-
pated vector integration sequence to the GRCh37 reference genome as
anadditional contig. All sample bam files were then remapped against
this new reference using bwa-mem2 (v.0.7.17; https://github.com/
bwa-mem2/bwa-mem2). Vector copy number was determined from
the mean coverage across the vector sequence, whichwas determined
using SAMtools and then normalized by the coverage in the rest of
the genome (the vector coverage was divided by 0.5 x average auto-
somal coverage). This was further corrected for mismapping to the
vector integration sequence by subtracting the average vector copy
number from pre-transduction samples (this was approximately 0.3).
Reassuringly, this yielded values that clustered around integers
(Extended DataFig. 1a).

To determine the approximate VIS, we first created a subsetted
bam file for each sample. This contained only reads mapping to the
standard reference genome, but whose pairs mapped to the vector
integration sequence. Sites of recurrent mismapping across samples
were filtered. Reads mapping to the same chromosome were clus-
tered by position using the function ‘Ckmedian.1d.dp’ from R package
‘Ckmeans.1d.dp’ v.4.3.4, with potential k values ranging from1to 3.
Clusters with close by positions (central positions <1 kb apart) were
merged. Any cluster with at least four assigned reads was considered
aVIS.Ingeneral, vector copy number and detected numbers of vector
integration sites had high correlation.

Inference of engrafting cell numbers

Weinferred plausible numbers of engrafting cells for all patients using
an approximate Bayesian computation (Extended Data Fig. 8). First,
clone size distributions were simulated in ‘R’ from varying numbers
of engrafting cells (ngngreq, Where each engrafting cell is considered
a‘clone’) assuming growth viaabirth process’. We defined a starting
vector of length ng,g.,eq With all elements equal to 1representing the
initial sizes of engrafting ‘clones’. Clones were then grown by iteratively
incrementing arandomly selected clone by 1, with the probability of a
clonebeingselected proportional toits population after the previous
increment. This was continued until afinal population ng,, was reached.
Possible engrafting cell numbers .. Were considered between 210
(1,024) up to 2'%¢(99,334), effectively giving a uniform prior between
these values. For each value of n,gpseq, a starting phylogeny of nengraied
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cells was taken as the starting tree, which was then grown up to afinal
population of active HSPCs ng,,. The size of each clone was then
extracted from the phylogeny.

For each combination of ng,gteq and ng,,, Samples of ‘cells’ were
randomly drawn from this final population (n=1,000) and the number
of anticipated post-therapy coalescences inferred from the number of
times that the same clone was sampled more than once. The number of
sampled cells matched the number of post-therapy colonies undergo-
ing WGS for each individual (143 for SCD1, 74 for SCD2, 143 for SCD3,
420 for SCD4, 292 for SCDS5 and 358 for SCD6). Random draws from
distributions with the same n,g.,neq Wwere pooled and the proportion
of random draws with the same number of post-therapy coalescences
as the data (1for SCD1, 2 for SCD2, O for SCD3, 3 for SCD4, O for SCD5
and 5 for SCD6) was taken as the likelihood of that value of n gfed-

The true value of ng,, is not well established and values of 1 x 10,
2x10° 5x10° 1x10° and 2 x 10° were considered. The lowest value
(1x10%) was chosen as the estimated total HSC population size?**
and the highest value (2 x 10°) was selected as the largest value that
was computationally feasible. In reality, once the final population size
was more than tenfold larger than the starting population, the final
population size had little impact on results (Extended Data Fig. 9a).
Thisapproach assumes that coalescences are unlikely to occur around
the time of GT from ‘steady-state’ hematopoiesis, and therefore that
all observed coalescences relate to engraftment. For this reason, the
model does not consider parameters such as the steady-state HSC
generation time. This is reasonable given (1) the high polyclonality at
this young age as evident in the pre-therapy phylogenies (Fig. 1c) and
(2) the almost complete absence of coalescences observedinthe 5-10
years before samplingin published steady-state hematopoietic phylog-
enies?. Once our estimates had been calculated, we compared these
numbers to estimates of engrafting HSPCs from the same individuals
based onvectorintegration site analysis using the R package ‘specpool
{vegan}’ (refs.71-73) v.1.15 (Extended Data Fig. 9b).

