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Although circulating tumor DNA (ctDNA) assays are increasingly used to
inform clinical decisionsin cancer care, they have limited ability to identify
the transcriptional programs that govern cancer phenotypes and their
dynamic changes during the course of disease. To address these limitations,
we developed a method for comprehensive epigenomic profiling of cancer
from 1 mlof patient plasma. Using animmunoprecipitation-based approach
targeting histone modifications and DNA methylation, we measured 1,268
epigenomic profilesin plasmafrom 433 individuals with one of 15 cancers.
Our assay provided a robust proxy for transcriptional activity, allowing

us to infer the expression levels of diagnostic markers and drug targets,
measure the activity of therapeutically targetable transcription factors and
detect epigenetic mechanisms of resistance. This proof-of-concept study in
advanced cancers shows how plasma epigenomic profiling has the potential
to unlock clinically actionable information that is currently accessible only
viadirect tissue sampling.

Circulating tumor DNA (ctDNA) analysis is gaining traction in clinical
oncology asaminimally invasive means to detect targetable alterations
and monitor cancer recurrence or persistence. Most clinical ctDNA
assays focus on genomic alterations, limiting their ability to detect
clinicallyimportant features of cancer that are measured from tumor
tissues, such as histologic subtypes and expression of key genes. To
overcome this limitation, recent efforts have focused on measuring
epigenomic features from ctDNA (for example, DNA methylation'?) or
inferring epigenomic features from nucleosome positioning®= or DNA
fragmentation patterns®. Most recently, profiling histone modifications

from circulating nucleosomes has advanced the ability to measure gene
regulation from plasma’®. Histone modifications provide a dynamic
readout of transcriptional programs and cellular states in cancer’.
Despite advances in epigenomic profiling, current approaches
provide alimited view of gene regulation. To address this deficit, we
developed an assay that measures multiple facets of gene regulation.
Using an immunoprecipitation-based approach, our assay enriches
DNA fragments from regulatory elements (REs) bearing specific epige-
netic marks. We used antibodies targeting methylated DNA, H3K4me3
(a histone modification associated with promoter activity) and
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Fig.1| Epigenomic profiling of plasma identifies clinically actionable cancer
phenotypes. a, Overview of the method. The indicated epigenetic marks
areisolated from plasma viaimmunoprecipitation (IP). DNA fragments from
genomic regions bearing these marks are enriched and quantified via high-
throughput sequencing, providing a genome-wide assessment of promoter
activity, enhancer activity and DNA methylation. b, Epigenomic datasets
generated from plasma. post-BMT, post-bone marrow transplant. ¢, GO term
enrichment for genes near REs that correlate with ctDNA content (CREs). The
top 1,000 peaks by significance of correlation with ctDNA were combined for
each data type (H3K4me3, H3K27ac, panH3ac and MeDIP) and jointly analyzed.
d, Plasma signal from H3K4me3 (left) and DNA methylation (right) at gene
promoters (y axis) in healthy donor plasma versus gene expression levels in
white blood cells (WBCs; x axis). Each dot represents ~-10 aggregated genes with
similar WBC expression levels. e, Normalized H3K4me3 cfChIP-seq signal of
diagnostic marker genes. Each row represents plasma from a patient with the
indicated cancer or a healthy volunteer. Signal at each gene is scaled uniformly

across plasma samples to allow for comparison. Promoter signal is shown in
orange where gene expression is expected in the corresponding cancer type.

f, Normalized H3K4me3 cfChIP-seq signal at the DLL3 promoter stratified by
cancer type for n =202 biologically independent samples. Orange indicates
cancer types in which theindicated gene iscommonly expressed. Pvalue
corresponds to Wilcoxon test between cancer types with and without common
expression of DLL3. g, Normalized H3K4me3 cfChIP-seq signal at the ERBB2
promoter for n =30 biologically independent samples. Samples are stratified
by HER2 expression per IHC staining of tumor tissue. P value corresponds to
Wilcoxon test between HER2"and HER2™ cancers. h, IHC staining of HER2 from
abrain metastasis from a patient with CRC (AMP-PL-0020-002). Scale bar,

100 pm. For fand g, only plasma samples with estimated ctDNA content >0.05
areincluded. For box plots, lower, middle and upper hinges indicate 25th, 50th
and 75th percentiles; whiskers extend to 1.5x the interquartile ranges. All Pvalues
indicate two-sided tests.

