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Liquid biopsy epigenomic profiling for 
cancer subtyping
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Although circulating tumor DNA (ctDNA) assays are increasingly used to 
inform clinical decisions in cancer care, they have limited ability to identify 
the transcriptional programs that govern cancer phenotypes and their 
dynamic changes during the course of disease. To address these limitations, 
we developed a method for comprehensive epigenomic profiling of cancer 
from 1 ml of patient plasma. Using a n i mm un oprecipitation-based approach 
targeting histone modifications and DNA methylation, we measured 1,268 
epigenomic profiles in plasma from 433 individuals with one of 15 cancers. 
Our assay provided a robust proxy for transcriptional activity, allowing 
us to infer the expression levels of diagnostic markers and drug targets, 
measure the activity of therapeutically targetable transcription factors and 
detect epigenetic mechanisms of resistance. This proof-of-concept study in 
advanced cancers shows how plasma epigenomic profiling has the potential 
to unlock clinically actionable information that is currently accessible only 
via direct tissue sampling.

Circulating tumor DNA (ctDNA) analysis is gaining traction in clinical 
oncology as a minimally invasive means to detect targetable alterations 
and monitor cancer recurrence or persistence. Most clinical ctDNA 
assays focus on genomic alterations, limiting their ability to detect 
clinically important features of cancer that are measured from tumor 
tissues, such as histologic subtypes and expression of key genes. To 
overcome this limitation, recent efforts have focused on measuring 
epigenomic features from ctDNA (for example, DNA methylation1,2) or 
inferring epigenomic features from nucleosome positioning3–5 or DNA 
fragmentation patterns6. Most recently, profiling histone modifications 

from circulating nucleosomes has advanced the ability to measure gene 
regulation from plasma7,8. Histone modifications provide a dynamic 
readout of transcriptional programs and cellular states in cancer9.

Despite advances in epigenomic profiling, current approaches 
provide a limited view of gene regulation. To address this deficit, we 
developed an assay that measures multiple facets of gene regulation. 
Using an immunoprecipitation-based approach, our assay enriches 
DNA fragments from regulatory elements (REs) bearing specific epige-
netic marks. We used antibodies targeting methylated DNA, H3K4me3  
(a histone modification associated with promoter activity) and 
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with one of 15 types of advanced cancer or no cancer history. (Fig. 1b,  
Extended Data Fig. 1 and Supplementary Table 1). We identified 
pan-cancer-associated REs where signal correlated with ctDNA con-
tent across plasma samples representing 15 cancer types (Methods), 
which we termed ctDNA-correlated REs (CREs; Extended Data Fig. 2 
and Supplementary Table 2). Genes near CREs were highly enriched 
for functional annotations related to embryonic development and cell 
fate commitment (Fig. 1c), consistent with the hypothesis that cancer 
reactivates developmental regulatory programs11,12. Our CRE analysis 
implicated promoter activation of developmental transcription fac-
tors (TFs) (for example, FOXA1, SOX9 and SOX13) and protooncogenes 

H3K27ac/panH3ac, histone modifications that are present at active 
enhancers and promoters. This strategy provides a genome-wide assess-
ment of key regulators of gene expression: methylated DNA, active 
promoters and active (as opposed to poised7,10) enhancers (Fig. 1a).  
In this proof-of-concept study in cohorts of patients with advanced 
cancer, we demonstrate that the assay captures clinically relevant 
information, such as histologic subtypes, epigenetic correlates of 
treatment resistance and expression of predictive markers, that could 
potentially be used to guide therapy selection.

We measured 1,268 plasma-based epigenomic profiles, includ-
ing promoters, enhancers and CpG islands, from 433 individuals 

a b c

d

f DLL3 P = 1.9 × 10–7

Promoter-centric
Type

Cell-free epigenomic datasets

CREs with positive ctDNA correlation

Enhancer-centric
DNA methylation

Brea
st

Glio
ma

Hea
lth

y

Hep
ato

ce
llu

lar

Mela
noma

Merk
el 

ce
ll

NEP
C

NSCLC

Ova
ria

n

Post-
BMT

Prosta
te

Ren
al

SCLC

Th
ym

ic

Small
 ce

ll b
lad

der

Colorec
tal

Es
ophag

ea
l

0

500

200

10.0

12.5

15.0

17.5

100

0

1,000

1,500

−4 0 4

0

50

100

150

−4 0 4

H
3K

4m
e3

 s
ig

na
l

(a
rb

itr
ar

y 
un

its
)

Expression in WBC
(log2(TPM+1))

Expression in WBC
(log2(TPM+1))

M
eD

IP
 s

ig
na

l
(a

rb
itr

ar
y 

un
its

)

ρ = 0.95, P < 2.2 × 10–16 ρ = –0.16, P < 2.2 × 10–16 e
Prostate (PRAD)

Breast (ER+)

Colorectal

Melanoma

Prostate (NEPC)

Liver

Lung (SCC)

HER2 IHC

Thymic

Healthy

(0–6.50) (0–1.09) (0–5.81) (0–9.77) (0–5.06) (0–7.69) (0–2.02) (0–0.79) (0–1.89)

MALATI KLK3 ESR1 CDX2 S100A1 CHGA ALB TP63 CD5

Cancer with common
DLL3 expression

No

Yes

H
3K

4m
e3

 s
ig

na
l

(a
rb

itr
ar

y 
un

its
)

Negative

Positive

HER2

lo
g 2 (

H
3K

4m
e3

 s
ig

na
l +

 1)
(a

rb
itr

ar
y 

un
its

)