Annotation of driver mutations

To identify potential driver mutations, a broad 146-gene list of hema-
tological malignancy-/clonal hematopoiesis-associated genes was
compiled from the union of (1) a 54-gene lllumina myeloid panel™, (2)
the 92-gene list used in a recent study of chemotherapy-associated
clonal hematopoiesis”, (3) the 95-gene rapid heme panellistadopted by
Brigham and Women’s Hospital®” and (4) a32-gene list of genes recently
identified as subject to positive selection within the UK Biobank cohort.
We looked for missense, truncating or splice variants in these genes,
yielding 76 such variants (Supplementary Table 2). These were then
manually curated independently by two investigators using the COSMIC
database of somatic mutations (https://cancer.sanger.ac.uk/cosmic),
the broader literature and, in some cases, variant effect prediction
tools such as SIFT and PolyPhen to identify those variants that were
potentially pathogenic and those that were of unknown meaning. This
curation took place without knowledge of whether the mutation had
beenfoundinapre-or post-therapy sample. Where there was disagree-
ment, discussions were conducted until aconsensus was reached.

Structural variants

Structural variants (SVs) were called with GRIDSS’ (v.2.9.4), which was
used with default settings. SVslarger than1kbin size with QUAL > 250
were included. For SVs smaller than 30 kb, SVs with QUAL >300 were
onlyincluded. Furthermore, SVs that had assemblies from both sides
of the breakpoint were only considered if they were supported by at
least four discordant and two split reads. SVs withimprecise break ends
(the distance between the start and end positions was >10 bp) were
filtered out. We further filtered out SVs for which the s.d. of the align-
ment positions ateither ends of the discordant read pairs was smaller
than five. To remove potential germline SVs and artifacts, we gener-
ated the panel of normal by adding in-house normal samples (n =350)

to the GRIDSS panel of normal. SVs found in at least three different
samples in the panel of normal were removed. SV calls resulting from
the GT-integrated vector sequence were filtered by running GRIDSS
across the vector sequence only and filtering any called variants from
the data. Variants were confirmed by visual inspection and by checking
whether they fit the distribution expected based on the SNV-derived
phylogenetic tree. Some variants were found in only a subset of colony
duplicates, suggesting that they were acquired in vitro. These were all
25-65 kb duplication variants and were excluded from further analy-
sis. The one variant that was found in multiple samples was assigned
manually to the appropriate branch on the phylogeny.

Copy-number alterations

WGS data were analyzed with the software ASCAT”’ (v.4.2.1), using a
matched non-clonally related sample as the ‘normal reference’. Purity
was setatland ploidy at 2. Results were manually inspected and altera-
tions that were clearly distinguishable from background noise were
tabulated.