H3K27ac/panH3ac, histone modifications that are present at active
enhancersand promoters. This strategy provides agenome-wide assess-
ment of key regulators of gene expression: methylated DNA, active
promoters and active (as opposed to poised”'®) enhancers (Fig. 1a).
In this proof-of-concept study in cohorts of patients with advanced
cancer, we demonstrate that the assay captures clinically relevant
information, such as histologic subtypes, epigenetic correlates of
treatment resistance and expression of predictive markers, that could
potentially be used to guide therapy selection.

We measured 1,268 plasma-based epigenomic profiles, includ-
ing promoters, enhancers and CpG islands, from 433 individuals

with one of 15 types of advanced cancer or no cancer history. (Fig. 1b,
Extended Data Fig. 1 and Supplementary Table 1). We identified
pan-cancer-associated REs where signal correlated with ctDNA con-
tent across plasma samples representing 15 cancer types (Methods),
which we termed ctDNA-correlated REs (CREs; Extended Data Fig. 2
and Supplementary Table 2). Genes near CREs were highly enriched
for functional annotations related to embryonic development and cell
fate commitment (Fig. 1c), consistent with the hypothesis that cancer
reactivates developmental regulatory programs'™'. Our CRE analysis
implicated promoter activation of developmental transcription fac-
tors (TFs) (for example, FOXA1,50X9 and SOX13) and protooncogenes
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Fig. 2| Plasma enhancer profiling enables detection of NE-diff across multiple
cancers. a, Schematic demonstrating the measurement of enhancer activity

at REs or TFBSs based on H3K27ac cfChiIP-seq signal. b, Aggregate H3K27ac
cfChIP-seq signal at REs identified by ATAC-seq in prostate tumor tissue'*. Signal
in prostate cancer plasma and healthy plasma are colored orange and gray,
respectively. Dark lines show the mean signal across all samplesin the indicated
class. For comparison, signal at ‘common’ REs is shown, which include 10,000

REs with DNAse hypersensitivity across most or all cell types®® (Methods). See
also Extended Data Fig. 6. ¢, Normalized H3K4me3 cfChlIP-seq signal in breast
cancer patient plasma at the ESRI gene promoter (n = 19 biologically independent
samples). Dark lines indicate the mean signal across all samples in a class (ER* or
ER"). Box plots show AUC for cfChIP profiles. Wilcoxon test P values are indicated
for comparison of ER* versus ER” breast cancer. d, H3K27ac cfChIP-seq signal
inbreast cancer patient plasma (n =17 biologically independent samples) at

REs with preferentially accessible chromatin in ER* breast cancer®. Signal is
aggregated across 27,840 REs for each sample. Dark lines indicate the mean signal

across all samplesinaclass (ER" or ER"). Box plots show AUC for the aggregate
H3K27ac cfChIP profile for each sample. Wilcoxon test P values are indicated for
comparison of ER" versus ER” breast cancer. e, H3K27ac cfChlIP-seq signal at the
AR gene enhancer in patients with castration-resistant prostate cancer. Plasma
from patients with metastatic breast cancer is included as a control. f, Aggregated
H3K27ac cfChIP-seq signal at ASCL1 binding sites for prostate cancer with and
without NE-diff (NEPC and PRAD, respectively; n = 33 biologically independent
samples). Box plotsindicate AUC for the aggregate H3K27ac profile for each
sample. Wilcoxon test Pvalues are indicated for comparison of NEPC versus
PRAD. g, ROC curves for distinguishing samples with NE-diff using H3K27ac
cfChlIP-seq signal at neuroendocrine REs.‘AUC’ indicates area under the ROC
curve for each comparison. For a-c, only plasma samples with estimated ctDNA
content>0.03 areincluded. For allbox plots, lower, middle and upper hinges
indicate 25th, 50th, and 75th percentiles; whiskers extend to 1.5x the interquartile
ranges. All Pvalues indicate two-sided tests. NE, neuroendocrine; PRAD, prostate
adenocarcinoma.