ERBB2 P = 3.4 × 10–6g h

H3K4me3 IP

Promoter activity

Enhancer activity

DNA methylation

Methyl-
CpG IP

H3K27ac or
PanH3Ac IP

H3K4me3 (n = 606)
Cell di�erentiation in spinal cord

Immune response

20.2

26.3
28.3

30.1
38.4
39.1

43.8

72.9
73.7
74.1

76
76
76.1
76.8
78

79.9
84.4

44.1
45

45 50 55 60 65 70 75 80 85

40

40

35

35

30

30

25

25

20

20

15

15

10

10

5

5

0

0

20.5
21

Myeloid leukocyte activation
Myeloid cell activation involved in immune response

Leukocyte degranulation
Leukocyte activation involved in immune response

Myeloid leukocyte mediated immunity
Cell activation

Cell activation involved in immune response
Granulocyte activation

Leukocyte activation

Neuron fate specification
Regulation of transcription involved in cell fate commitment

Cell fate commitment
Embryonic organ morphogenesis

Regionalization
Embryonic organ development

Pattern specification process

–log
10
(binomial P value)

–log
10

(binomial P value)

Cell fate specification
Anterior/posterior pattern specification

4

2

0

H3K27ac (n = 341)
PanH3ac (n = 79)
MeDIP (n = 321)
LP-WGS (n = 291)

CREs with negative ctDNA correlation

M
er

ke
l c

el
l

N
EP

C
M

el
an

om
a

SC
LC

Lu
ng

 (s
qu

am
ou

s)
Sm

al
l c

el
l b

la
dd

er
Re

na
l

O
va

ria
n

Th
ym

ic
C

ol
or

ec
ta

l
G

lio
m

a
Es

op
ha

ge
al

Br
ea

st
 (E

R+ )
Pr

os
ta

te
N

SC
LC

Lu
ng

 (a
de

no
ca

rc
in

om
a)

Br
ea

st

C
ol

or
ec

ta
l

Es
op

ha
ge

al

Br
ea

st
 (E

R– )
H

ep
at

oc
el

lu
la

r
H

ea
lth

y

Fig. 1 | Epigenomic profiling of plasma identifies clinically actionable cancer 
phenotypes. a, Overview of the method. The indicated epigenetic marks 
are isolated from plasma via immunoprecipitation (IP). DNA fragments from 
genomic regions bearing these marks are enriched and quantified via high-
throughput sequencing, providing a genome-wide assessment of promoter 
activity, enhancer activity and DNA methylation. b, Epigenomic datasets 
generated from plasma. post-BMT, post-bone marrow transplant. c, GO term 
enrichment for genes near REs that correlate with ctDNA content (CREs). The 
top 1,000 peaks by significance of correlation with ctDNA were combined for 
each data type (H3K4me3, H3K27ac, panH3ac and MeDIP) and jointly analyzed. 
d, Plasma signal from H3K4me3 (left) and DNA methylation (right) at gene 
promoters (y axis) in healthy donor plasma versus gene expression levels in 
white blood cells (WBCs; x axis). Each dot represents ~10 aggregated genes with 
similar WBC expression levels. e, Normalized H3K4me3 cfChIP-seq signal of 
diagnostic marker genes. Each row represents plasma from a patient with the 
indicated cancer or a healthy volunteer. Signal at each gene is scaled uniformly 

across plasma samples to allow for comparison. Promoter signal is shown in 
orange where gene expression is expected in the corresponding cancer type. 
f, Normalized H3K4me3 cfChIP-seq signal at the DLL3 promoter stratified by 
cancer type for n = 202 biologically independent samples. Orange indicates 
cancer types in which the indicated gene is commonly expressed. P value 
corresponds to Wilcoxon test between cancer types with and without common 
expression of DLL3. g, Normalized H3K4me3 cfChIP-seq signal at the ERBB2 
promoter for n = 30 biologically independent samples. Samples are stratified 
by HER2 expression per IHC staining of tumor tissue. P value corresponds to 
Wilcoxon test between HER2+ and HER2− cancers. h, IHC staining of HER2 from 
a brain metastasis from a patient with CRC (AMP-PL-0020-002). Scale bar, 
100 μm. For f and g, only plasma samples with estimated ctDNA content >0.05 
are included. For box plots, lower, middle and upper hinges indicate 25th, 50th 
and 75th percentiles; whiskers extend to 1.5× the interquartile ranges. All P values 
indicate two-sided tests.
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(for example, MYC, EZH2 and EGFR), as well as repressive promoter 
methylation of tumor suppressor genes (for example, APC and PTEN), 
demonstrating that these genes can be dysregulated in cancer via epi-
genetic changes (Extended Data Fig. 2). CREs that negatively correlated 
with ctDNA were enriched for terms relating to immune function, 
likely reflecting RE activity from hematopoietic cells (Fig. 1c). These 

results indicate the biological relevance of cancer-derived epigenomic 
profiles from plasma.

Our assay provides a proxy for cancer gene expression from 
plasma. Plasma H3K4me3 signal correlated with gene expression 
levels measured in cells (Fig. 1d) and expression of diagnostic and 
predictive biomarkers in cancer. Promoter signal at lineage-enriched 
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Fig. 2 | Plasma enhancer profiling enables detection of NE-diff across multiple 
cancers. a, Schematic demonstrating the measurement of enhancer activity 
at REs or TFBSs based on H3K27ac cfChIP-seq signal. b, Aggregate H3K27ac 
cfChIP-seq signal at REs identified by ATAC-seq in prostate tumor tissue14. Signal 
in prostate cancer plasma and healthy plasma are colored orange and gray, 
respectively. Dark lines show the mean signal across all samples in the indicated 
class. For comparison, signal at ‘common’ REs is shown, which include 10,000 
REs with DNAse hypersensitivity across most or all cell types20 (Methods). See 
also Extended Data Fig. 6. c, Normalized H3K4me3 cfChIP-seq signal in breast 
cancer patient plasma at the ESR1 gene promoter (n = 19 biologically independent 
samples). Dark lines indicate the mean signal across all samples in a class (ER+ or 
ER−). Box plots show AUC for cfChIP profiles. Wilcoxon test P values are indicated 
for comparison of ER+ versus ER− breast cancer. d, H3K27ac cfChIP-seq signal 
in breast cancer patient plasma (n = 17 biologically independent samples) at 
REs with preferentially accessible chromatin in ER+ breast cancer4. Signal is 
aggregated across 27,840 REs for each sample. Dark lines indicate the mean signal 