Duplex sequencing

Duplex sequencing was performed with a custom Duplex Sequencing
kit (TwinStrand Biosciences). The duplex sequencing in this study
was performed on mature myeloid cell samples so data are therefore
representative of HSCs actively contributing to the myeloid compart-
ment. For pre-GT samples, the starting cellular material was banked
mobilized PB CD34 cells (obtained from the Miltenyi CliniMACS CD34
selection protocol used inthe manufacturing of patient investigational
medical products). Post-GT BM or PB samples were collected as part of
the patient monitoring program. Both types of samples were stained
with the following antibodies as recommended by the manufacturer:
PerCP-Cy5.5mouse anti-human CD3 (5 pl per test, clone UCHT1, BD Bio-
sciences, 560835), FITC mouse anti-human CD15 (20 pl per test, clone
HI98, BD Biosciences, 555401), APC mouse anti-human CD19 (20 pl per
test, clone HIB19, BD Biosciences, 555415) and BV421 mouse anti-human
CD56 (5 pl per test, clone NCAM16.2, BD Biosciences, 562751). Myeloid
cells were then sorted using either a BD FACSMelody or BD FACSAria
instrument and the gating strategy for pre-GT CD3°CD19™and post-GT
CD15" cellsis shown inSupplementary Fig. 2. FlowJo (v.10.8.1) was used
for analysis of sorted cell populations. A custom baitset was designed
that incorporated 9 of the 12 driver mutations from Fig. 4b (all those
that were available from data analyzed at the time of design), along with
40 additional mutations from each of the driver-containing clones.
Thisrefers to mutations allocated to the same branchin the phylogeny
as the driver mutation. The 40 mutations were arbitrarily selected
from the total set of mutations in the clone (usually 400-600) based
on (1) the minimum free energy, a metric used to predict whether
the probe is likely to fold in on itself, (2) alternate genomic site Blast
hits, to minimize off-target capture and (3) % GC content, to minimize
issues with poor capture from GC-richregions. In addition, the baitset
incorporated the off-the-shelf TwinStrand AML-29 MRD panel that
targets both mutation hotspots and/or full coding sequences in 29
genes recurrently mutated in adult AML®, As this panel did not cover
allgenes commonly mutated in clonal hematopoiesis, nine additional
genes were targeted, covering either only hotspots (SF3B1, SRSF2 and
JAK2) or the full coding sequences (PPM1D,BRCC3, CTCF, GNB1, CHEK2,
ATM and BCOR).

The23 DNA samples were shipped to CeGaT in Germany for library
preparationand sequencing. Library preparation using various amounts
ofinputgenomic DNA (Supplementary Table 3) was performed by ultra-
sonically shearingthe DNA to a mean fragment size of ~300 bp followed
by endrepair, A-tailing and ligating to TwinStrand DuplexSeq adaptors
(TwinStrand Biosciences). After aninitial PCR amplification, the desired
targets were enriched using the custom baitset of biotinylated oligonu-
cleotides and two tandem captures. Libraries were then sequenced on
thellluminaNovaSeq 6000 platform. All 23 samples were multiplexed
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across a single S4 flow cell. Analysis of initial results suggested that
2samples hadfailed, 4 samples had good sequencing results that would
notbeincreased by further sequencing and 17 samples had results that
would be furtherimproved by further sequencing. Therefore, libraries
from these 17 samples underwent further sequencing on an S2 flow
cell. One of the failed samples had further DNA available and under-
went repeat library preparation, target enrichment and sequencing.
Where samples were re-sequenced, the raw fastq files from the separate
sequencing runs were merged before running the TwinStrand analysis
pipeline (v.3.20.1), as described by Valentine et al.”.

Assessing clone trajectories
Read counts at all targeted mutation sites (those found in the clone
WGS) were assessed from the final consensus bam files using allele-
Counter (v.4.3.0; https://github.com/cancerit/alleleCount). To adjust
for the hemizygous nature of mutations on the XY chromosomes in
males (<5% of targeted mutations), the total read count was multiplied
by two at these loci. The average VAF across clone mutations was then
calculated at each time point for the individual in whom the driver
mutation was originally called by summing the variant counts and total
read countsacross all clone mutations. The 95% confidence interval was
calculated using the base R function ‘binom.test’. To calculate whether
the clone hadsignificantly increased in size the aggregated read counts
atthefinal post-therapy time point were compared to the aggregated
read counts at the pre-therapy time point using Fisher’s exact test (as
implemented in the R function ‘fisher.test’ from the package ‘stats’).
The VAF of the driver mutation itself was assessed by looking at the
read counts of the driver mutation alone at each time point from the
same individual in whom the driver mutation was originally detected.
The additional clone mutations may have been acquired before
or after the driver mutation itself. Those acquired before the driver
aretrue passenger mutations, where all cells with the driver mutation
also have the passenger mutation, and therefore the VAF of the pas-
senger mutation is always greater than or equal to the VAF of the driver
mutation itself. Clone mutations acquired after the driver mutation
areinfact subclonal to the driver. The VAF of these mutations may be
much lower than the driver mutationitself. In each case it is unknown
how many of the selected clone mutations are true passengers or are
subclonal. This depends primarily on the timing of driver acquisition:
ifacquired later, there will have been more acquired passenger muta-
tions and fewer subclonal mutations, whereas if acquired early the
reverse will betrue. Aslong as some of the additional clone mutations
aretrue passengers, theirinclusioninthe sequencing datawill increase
the sensitivity for the driver clone. Assuming that the driver mutation
isequally likely to be acquired at any point in the lifespan of the clone,
three-quarters of driver clones will have at least ten true passengers
amongthe 40 sequenced clone mutations. Given our mean sequencing
depth of -12,000x, this would give acombined coverage of 2132,000x
acrossthe tentrue passengers and the driver itself. With this coverage
one has a >95% chance of detecting a driver clone with a frequency of
atleast1in22,000 cells (binomial test, assuming the VAF is half of the
driver clone frequency due to the heterozygous nature of the acquired
variants). Given the inclusion of an unknown number of subclonal vari-
ants, the average clone VAF may be considerably lower than the VAF
of the driver itself; however, the trajectory of the average clone VAF
through time should still be a useful measure of the driver trajectory.