(for example, MYC, EZH2 and EGFR), as well as repressive promoter
methylation of tumor suppressor genes (for example, APCand PTEN),
demonstrating that these genes can be dysregulated in cancer viaepi-
genetic changes (Extended DataFig.2). CREs that negatively correlated
with ctDNA were enriched for terms relating to immune function,
likely reflecting RE activity from hematopoietic cells (Fig. 1c). These

resultsindicate the biological relevance of cancer-derived epigenomic
profiles from plasma.

Our assay provides a proxy for cancer gene expression from
plasma. Plasma H3K4me3 signal correlated with gene expression
levels measured in cells (Fig. 1d) and expression of diagnostic and
predictive biomarkersin cancer. Promoter signal at lineage-enriched
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genes distinguished cancer types (Extended Data Fig. 3) and reflected
patterns of protein expression observed in tissues by immunohis-
tochemistry (IHC; Fig. 1e and Extended Data Fig. 4). For instance,
H3K4me3 signal was enriched at the diagnostic genes CHGA, CDX2and
KRT7 in plasma from patients with neuroendocrine cancers, gastro-
intestinal cancers and colorectal cancer (CRC) or Merkel cell cancer,
respectively (Extended DataFig. 4). KLK3, whichencodes the prostate
cancer biomarker PSA, demonstrated elevated signal in prostate
cancer plasma (P=2.3 x10™%; Extended Data Fig. 5) that correlated
with serum PSA measurements (Pearson correlation coefficient 0.77,
P=1.1x107). KLK3 signal did not correlate with tumor DNA fraction
(Extended Data Fig. 5). This result indicates that our assay reflects
variability in promoter activity at the KLK3 locus rather than solely
reflecting levels of ctDNA.

Notably, thisassay measured promoter activity of genes encoding
drug targets, such as ERBB2, ERBB3, NECTIN4 and DLL3 (Fig. 1f,g and
Extended DataFig.4).Forinstance, a plasmasample fromapatient with
CRC demonstrated elevated signal at the ERBB2 promoter, suggest-
ing expression of human epidermal growth factor receptor 2 (HER2),
which was confirmed subsequently by IHC of a brain metastasis biopsy
(Fig. 1h). HER2 is a validated target in CRC but is not consistently
assessed owing to its low prevalence (-3%) (ref. 13), a challenge that
could be overcome by ablood-based assay.

The ability to assess enhancer activity from plasma with H3K27ac
provided distinct, clinically actionable insights into gene regulation
compared with promoter profiling. Enhancer profiling from cancer
plasma captured the activity of cancer REs that were defined inde-
pendently in tumors using assay for transposase-accessible chro-
matin with sequencing (ATAC-seq)" (Fig. 2a,b and Extended Data
Fig.6). Enhancer CREs were enriched for overlap with the binding sites
of TFs that are protooncogenes, such as MYC, ER, EZH2, SUZ12 and
BRD4 (Extended Data Fig. 7). Enhancer profiling from plasmaallowed
us to infer activity of therapeutically targetable TFs from plasma,
including estrogen receptor (ER) in breast cancer plasma, androgen
receptor (AR) in prostate cancer and HIF2a in renal cell carcinoma
(RCC) (Extended Data Fig. 8). This functional readout of TF activity
represents an advance from previous ctDNA assays and provides
orthogonal information to TF gene promoter H3K4me3 levels. For
example, the ESR1 gene (encoding ER) is bivalently marked (H3K4me3*
and H3K27me3*) in ER” breast cancer®”. Accordingly, H3K4me3 at the
ESR1 promoter distinguished ER status only modestly compared to
H3K27ac signal at a set of 27,840 REs that are activated in ER" breast
cancer* (Fig. 2c,d).