across all samples in a class (ER+ or ER−). Box plots show AUC for the aggregate 
H3K27ac cfChIP profile for each sample. Wilcoxon test P values are indicated for 
comparison of ER+ versus ER− breast cancer. e, H3K27ac cfChIP-seq signal at the 
AR gene enhancer in patients with castration-resistant prostate cancer. Plasma 
from patients with metastatic breast cancer is included as a control. f, Aggregated 
H3K27ac cfChIP-seq signal at ASCL1 binding sites for prostate cancer with and 
without NE-diff (NEPC and PRAD, respectively; n = 33 biologically independent 
samples). Box plots indicate AUC for the aggregate H3K27ac profile for each 
sample. Wilcoxon test P values are indicated for comparison of NEPC versus 
PRAD. g, ROC curves for distinguishing samples with NE-diff using H3K27ac 
cfChIP-seq signal at neuroendocrine REs. ‘AUC’ indicates area under the ROC 
curve for each comparison. For a–c, only plasma samples with estimated ctDNA 
content >0.03 are included. For all box plots, lower, middle and upper hinges 
indicate 25th, 50th, and 75th percentiles; whiskers extend to 1.5× the interquartile 
ranges. All P values indicate two-sided tests. NE, neuroendocrine; PRAD, prostate 
adenocarcinoma.
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genes distinguished cancer types (Extended Data Fig. 3) and reflected 
patterns of protein expression observed in tissues by immunohis-
tochemistry (IHC; Fig. 1e and Extended Data Fig. 4). For instance, 
H3K4me3 signal was enriched at the diagnostic genes CHGA, CDX2 and 
KRT7 in plasma from patients with neuroendocrine cancers, gastro-
intestinal cancers and colorectal cancer (CRC) or Merkel cell cancer, 
respectively (Extended Data Fig. 4). KLK3, which encodes the prostate 
cancer biomarker PSA, demonstrated elevated signal in prostate 
cancer plasma (P = 2.3 × 10−15; Extended Data Fig. 5) that correlated 
with serum PSA measurements (Pearson correlation coefficient 0.77, 
P = 1.1 × 10−5). KLK3 signal did not correlate with tumor DNA fraction 
(Extended Data Fig. 5). This result indicates that our assay reflects 
variability in promoter activity at the KLK3 locus rather than solely 
reflecting levels of ctDNA.

Notably, this assay measured promoter activity of genes encoding 
drug targets, such as ERBB2, ERBB3, NECTIN4 and DLL3 (Fig. 1f,g and 
Extended Data Fig. 4). For instance, a plasma sample from a patient with 
CRC demonstrated elevated signal at the ERBB2 promoter, suggest-
ing expression of human epidermal growth factor receptor 2 (HER2), 
which was confirmed subsequently by IHC of a brain metastasis biopsy  
(Fig. 1h). HER2 is a validated target in CRC but is not consistently 
assessed owing to its low prevalence (~3%) (ref. 13), a challenge that 
could be overcome by a blood-based assay.

The ability to assess enhancer activity from plasma with H3K27ac 
provided distinct, clinically actionable insights into gene regulation 
compared with promoter profiling. Enhancer profiling from cancer 
plasma captured the activity of cancer REs that were defined inde-
pendently in tumors using assay for transposase-accessible chro-
matin with sequencing (ATAC-seq)14 (Fig. 2a,b and Extended Data  
Fig. 6). Enhancer CREs were enriched for overlap with the binding sites 
of TFs that are protooncogenes, such as MYC, ER, EZH2, SUZ12 and 
BRD4 (Extended Data Fig. 7). Enhancer profiling from plasma allowed 
us to infer activity of therapeutically targetable TFs from plasma, 
including estrogen receptor (ER) in breast cancer plasma, androgen 
receptor (AR) in prostate cancer and HIF2α in renal cell carcinoma 
(RCC) (Extended Data Fig. 8). This functional readout of TF activity 
represents an advance from previous ctDNA assays and provides 
orthogonal information to TF gene promoter H3K4me3 levels. For 
example, the ESR1 gene (encoding ER) is bivalently marked (H3K4me3+ 
and H3K27me3+) in ER− breast cancer15. Accordingly, H3K4me3 at the 
ESR1 promoter distinguished ER status only modestly compared to 
H3K27ac signal at a set of 27,840 REs that are activated in ER+ breast 
cancer4 (Fig. 2c,d).

Enhancer profiling from plasma identified epigenetic drivers 
of treatment resistance. For instance, H3K27ac cell-free chromatin 
immunoprecipitation (cfChIP) detected activation of an enhancer 
of the AR gene that drives castration resistance in prostate cancer16 
(Fig. 2e). Activation of the AR enhancer was not detectable from DNA 
methylation, because this locus is hypomethylated in benign and 
cancerous prostate tissue16, highlighting the utility of active enhancer 
profiling. Additionally, in plasma from patients with treatment-induced 
neuroendocrine differentiation (NE-diff) of prostate cancer, H3K27ac 
signal was elevated at binding sites for ASCL1 (a master TF driving 
NE-diff) and at NE-specific binding sites of FOXA1 (ref. 17) (Fig. 2f and 
Extended Data Fig. 9). Notably, genetically based assays are unable to 
detect this histologic transformation.