Retrospective mutation timing from mutation VAFs

Inprinciple, mutations acquired within asingle clone will always have
a VAF that is equal to or lower than the VAF of mutations previously
acquiredinthatsame clone. Mutations detected within asingle colony
areevidently all within the same clone. Theoretically therefore, if one
could know precisely the VAF of all these mutations in a bulk popula-
tion, one could determine their order of acquisition. Thisidea has been
used to determine the order of mutation acquisition in malignancies*.

We used this same principle to establish the timing of driver muta-
tionacquisitionin our clones. For each clone we had the bulk sequenc-
ing results of the driver mutationitselfand 40 passenger mutations (out
ofatotal of 400-600 total mutationsin the clone). Given that we have
the VAFs of each of the 41 mutations, these can simply be ordered from
highest tolowest to obtainarank for the driver mutation; however, we
have toaccount for uncertainty in the VAFs due to the random binomial
sampling of variant/wild-type alleles that make up the read counts from
which VAFsare calculated. Therefore, we bootstrapped the read counts
of each clone mutation (10,000 bootstraps) and for each bootstrap,
calculated the rank r; of the driver mutation VAF, so that if the driver
mutation had the highest VAF it would be ranked first (r;=1) and if it
had the lowest VAF it would be ranked last (r;= 41).

However, the rank of the driver mutation among the 40 randomly
selected passenger mutations may notaccurately reflectitsrankamong
the full set of mutations on the branch. To account for the uncertainty
inthe distribution of the 41 sequenced mutations among the total set of
mutations on the branch, we converted each of the 10,000 initial boot-
strap ranks r; (which were out of 41), to afinal rank ry(out of the full set
of 400-600 branch mutations). We did this by randomly selecting 41
numbers fromtheset{l...n,,,} (representing the true ranks of allbranch
mutations), sorting these in ascending order and finding the number
thatwasin position r;of the selected number set, giving the final ry.

To convert these ‘ranks’ to an actual time, two further steps were
involved. First, the mutation-based tree was converted to a time-
based tree using the algorithm rtreefit (v.1.0.1; https://github.com/
NickWilliamsSanger/rtreefit)?. This assumes a constant mutation
acquisition rate after development. This gives a tree where all branch
points (representing historic cell divisions) have estimated ages at
which they occurred. The true time of driver mutation acquisition
corresponding to each bootstrapped rank r,was then taken as:

Vi

mut

Apriver = Ap + (n X (Ap - AP))

Where A, is the age of the branch point at the top of the branch (esti-
mated from the time-based tree), A, is the age of the branch point at
the bottom of the branch (also estimated from the time-based tree),
rris the rank of the driver mutation among all branch mutations and
Ny iS the total number of mutations on the branch. The distribution
of Apgiver Values obtained from each of the 10,000 bootstraps is shown
inExtended DataFig.10c. While not all sources of uncertainty are fully
accounted for, we believe our method gives a useful estimate of the age
of driver mutation acquisition.