Enhancer profiling from plasma identified epigenetic drivers
of treatment resistance. For instance, H3K27ac cell-free chromatin
immunoprecipitation (cfChIP) detected activation of an enhancer
of the AR gene that drives castration resistance in prostate cancer'
(Fig. 2e). Activation of the AR enhancer was not detectable from DNA
methylation, because this locus is hypomethylated in benign and
cancerous prostate tissue'®, highlighting the utility of active enhancer
profiling. Additionally, in plasma from patients with treatment-induced
neuroendocrine differentiation (NE-diff) of prostate cancer, H3K27ac
signal was elevated at binding sites for ASCL1 (a master TF driving
NE-diff) and at NE-specific binding sites of FOXAI (ref. 17) (Fig. 2f and
Extended DataFig. 9). Notably, genetically based assays are unable to
detect this histologic transformation.

NE-diff is increasingly recognized as a mechanism of acquired
resistance to targeted therapiesin many cancers. Detection of NE-diff
is clinically important because high-grade neuroendocrine tumors
often respond to platinum-based chemotherapy, but spatial hetero-
geneity and sampling error make the pathologic diagnosis challeng-
ing. Therefore, we created a multi-cancer classifier of NE-diff from
plasma, leveraging previous work that identified acommon set of REs
inneuroendocrine tumors across varying tissues of origin'®. Aggregat-
ing plasma H3K27ac signal across neuroendocrine REs (n =16,451)

distinguished cancers with and without NE-diff (n =22 and 42, respec-
tively; area under the curve (AUC) = 0.94; Fig. 2g and Extended Data
Fig.10). Notably, this classifier was trained from published REs meas-
uredin cancer tissues, supportingits biological plausibility, and identi-
fied NE-diff in plasma from patients with prostate, lung, bladder and
Merkel cell cancers.

Together, these results demonstrate that measuring gene regula-
tion from patient plasma can identify clinically relevant disease phe-
notypes. This proof-of-concept study focused on metastatic cancer;
further studies are needed to assess the utility of thisapproachinlarge
prospective cohorts as well as its performance in early-stage disease
and non-oncologic conditions. Another limitation of this approachis
that it does not capture the spatial distribution of cell types and gene
expression that can be assessed with tissue biopsy.

Because this assay requires only 1 ml of plasma from standard
clinical collection tubes, it can be applied retrospectively to banked
samples with clinical annotations, where sample volumes are often
limiting. Because histone modifications are deposited and removed
dynamically, they provide a real-time readout of gene regulation to
complement DNA methylation, which tends to reflect cellular line-
age". This attribute should enable the in vivo study of acquired therapy
resistance driven by epigenetic changes and allow longitudinal assess-
ment of therapeutic targets whose expression changes with disease
progression.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Study oversight and sample acquisition

This research complies with all relevant ethical regulations. Plasma
samples were collected from various patient cohorts for this study
as listed in Supplementary Table 1. Informed content was obtained
in each case, and samples were de-identified. Plasma samples from
the Dana-Farber Cancer Institute were collected under the follow-
ing protocols approved by the Dana-Farber/Harvard Cancer Center
(DF/HCC):17-324 for patients with triple-negative breast cancer, 16-588
for patients with metastatichormone receptor-positive breast cancer,
14-147 for patients with non-small cell lung cancer (NSCLC), 02-180
for patients with small cell lung cancer (SCLC), 05-042 for patients
with melanoma, 10-417 for patients with glioma, 01-045 for patients
with neuroendocrine prostate cancer (NEPC), 03-189 for patients with
colorectal and esophageal cancers and 09-156 for patients with Merkel
cell carcinoma. Patients had metastatic cancer unless otherwise noted.

Plasmasamples from patients treated at the National Cancer Insti-
tute were collected under the following clinical trial protocols: hepa-
tocellular carcinoma (11-C-0102), CRC (12-C-0187,15-C-0021), ovarian
cancer (12-C-0191), lung cancer (05-C-0049, 08-C-0078), prostate
cancer (08-C-0074,10-C-0062), RCC (02-C-0130) and thymic cancer
(08-C-0033,10-C-0077). All patients gave written informed consent
in accordance with federal, state and institutional guidelines. The
studies were conducted according to the Declaration of Helsinki and
were approved by the National Cancer Institute Central Institutional
Review Board (IRB).