NE-diff is increasingly recognized as a mechanism of acquired 
resistance to targeted therapies in many cancers. Detection of NE-diff 
is clinically important because high-grade neuroendocrine tumors 
often respond to platinum-based chemotherapy, but spatial hetero-
geneity and sampling error make the pathologic diagnosis challeng-
ing. Therefore, we created a multi-cancer classifier of NE-diff from 
plasma, leveraging previous work that identified a common set of REs 
in neuroendocrine tumors across varying tissues of origin18. Aggregat-
ing plasma H3K27ac signal across neuroendocrine REs (n = 16,451) 

distinguished cancers with and without NE-diff (n = 22 and 42, respec-
tively; area under the curve (AUC) = 0.94; Fig. 2g and Extended Data  
Fig. 10). Notably, this classifier was trained from published REs meas-
ured in cancer tissues, supporting its biological plausibility, and identi-
fied NE-diff in plasma from patients with prostate, lung, bladder and 
Merkel cell cancers.

Together, these results demonstrate that measuring gene regula-
tion from patient plasma can identify clinically relevant disease phe-
notypes. This proof-of-concept study focused on metastatic cancer; 
further studies are needed to assess the utility of this approach in large 
prospective cohorts as well as its performance in early-stage disease 
and non-oncologic conditions. Another limitation of this approach is 
that it does not capture the spatial distribution of cell types and gene 
expression that can be assessed with tissue biopsy.

Because this assay requires only 1 ml of plasma from standard 
clinical collection tubes, it can be applied retrospectively to banked 
samples with clinical annotations, where sample volumes are often 
limiting. Because histone modifications are deposited and removed 
dynamically, they provide a real-time readout of gene regulation to 
complement DNA methylation, which tends to reflect cellular line-
age19. This attribute should enable the in vivo study of acquired therapy 
resistance driven by epigenetic changes and allow longitudinal assess-
ment of therapeutic targets whose expression changes with disease 
progression.
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Methods
Study oversight and sample acquisition
This research complies with all relevant ethical regulations. Plasma 
samples were collected from various patient cohorts for this study 
as listed in Supplementary Table 1. Informed content was obtained 
in each case, and samples were de-identified. Plasma samples from 
the Dana-Farber Cancer Institute were collected under the follow-
ing protocols approved by the Dana-Farber/Harvard Cancer Center  
(DF/HCC): 17-324 for patients with triple-negative breast cancer, 16-588 
for patients with metastatic hormone receptor-positive breast cancer, 
14-147 for patients with non-small cell lung cancer (NSCLC), 02-180 
for patients with small cell lung cancer (SCLC), 05-042 for patients 
with melanoma, 10-417 for patients with glioma, 01-045 for patients 
with neuroendocrine prostate cancer (NEPC), 03-189 for patients with 
colorectal and esophageal cancers and 09-156 for patients with Merkel 
cell carcinoma. Patients had metastatic cancer unless otherwise noted.

Plasma samples from patients treated at the National Cancer Insti-
tute were collected under the following clinical trial protocols: hepa-
tocellular carcinoma (11-C-0102), CRC (12-C-0187, 15-C-0021), ovarian 
cancer (12-C-0191), lung cancer (05-C-0049, 08-C-0078), prostate 
cancer (08-C-0074, 10-C-0062), RCC (02-C-0130) and thymic cancer 
(08-C-0033, 10-C-0077). All patients gave written informed consent 
in accordance with federal, state and institutional guidelines. The 
studies were conducted according to the Declaration of Helsinki and 
were approved by the National Cancer Institute Central Institutional 
Review Board (IRB).

Plasma samples from healthy individuals without a history of dia-
betes, cancer or major medical illnesses were obtained from the Mass 
General Brigham Biobank. Written informed consent was obtained 
from all healthy donors, and sample collection was approved by the 
Brigham and Women’s Hospital IRB (2009P002312), following ethical 
regulations.

Individual-level data, including sex and patient age, were not  
collected, except for PSA levels for patients with prostate cancer. Sex 
and/or gender were not considered in the study design.

Blood samples were collected in the tubes containing K2 EDTA (BD 
Biosciences, 366643), and plasma extraction was performed within 
1–6 h of the blood draw. Whole blood was centrifuged for 10 min at 
1,500g and 4 °C. Supernatant was transferred to a new conical tube and 
subjected to another centrifugation (for 10 min at 1,500g and 4 °C). 
After adding protease inhibitor (Roche, 11873580001), the extracted 
plasma was aliquoted, flash frozen and stored at −80 °C until use.

cfChIP-seq assay
Next, 1 μg of antibody was coupled with 10 μl of protein A (Invitrogen, 
10002D) and 10 μl of protein G (Invitrogen, 10004D) for at least 6 h at 
4 °C with rotation in 0.5% BSA ( Jackson Immunology, 001-000-161) in 
PBS (Gibco, 14190250), followed by blocking with 1% BSA in PBS for 1 h 
at 4 °C with rotation. The following antibodies were used, all at a dilu-
tion of 1 μg per 900 μl: H3K4me3, Thermo Fisher Scientific, PA5-27029; 
H3K27ac, Abcam, ab4729; and panAc, Active Motif, 39139.