De novo mutation calling from duplex sequencing data

Sequencing data were processed using the TwinStrand analysis pipeline
(v.3.20.1) hosted on the DNAnexus platform, which provides bioinfor-
matic facilities”. Standard filtering was applied to remove artifacts
introduced by end repair and at areas of microsatellite instability.
A minimum threshold of three supporting reads was used to call sub-
clonal variants, unless the same variant was called independently
in two separate samples from the same individual. Only SNVs were
considered, asindel calling was unreliable in certain repetitive regions
of the panel. Variants with VAFs consistent with a germline variant
(>0.3) were removed and such variants, at any VAF, were also filtered
in samples from other individuals as potentially representing cross
contamination. In addition, we conservatively reasoned that given that
such variants aretolerated in the germline, they are unlikely to substan-
tially affect function. Variants were considered as most likely to alter
function if they were annotated as ‘missense_variant’, ‘stop_gained’,
‘splice_region_variant’ or ‘splice_acceptor_variant’ in ClinVarl. Mis-
sense variants that were predicted to have a ‘LOW’ functional impact
wereremoved, leaving only those annotated as‘MODERATE’ or ‘HIGH".
Once called in =1 sample, mutation trajectories were then assessed
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across time points from that individual using alleleCounter (as
described above). Lollipop plots of mutations called in EZH2 and
DNMT3A were created using the R function ‘g3Lollipop’ from the pack-
age ‘g3viz’ (https://github.com/G3viz/g3viz).

Trajectories of variants unlikely to affect cell function were used
as a control. These variants were called in exactly the same way as
described above, except that only variants annotated as ‘synonymous_
variant’, ‘intron_variant’ or ‘upstream_gene_variant’ were included and
there was no requirement for any functional impact. Variants at the
same sites as those found in the WGS clones were also excluded, as
these were passenger mutations of driver variants. When considering
the total burden of mutations withina particular gene (Fig. 4e) and the
fold change of that burden (Extended Data Fig. 10e), the confidence
intervals were calculated using a custom Bayesianinference algorithm
(available at https://github.com/mspencerchapman/Gene_therapy).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

WGS data have been deposited in the European Genome-Phenone
Archive (EGA) under accession no. EGAD00001010913
(EGAS00001004620) and targeted sequencing data have been depos-
ited under accession no. EGAD00001010914 (EGAS00001007253).
Datafromthe EGA are accessible for research use only to allbonafide
researchers, as assessed by the Data Access Committee (https:/www.
ebi.ac.uk/ega/about/access). Data can be accessed by registering for
an EGA account and contacting the Data Access Committee.

Code availability

Analysis code, together with extensive derived datasets, is freely
available at https://github.com/mspencerchapman/Clonal_selection_
after_gene_therapy with some larger elements of the data available on
Mendeley Data (https://doi.org/10.17632/m7nz2jk8wb.1).
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Extended Data Fig. 1| Sequencing coverage and colony outcomes.

a, Histograms of sequencing coverage of all colonies that had >4x coverage,
divided by individual. Mean coverage values per individual are indicated. b, Final
outcomes of all colonies submitted for whole-genome sequencing, separated by

individual and time point. Colonies with <4x sequencing coverage were excluded

asinsufficient coverage. Non-clonal and duplicate samples were identified as
described in Methods.
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Extended Data Fig. 2| Mutation burdens and signatures prior to gene
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artefactual/ invitro-acquired mutations, generally accounting for small numbers
of mutations in each sample. b, As per Fig. 1a, but for indels. ¢, Barplot showing
contributions of each mutational signature to the mutation burden of individual
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(n=2,593 colonies total). The box-and-whisker plots show the distribution of
absolute mutation signature contributions per colony within each individual,
with the boxes indicating median and interquartile range. The upper whisker
extends from the hinge to the largest value no further than 1.5 *IQR from the
hinge and the lower whisker extends from the hinge to the smallest value at most
1.5*IQR of the hinge. The overlaid points are the jittered observed signature
contributions to individual colonies. e, Indel mutational signature profile across
allsamples. Sig. =signature.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Copy number alterations and structural variants.
Larger chromosomal changes were assessed, resulting in the identification of