Plasmasamples from healthy individuals without a history of dia-
betes, cancer or major medicalillnesses were obtained from the Mass
General Brigham Biobank. Written informed consent was obtained
from all healthy donors, and sample collection was approved by the
Brigham and Women’s Hospital IRB (2009P002312), following ethical
regulations.

Individual-level data, including sex and patient age, were not
collected, except for PSA levels for patients with prostate cancer. Sex
and/or gender were not considered in the study design.

Blood samples were collected inthe tubes containing K2EDTA (BD
Biosciences, 366643), and plasma extraction was performed within
1-6 h of the blood draw. Whole blood was centrifuged for 10 min at
1,500gand 4 °C. Supernatant was transferred to a new conical tube and
subjected to another centrifugation (for 10 min at 1,500g and 4 °C).
After adding protease inhibitor (Roche, 11873580001), the extracted
plasmawas aliquoted, flash frozen and stored at =80 °C until use.

cfChIP-seq assay

Next,1pgof antibody was coupled with10 pl of protein A (Invitrogen,
10002D) and 10 pl of protein G (Invitrogen,10004D) for at least 6 hat
4 °Cwithrotationin 0.5% BSA (Jackson Immunology, 001-000-161) in
PBS (Gibco, 14190250), followed by blocking with1% BSAin PBS for1 h
at4 °Cwith rotation. The following antibodies were used, all at a dilu-
tionof 1 ug per 900 pl: H3K4me3, Thermo Fisher Scientific, PA5-27029;
H3K27ac, Abcam, ab4729; and panAc, Active Motif, 39139.

Thawed plasma was centrifuged at 3,000g for 15 min at 4 °C. The
supernatant was pre-cleared with the magnetic beads with 20 pl of
protein A and 20 pl of protein G for 2 h at 4 °C. Then, the pre-cleared
and conditioned plasma was subjected to antibody-coupled mag-
netic beads overnight with rotation at 4 °C. The reclaimed magnetic
beads were washed with1 ml of each washing buffer twice. Three wash-
ing buffers were used in the following order: low-salt washing buffer
(0.1%SDS, 1% Triton X-100,2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCI,
pH7.5), high-salt washing buffer (0.1% SDS, 1% Triton X-100,2 mM EDTA,
500 mM NacCl, 20 mM Tris-HCI, pH7.5) and LiCl washing buffer (250 mM
LiCl, 1% NP-40,1% Na deoxycholate,1 mM EDTA, 10 mM Tris-HCI, pH 7.5).
Subsequently, the beads were rinsed with TE buffer (Thermo Fisher
Scientific, BP2473500) and resuspended and incubated in 100 pl of
DNA extraction buffer containing 0.1 MNaHCO,,1%SDSand 0.6 mg mlI™*

Proteinase K (Qiagen, 19131) and 0.4 mg ml™ RNaseA (Thermo Fisher
Scientific,12091021) for 10 minat 37 °C, for 1 hat 50 °C and for 90 min
at 65 °C. DNA was purified through phenol extraction (Invitrogen,
15593031), and ethanol precipitation was performed with 3 M NaOAc
(Ambion, AM9740) and glycogen (Ambion, AM9510). cfChIP-seqlibrar-
ies were prepared with ThruPLEX DNA-Seq Kit (Takara Bio, R400675)
following the manufacturer’sinstructions. After library amplification,
the DNA was purified by AMPure XP (Beckman Coulter, A63880). The
size distribution of the purified libraries was examined using Agilent
2100 Bioanalyzer with a high-sensitivity DNA Chip (Agilent, 5067-4626).
The library was submitted for 150-bp paired-end sequencing on an
Illumina NovaSeq 6000 system (Novogene).