Thawed plasma was centrifuged at 3,000g for 15 min at 4 °C. The 
supernatant was pre-cleared with the magnetic beads with 20 μl of 
protein A and 20 μl of protein G for 2 h at 4 °C. Then, the pre-cleared 
and conditioned plasma was subjected to antibody-coupled mag-
netic beads overnight with rotation at 4 °C. The reclaimed magnetic 
beads were washed with 1 ml of each washing buffer twice. Three wash-
ing buffers were used in the following order: low-salt washing buffer 
(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl,  
pH 7.5), high-salt washing buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 
500 mM NaCl, 20 mM Tris-HCl, pH 7.5) and LiCl washing buffer (250 mM 
LiCl, 1% NP-40, 1% Na deoxycholate, 1 mM EDTA, 10 mM Tris-HCl, pH 7.5). 
Subsequently, the beads were rinsed with TE buffer (Thermo Fisher 
Scientific, BP2473500) and resuspended and incubated in 100 μl of 
DNA extraction buffer containing 0.1 M NaHCO3, 1% SDS and 0.6 mg ml−1 

Proteinase K (Qiagen, 19131) and 0.4 mg ml−1 RNaseA (Thermo Fisher 
Scientific, 12091021) for 10 min at 37 °C, for 1 h at 50 °C and for 90 min 
at 65 °C. DNA was purified through phenol extraction (Invitrogen, 
15593031), and ethanol precipitation was performed with 3 M NaOAc 
(Ambion, AM9740) and glycogen (Ambion, AM9510). cfChIP-seq librar-
ies were prepared with ThruPLEX DNA-Seq Kit (Takara Bio, R400675) 
following the manufacturer’s instructions. After library amplification, 
the DNA was purified by AMPure XP (Beckman Coulter, A63880). The 
size distribution of the purified libraries was examined using Agilent 
2100 Bioanalyzer with a high-sensitivity DNA Chip (Agilent, 5067-4626). 
The library was submitted for 150-bp paired-end sequencing on an 
Illumina NovaSeq 6000 system (Novogene).

Low-pass whole-genome sequencing
cfDNA was extracted from plasma supernatant after cfChIP by QIAmp 
Circulating Nucleic Acid Kit (Qiagen, 55114) following the manu-
facturer’s instructions, and its concentration was measured with a 
Qubit fluorometer. Ninety percent of the extracted cfDNA was used 
for the subsequent Cell-free methylated DNA immunoprecipitation 
(cfMeDIP) library preparation (see below), and the remaining 10% of 
cfDNA was used for the library preparation by KAPA Hyper Prep Kit 
(Kapa Biosystems, KK8500) according to the manufacturer’s protocol. 
The final amplification cycle number was determined by additional 
qPCR using KAPA SYBR FAST qPCR Kits (Kapa Biosystems, KK4600). 
The library DNA profile was investigated using a TapeStation system 
and sequenced on an lllumina NovaSeq 6000 system with 150-bp 
paired-end sequencing (Novogene).

cfMeDIP and high-throughput sequencing assay
cfMeDIP and high-throughput sequencing (cfMeDIP-seq) was per-
formed as described2. In brief, cfDNA libraries were prepared using 
the KAPA HyperPrep Kit (Kapa Biosystems) according to the manu-
facturer’s protocol. We performed end-repair, A-tailing and ligation 
of NEBNext adaptors (NEBNext Multiplex Oligos for Illumina kit, New 
England Biolabs (NEB), E7645L). Libraries were digested using the USER 
enzyme (NEB, M5505S). λ DNA, consisting of unmethylated and in vitro 
methylated DNA, was added to prepared libraries to achieve a total 
amount of 100 ng of DNA. Methylated and unmethylated Arabidopsis 
thaliana DNA (Diagenode, C02040019) was added for quality control. 
DNA was heat denatured at 95 °C for 10 min and then immediately snap 
cooled on ice for 10 min. Then, 5-mC antibody from the MagMeDIP Kit 
(Diagenode, C02010021) was subjected to each sample following the 
manufacturer’s protocol at a dilution of 1:100. Samples were purified 
using the iPure Kit v2 (Diagenode, C03010015). Immunoprecipitation 
quality was confirmed using qPCR to measure recovery of the spiked-in 
Arabidopsis thaliana methylated versus unmethylated DNA. The DNA 
libraries were assessed for quality using a TapeStation system (Agilent 
Technologies) and sequenced on an lllumina NovaSeq 6000 system 
with 150-bp paired-end sequencing (Novogene).

Sequence data processing
cfChIP-seq/cfMeDIP-seq reads were aligned to the hg19 human 
genome build using Burrows–Wheeler Aligner version 0.7.1740. 
Non-uniquely mapping and redundant reads were discarded. MACS 
version 2.1.1.2014061641 was used for ChIP-seq peak calling with a  
q value (false discovery rate (FDR)) threshold of 0.01. Fragment loca-
tions were converted to BED files using BEDTools (version 2.29.2) bam-
tobed with the -bedpe flag set. For analyses involving overlap with 
genomic regions, fragments were imported as GRanges objects and 
collapsed to 1 bp at the center of the fragment location to ensure that 
a fragment can map to only one site.

ChIP-seq data quality was evaluated by several measures, including 
the number of total unique fragments and total peaks. The distribu-
tion of fragment sizes was assessed to verify the expected bi-modal or 
tri-modal distribution characteristic of cfDNA.
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To assess immunoprecipitation specificity, we calculated an 
on-target to off-target enrichment ratio. The enrichment ratio was 
calculated separately for promoter (H3K4me3) and promoter/enhancer 
(H3K27ac/panH3Ac) marks and reflects the density of fragments map-
ping to sites that are marked in most cell types (on-target sites) com-
pared to sites that are not marked in any cell type (off-target sites). 
On-target sites were identified from the 18-state chromHMM maps 
generated by EpiMap (https://egg2.wustl.edu/roadmap/web_portal/
chr_state_learning.html#exp_18state; accessed on 4 October 2021). 
For H3K27ac/panH3Ac on-target sites, we selected 200-bp windows 
with any of the following ‘active’ chromatin states in more than 50% of 
tissues in EpiMap: 1_TssA, 3_TssFlnkU, 8_EnhG2 and 9_EnhA1. On-target 
sites for H3K4me3 were selected similarly but using the following chro-
matin states: 1_TssA, 2_TssFlnk, 3_TssFlnkU, 4_TssFlnkD, 8_EnhG2 and 
14_TssBiv. Off-target sites were defined as 200-bp windows that lacked 
the on-target annotations in all of 129 samples used to generate chro-
matin state maps in EpiMap. On-target and off-target windows were 
merged and retained if the merged windows spanned 1,000 bp or more. 
Off-target regions within 10,000 bp of on-target regions were excluded.