42 structural variants (SVs) and 11 copy number abnormalities (CNAs) across all
2,592 pre- and post-GT colonies. a, Stacked bar plot showing the average number
of CNAs per colony in each individual, divided by CNA type. Total numbers of
CNAsineachindividual is shown above the bar. Pre- and post-therapy samples are
considered together. All alterations were acquired independently, as confirmed
by the phylogeny. b, As per a, but for SVs. Here, two of the SVsin SCD2 were a
single acquisition present in two colonies. ¢, Stacked bar plot showing specific

CNAs and the samples they were found in, divided by individual and pre-/ post-
therapy. The bar fill represents the specific abnormality. A particular excess of
SVswere seenin SCD2 who had 9/312 colonies (2.9%, 95% CI1.3-5.4%) harboring
anSV.d, The SNV-based phylogenies of SCD2 and SCD6, with the SVs overlaid on
the branches during which they were acquired. Branches are colored by the type
of SV. The 133Kb deletion in chromosome 16 in SCD2, and the 112Kb duplication
inchromosome 3in SCD6 can be timed to before 20 mutations of molecular time,
equating to the first trimester of in utero development. del = deletion,

dup =duplication, inv=inversion.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Mutation burdens and vector copy number of post-
transduction samples. a, SNV mutation burdens of colonies from all patients
(n=1,564 colonies total) plotted against the time point of colony sampling
(relative to the gene therapy procedure), with post-therapy burdens corrected
for the additional mutations expected fromincreased age, assuming 16.8
mutations per year per HSC. The box-and-whisker plots show the distribution
of mutational burden per colony per time point within each individual, with the
boxes indicating median and interquartile range. The upper whisker extends
from the hinge to the largest value no further than 1.5* IQR from the hinge and
the lower whisker extends from the hinge to the smallest value at most 1.5*IQR
ofthe hinge. The overlaid points are the jittered observed mutational burden
ofindividual colonies. The solid blue line represents the inferred correlation
between the mutation burden and the time point (simple univariate linear
model), with the gray shaded area showing the 95% confidence interval of

this correlation. Time O represents data from samples taken at baseline for all
patients. b, As per a, but of indel mutations. ¢, Barplot showing the number of

post-therapy or donor product samples with different vector copy number
values, split by individual and time point. d, Dot-plot showing the proportion of
colonies that are transduced with at least one copy of the vector. This includes
data from post-therapy and drug product colonies only. Where individuals have
values from multiple time points, these are joined by a line to aid visualization.
e-f, Box-and-whisker plots showing the corrected SNV and indel burdens for
individual colonies from post-gene therapy time points (n=1,564 colonies total)
separated by colonies with no evidence of vector integration (‘unmodified’),
and those with at least one vector integration site (‘gene modified’). The boxes
indicate median values and interquartile range. The upper whisker extends from
the hinge to the largest value no further than 1.5 *IQR from the hinge and the
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of
the hinge. The overlaid points are the jittered observed mutational burden of
individual colonies. The printed p-values relate to the significance of differences
between the gene modified and non-modified colonies (two-sided t-test).
DP=drugproduct.
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Extended DataFig. 6 | Post-gene therapy phylogenetic trees. a-d, Phylogeny Branches are scaled according to the number of SNVs allocated to that branch,

of pre-and post- gene therapy colonies from SCD1 (a), SCD2 (b), SCD3 (c), SCD5 termed ‘molecular time’. Blue stars highlight post-embryonic coalescences

(d) and SCD6 (e). Tips of pre-therapy samples are light gray, while those of post- occurring prior to gene therapy. Red stars highlight post-embryonic

therapy samples are purple. Branches from pre-therapy samples only are colored coalescences occurring around the time of gene therapy. GT = Gene therapy. TDX
light gray. Branches from post-therapy samples (or both) arein dark gray. =transduction. DP =Drug product.
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Extended Data Fig. 7| Analysis of molecular variance. Analysis of molecular
variance (AMOVA) was used to test for clustering of post-therapy samples on
the phylogenetic tree. Red lines show the observed phylogenetic clustering of

pre-and post-therapy samples on the phylogenetic tree, as measured by the ‘Phi’

statistic. The significance of this statistic is obtained by comparing the value to
the values obtained from random shuffles of sample labels (n =1000) shown here
as histograms. The one-sided p-values are the proportion of random shuffles with
greater clustering than that observed in the data.
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Extended Data Fig.10 | See next page for caption.
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Extended Data Fig. 10 | High depth targeted duplex sequencing. a, Mean
duplex coverage across targeted sites by individual and time point. The 36 month
sample from SCD6 failed. b, The driver mutation itself was directly detected for
four mutations (PPM1D p.R552%, SIK3 p.E531* EZH2 p.E649K and EZH2 p.N673I),
andinall cases, this wasin a post-GT sample. Here, we show the VAF of putative
driver mutations through time, as in Fig. 4c, but for the driver mutation only,
rather than the average across all mutations within the clone. Dots show the
exact VAF (number of variant reads divided by total coverage at that site) and
error bars show the 95% confidence interval (binomial test). ¢, The inferred time
of acquisition of the two driver mutations with the highest clone VAFs (EZH2
p.N6731and EZH2 p.649K mutations), compared to the time of gene therapy,

showing their likely acquisition prior to therapy. d, Heatmap of numbers of
driver mutations per gene by individual. e, Dot-plot showing the estimated fold
change of the fraction of cells harboring mutations in DNMT3A or EZH2. The dots
show the median posterior values and the error bars the 95% posterior interval as
estimated by Bayesian inference. Where error bars extend all the way to

the right of the plot, there is no upper bound of the posterior interval.

f, Burden of synonymous/ intronic mutations called in the duplex sequencing
data, displaying very different trajectories to those of the putative DNMT3A

and EZH2 driver mutations shown in Fig. 4. GT = Gene therapy. VAF = Variant allele
fraction.
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Peak calling parameters

Data quality

Software




Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.
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Methodology
Sample preparation For pre-GT samples, the starting cellular material was banked mobilised PB CD34- cells obtained from the Miltenyi
CliniMACS CD34 selection protocol used in the manufacturing of patient investigational medical products. Post-GT BM or
PB samples were collected as part of the clinical trial's patient monitoring program. These samples did not undergo a CD34
enrichment step.
Instrument Samples were sorted on either a BD FACSMelody or a BD FACSAria.
Software No analysis of FACS data is presented in this manuscript. Flowjo v10 was used to generate the gating strategy figure.

In pre-GT samples, CD3-CD19- myeloid cells were ~40% of live cells. In post-GT samples, CD15+ myeloid cells made up

Cell population abundance ~50% of live cells.

Gating strategy Gating strategies for both pre- and post-GT samples are shown in Figure S2. To summarize:

1.5SC-A vs FSC-A showing all events: gate on overall cell population (to exclude dead cells and debris)

2.5SC-W vs SSC.H and FSC-W vs. FSC-H showing cell population: gate on singlets (to exclude doublets)

3.For pre-GT: CD19 vs. CD3 showing singlets: gate on CD3-CD19- (myeloid cells). For post-GT: CD3 vs CD15 showing
singlets: gate on CD15+ (myeloid cells)

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type
Design specifications

Behavioral performance measures

Imaging type(s)
Field strength
Sequence & imaging parameters

Area of acquisition

Diffusion MRI D Used D Not used

Preprocessing

Preprocessing software
Normalization
Normalization template
Noise and artifact removal
Volume censoring

Statistical modeling & inference
Model type and settings

Effect(s) tested

Specify type of analysis: [ | whole brain || ROI-based  [_| Both



Statistic type for inference

(See Eklund et al. 2016)
Correction

Models & analysis

n/a | Involved in the study
|:| D Functional and/or effective connectivity

|:| D Graph analysis

|:| |:| Multivariate modeling or predictive analysis
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Multivariate modeling and predictive analysis
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