Unless otherwise specified, we included samples in downstream 
analysis if the on-target to off-target enrichment ratio was >10 and 
the product of the unique fragment number and enrichment ratio 
was >4 × 107.

Identification of CREs
CREs were identified where cfChIP-seq or cfMeDIP-seq signal cor-
related with low-pass whole-genome sequencing (LP-WGS)-based 
ctDNA estimates. We identified CREs separately for each data type 
(H3K4me3, H3K27ac, pan-H3ac and MeDIP) and for each cancer type 
where there were ≥5 samples with ctDNA estimates >0.03. We excluded 
samples with ichorCNA estimates ≤0.03, because the algorithm is 
benchmarked down to this ctDNA content21. For each analysis, peaks 
from all samples were merged to generate a union set of peaks. Unique 
fragments overlapping each peak were counted to form a count matrix 
with peaks versus samples. Counts were normalized to the summed 
counts across common REs that are expected to be active across most 
tissue types. These common REs were defined as the 10,000 sites with 
DNAse hypersensitivity across the largest number of samples in ref. 20. 
At each site, the Spearman correlation was tested between normalized 
signal and ctDNA content. We reported the top 1,000 sites by signifi-
cance for each analysis as well as all CREs with FDR-adjusted q < 0.05.

CREs were assessed for overlap with gene features and CpG islands 
using annotatr and ChIPSeeker22. Normalized cfChIP-seq read counts 
at specific genomic loci were visualized with IGV version 2.8.243. The 
GREAT tool48 (version 3.0) was used to assess for enrichment of Gene 
Ontology (GO) and Molecular Signatures Database perturbation 
annotations among genes near CREs. The cistromedb toolkit (http://
dbtoolkit.cistrome.org/) was used to compare H3K27ac CREs with 
peaks from a large database of uniformly analyzed published ChIP-seq 
data (quantified as a ‘GIGGLE score’)23. Published TFs and histone 
modification ChIP-seq datasets were ranked by similarity to the querry 
cfChIP-seq dataset based on the top 1,000 peaks by enrichment in each 
published dataset. Before cistromedb toolkit analysis, ChIP-seq peaks 
were mapped from hg19 to hg38 using the UCSC liftover tool (https://
genome.ucsc.edu/cgi-bin/hgLiftOver).

ctDNA estimation
ctDNA estimates were obtained from LP-WGS data using ichorCNA21 with 
default settings. For samples that lacked LP-WGS, we used signal at CREs 
to estimate ctDNA content. We fit a linear model to predict LP-WGS-based 
tumor fraction estimates (T) given the signal at CREs that were negatively 
and positively correlated at CRE (Cpos and Cneg, respectively):

T + 0.01
1 − (T + 0.01) ∼ log2

Cpos

Cneg

Where possible, we used CREs identified on a given cancer type to 
estimate ctDNA in samples of that type. In cases where there were 
too few samples to estimate cancer-type specific CREs, we used CREs 
identified using all cancer types. Estimates were scaled such that the 
mean estimate for healthy plasma, which was not used for CRE identifi-
cation, was 0. In cases with LP-WGS-based ctDNA estimates, we report 
these rather than CRE-based estimates. Supplementary Table 1 lists the 
source of ctDNA estimates for each sample.

Assessment of gene promoter activity based on H3K4me3
To estimate gene promoter activity, we quantified H3K4me3 near 
promoters. First, we merged all H3K4me3 cfChIP-seq peak calls into 
a single GRanges object and reduced them to non-overlapping inter-
vals using the reduce() function. We removed peaks in high-noise 
regions (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/
hg19-blacklist.v2.bed.gz). For each peak, we normalized H3K4me3 
fragment counts to the aggregate counts in a given sample across a set 
of 10,000 regions with DNAse hypersensitivity across most cell types20, 
as described above. We assigned peaks to genes based on proximity to 
transcriptional start sites in the annotation package TxDb.Hsapiens.
UCSC.hg19.knownGene.

The genes highlighted in this manuscript were curated based 
on their clinical use in IHC for identifying cancer types or predictive 
markers. To assess whether our estimation of promoter signal was 
applicable beyond this set of genes, we also took a systematic approach 
for selecting genes in the classifier described below.

Cancer classification based on promoter signal
Logistic regression with ℓ2-norm regularization was used to train 
biologically grounded and robust classifiers based on promoter 
H3K4me3 at lineage-enriched genes from the Human Protein Atlas 
(HPA)24 using scikit-learn25. The classifier considered 12,664 genes 
that were annotated as ‘tissue enriched’ or ‘tissue enhanced’ as well 
as ‘Not detected in immune cells’ in the HPA database. We employed 
a tenfold cross-validation technique to assess the performance of 
the predictive models. Within each fold, we fine-tuned the model’s 
hyperparameters using a threefold cross-validation approach, spe-
cifically on the training samples. Our objective was to optimize the 
algorithm parameters to maximize the AUC. To measure the model’s 
performance, we exclusively used the test samples and reported 
the average AUC values over the ten folds. We classified all cancer 
plasma samples versus healthy samples and classified cancer type 
for the three most abundant types in our cohort (prostate, lung and 
colorectal cancer).

Enhancer signal quantification at transcription factor binding 
sites
We inferred RE activity at transcription factor binding sites (TFBSs) 
based on H3K27ac at these sites. This approach builds upon previ-
ous work that measured signals of nucleosome depletion in cfDNA at 
phenotype-defining REs4,5. Samples were included in this analysis only 
if they had >4 × 106 unique fragments and, except for healthy volunteer 
plasma, estimated ctDNA content >0.03. We first filtered out sites with 
peaks present in plasma types that were not considered for a given 
analysis and that had zero estimated ctDNA content, to exclude sites 
with high background signal from nucleosomes that do not originate 
from cancer. MACS2 peak calls for TFBS were obtained, filtered to 
remove sites of width >4 kb and then resized to a 3-kb interval centered 
on the original peak. Peaks were separated into 40-bp windows, and 
fragment counts were aggregated across a given window for all peaks 
to obtain aggregate profiles for a sample. We performed two normaliza-
tion steps. First, to account for variation in background signal across 
samples, we performed a ‘shoulder normalization’ step. We considered 
the region between [−3,000, −2,800] bp and [2,800, 3000] bp around 
the center of each TFBS and aggregated counts at these sites for each 
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sample. This value was subtracted from the aggregate counts to set the 
‘shoulder’ of peaks to zero. Second, we normalized signal in each bin to 
the aggregated signal at the common 10,000 DNAse hypersensitivity 
sites as described above.

Correlation of cfChIP signal with expression
We measured correlation of promoter H3K4me3 cfChIP-seq signal in 
a representative healthy volunteer plasma sample (HP030642) with 
RNA sequencing (RNA-seq)-based gene expression measurements. For 
gene expression, we used transcripts per million (TPM) annotations 
for whole blood from GTEx, because most nucleosomes in healthy 
individuals derive form hematopoietic cells. To aggregate signal across 
multiple genes, we first ranked all genes by expression in whole blood 
and then created metagenes containing promoter cfChIP-seq signal 
from approximately 10 genes of similar expression levels. Signal was 
measured as fragment counts between 500 bp upstream and 1,500 bp 
downstream of the gene transcriptional start site. This analysis was also 
performed using cfMeDIP-seq from the same individual for comparison 
with H3K4me3.

Detection of NE-diff
We classified samples by the activity of REs associated with NE-diff, 
as assessed by H3K27ac cfChIP-seq signal at these REs. Our feature 
set was a group of 16,098 sites with chromatin accessibility that is 
consistently higher in neuroendocrine tumors of multiple lineages 
compared to adenocarcinomas18. These sites were obtained from the 
original set of 16,571 sites by filtering out sites with peaks present in 
healthy volunteer H3K27ac cfChIP-seq profiles. We measured H3K27ac 
cfChIP-seq signal at these sites as described above for ‘enhancer signal 
quantification of TFBS’. The aggregated and normalized signal at these 
sites was used as an input to the classifier. Classifier performance was 
assessed by measuring the area under the receiver operating charac-
teristic (ROC) curve.

Detection of Merkel cell polyomavirus DNA
Reads that failed initial alignment (unmapped reads) were mapped 
to an hg19 assembly that contained viral sequences26. The resulting 
alignment files were then filtered where only properly paired reads 
with high mapping quality (mapq ≥30) and a minimal number of mis-
matches ((NM) ≤1) were kept, and duplicate reads were removed. Viral 
read counts were then quantified using BEDTools multicov27, and TPM 
was calculated.

Statistics and reproducibility
Sample sizes were determined by sample availability. No statistical 
method was used to predetermine sample size, but numbers of sam-
ples exceeded those in previous studies1–8. All data generated for this 
study are included and reported here. For most analyses, we imposed 
quality cutoffs based on unique fragment counts and enrichment. 
Unless otherwise specified, we included samples in downstream analy-
ses if the on-target to off-target fragment enrichment ratio was >10 
and the product of the unique fragment number and enrichment ratio 
was >4 × 107. The experiments were not randomized. The investiga-
tors were not blinded to allocation during experiments and outcome 
assessment.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
BED files containing genomic alignments of all sequenced fragments 
as well as ChIP-seq peak locations are available through GEO under 
accession number GSE243474. Due to privacy restrictions regarding 
genomic data, raw sequencing data can be shared upon reasonable 

request under a data use agreement. Requests should be directed to 
the corresponding author at freedman@broadinstitute.org and should 
receive a response within 2 weeks.
The following public datasets were used: DNAse hypersensitivity sites 
(https://zenodo.org/record/3838751/files/DHS_Index_and_Vocabu-
lary_hg19_WM20190703.txt.gz), TCGA ATAC-seq peak calls (https://
api.gdc.cancer.gov/data/116ebba2-d284-485b-9121-faf73ce0a4ec; 
lifted over to hg19 from hg38), Human Protein Atlas database annota-
tions (https://www.proteinatlas.org/download/proteinatlas.tsv.zip) 
and Encode list of high-noise regions for exclusion from ChIP-seq 
analysis (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/
hg19-blacklist.v2.bed.gz).

Code availability
Scripts to reproduce analyses from this study are available at https://
github.com/Baca-Lab/cfchip_manuscript.
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Extended Data Fig. 1 | Genomic features overlapping cfChIP-seq and cfMeDIP-seq peaks. (a) Overlaps for the top 1,000 ctDNA-correlated regulatory elements 
(CREs) by significance are plotted for each assay type. (b) Overlap of the top 1,000 cfMeDIP-seq CREs with CpG islands, shores, and shelves. Random regions matched 
for chromosome and size are shown for comparison.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | Examples of positive and negative ctDNA-correlated regulatory elements (CREs). Normalized read counts from epigenomic features 
correlate with ctDNA fraction at CREs. Spearman correlation coefficients and two-sided p-values are indicated.

http://www.nature.com/naturemedicine
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Extended Data Fig. 3 | Classification of cancer plasma based on H3K4me3 
cfChIP-seq profiles. (a) Receiver operating characteristic (ROC) curves for 
logistic regression-based classification of cancer plasma vs. healthy plasma, 
using as features the promoter H3K4me3 signal at a set of tissue-specific genes 
defined in the Human Protein Atlas (HPA) database24 (Methods). The classifier 

considered genes that were annotated as ‘tissue enriched’ or ‘tissue enhanced’ 
as well as ‘Not detected in immune cells’ in the HPA database. AUC, area under 
the curve. (b) ROC curves for classification of three cancer types with the most 
examples in the cohort.

http://www.nature.com/naturemedicine
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Extended Data Fig. 4 | H3K4me3 cfChIP-seq signal at promoters of selected 
genes of interest. Promoter H3K4me3 signal is shown at selected genes across 
N = 202 biologically independent plasma samples stratified by cancer type. 
Orange indicates cancer types in which the indicated gene is expected to be 
expressed. Wilcoxon two-sided p-values are indicated for comparison of samples 

in which expression is expected versus all other samples. For NECTIN4 and ERBB3, 
signal is compared between healthy volunteer plasma and cancer patient plasma 
because these genes are expressed across various cancer types. Signal at GAPDH 
is shown as a control. Lower, middle, and upper hinges indicate 25th, 50th, and 75th 
percentiles; whiskers extend to 1.5 x the inter-quartile ranges (IQR).

http://www.nature.com/naturemedicine
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Extended Data Fig. 5 | Correlation of serum PSA with H3K4me3 cfChIP-seq signal at KLK3. Correlation of serum PSA with ctDNA content is shown as a comparison. 
Pearson two-sided p-values are indicated.

http://www.nature.com/naturemedicine
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Extended Data Fig. 6 | Aggregate H3K27ac cfChIP signal at regulatory 
elements identified by ATAC-seq in tumor tissue. Signal in cancer plasma 
(orange) and healthy plasma (gray) is compared at regulatory elements in the 
corresponding cancer type defined by ATAC-seq in TCGA tumors14. Dark lines 
show the mean signal across all samples in the indicated class. For comparison, 
signal at ‘common’ REs is shown, which include 10,000 regulatory elements 

with DNAse hypersensitivity across most or all cell types20 (Methods). Boxplots 
indicate area under the curve for the aggregate H3K27ac profile for each sample. 
Lower, middle, and upper hinges indicate 25th, 50th, and 75th percentiles; whiskers 
extend to 1.5 x the inter-quartile ranges (IQR). Wilcoxon test two-sided p-values 
are indicated for comparison of healthy vs cancer samples.

http://www.nature.com/naturemedicine
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Extended Data Fig. 7 | Transcription factor binding sites overlapping H3K27ac CREs. Overlap of the top 1,000 H3K27ac ctDNA correlated regions (CREs) with TF 
binding sites (TFBS) in cistromedb28. Giggle scores quantify the degree of overlap between CREs and TFBS as described23,28.

http://www.nature.com/naturemedicine
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Extended Data Fig. 8 | Aggregate H3K27ac cfChIP-seq signal at HIF2α binding 
sites in renal cell carcinoma (RCC) and at AR binding sites in prostate cancer. 
Healthy volunteer samples are shown for comparison. Boxplots indicate area 
under the curve for the aggregate H3K27ac profile for each sample. Lower, 

middle, and upper hinges indicate 25th, 50th, and 75th percentiles; whiskers extend 
to 1.5 x the inter-quartile ranges (IQR). Wilcoxon test two-sided p-values are 
indicated for comparison of healthy vs cancer samples.

http://www.nature.com/naturemedicine
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Extended Data Fig. 9 | H3K27ac cfChIP-seq distinguishes prostate cancer 
subtype-specific FOXA1 binding sites. (a) H3K4me3 cfChIP-seq signal at 
the FOXA1 promoter in prostate adenocarcinoma (PRAD) vs. neuroendocrine 
prostate cancer (NEPC) for N = 25 biologically independent samples. (b) 
Aggregate H3K27ac cfChIP signal at Boxplots indicate aggregate signal at the 
indicated sites for the indicated epigenetic features for N = 29 biologically 
independent samples. NEPC-FOXA1 and PRAD-FOXA1 indicate FOXA1 binding 
sites that are preferentially bound in neuroendocrine prostate cancer (NEPC) 

compared to prostate adenocarcinoma (PRAD), as described previously17. 
Aggregate signal at differential FOXA1 binding sites for each sample is 
normalized to signal at shared FOXA1 binding sites that are common to NEPC and 
PRAD. Wilcoxon test two-sided p-values are indicated. Boxplots indicate area 
under the curve for the aggregate cfChIP-seq profile for each sample. Lower, 
middle, and upper hinges indicate 25th, 50th, and 75th percentiles; whiskers extend 
to 1.5 x the inter-quartile ranges (IQR).

http://www.nature.com/naturemedicine
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Extended Data Fig. 10 | Aggregate H3K27ac cfChIP signal at neuroendocrine-
enriched regulatory elements. Dark lines show the mean signal across all 
samples in the indicated class. ‘NE’ indicates samples with neuroendocrine 
differentiation (SCLC, NEPC, or Merkel cell carcinoma). Wilcoxon test two-sided 

p-value is indicated. Boxplots indicate area under the curve for the aggregate 
cfChIP-seq profile for each sample. Lower, middle, and upper hinges indicate 25th, 
50th, and 75th percentiles; whiskers extend to 1.5 x the inter-quartile ranges (IQR).

http://www.nature.com/naturemedicine
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