Low-pass whole-genome sequencing

cfDNA was extracted from plasma supernatant after cfChIP by QIAmp
Circulating Nucleic Acid Kit (Qiagen, 55114) following the manu-
facturer’s instructions, and its concentration was measured with a
Qubit fluorometer. Ninety percent of the extracted cfDNA was used
for the subsequent Cell-free methylated DNA immunoprecipitation
(cfMeDIP) library preparation (see below), and the remaining 10% of
cfDNA was used for the library preparation by KAPA Hyper Prep Kit
(KapaBiosystems, KK8500) according to the manufacturer’s protocol.
The final amplification cycle number was determined by additional
qPCR using KAPA SYBR FAST qPCR Kits (Kapa Biosystems, KK4600).
The library DNA profile was investigated using a TapeStation system
and sequenced on an lllumina NovaSeq 6000 system with 150-bp
paired-end sequencing (Novogene).

cfMeDIP and high-throughput sequencing assay

cfMeDIP and high-throughput sequencing (cfMeDIP-seq) was per-
formed as described® In brief, cfDNA libraries were prepared using
the KAPA HyperPrep Kit (Kapa Biosystems) according to the manu-
facturer’s protocol. We performed end-repair, A-tailing and ligation
of NEBNext adaptors (NEBNext Multiplex Oligos for Illuminakit, New
England Biolabs (NEB), E7645L). Libraries were digested using the USER
enzyme (NEB, M5505S).ADNA, consisting of unmethylated and in vitro
methylated DNA, was added to prepared libraries to achieve a total
amount of 100 ng of DNA. Methylated and unmethylated Arabidopsis
thaliana DNA (Diagenode, C02040019) was added for quality control.
DNAwas heat denatured at 95 °C for 10 min and thenimmediately snap
cooled onicefor10 min. Then, 5-mC antibody from the MagMeDIP Kit
(Diagenode, C02010021) was subjected to each sample following the
manufacturer’s protocol at a dilution of 1:100. Samples were purified
using the iPureKitv2 (Diagenode, C03010015). Immunoprecipitation
quality was confirmed using qPCR to measure recovery of the spiked-in
Arabidopsisthaliana methylated versus unmethylated DNA. The DNA
libraries were assessed for quality using a TapeStation system (Agilent
Technologies) and sequenced on an Illumina NovaSeq 6000 system
with150-bp paired-end sequencing (Novogene).

Sequence data processing

cfChIP-seq/cfMeDIP-seq reads were aligned to the hgl9 human
genome build using Burrows-Wheeler Aligner version 0.7.1740.
Non-uniquely mapping and redundant reads were discarded. MACS
version 2.1.1.2014061641 was used for ChIP-seq peak calling with a
g value (false discovery rate (FDR)) threshold of 0.01. Fragment loca-
tions were converted to BED files using BEDTools (version 2.29.2) bam-
tobed with the -bedpe flag set. For analyses involving overlap with
genomic regions, fragments were imported as GRanges objects and
collapsed to1bp at the center of the fragment location to ensure that
afragment can map to only one site.

ChlIP-seqdata quality was evaluated by several measures, including
the number of total unique fragments and total peaks. The distribu-
tion of fragment sizes was assessed to verify the expected bi-modal or
tri-modal distribution characteristic of cfDNA.
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To assess immunoprecipitation specificity, we calculated an
on-target to off-target enrichment ratio. The enrichment ratio was
calculated separately for promoter (H3K4me3) and promoter/enhancer
(H3K27ac/panH3Ac) marks and reflects the density of fragments map-
ping to sites that are marked in most cell types (on-target sites) com-
pared to sites that are not marked in any cell type (off-target sites).
On-target sites were identified from the 18-state chromHMM maps
generated by EpiMap (https://egg2.wustl.edu/roadmap/web_portal/
chr_state_learning.html#exp_18state; accessed on 4 October 2021).
For H3K27ac/panH3Ac on-target sites, we selected 200-bp windows
with any of the following ‘active’ chromatin states in more than 50% of
tissuesin EpiMap:1_TssA, 3_TssFInkU, 8 EnhG2and9_EnhAl. On-target
sites for H3K4me3 were selected similarly but using the following chro-
matin states: 1_TssA, 2_TssFInk, 3 TssFInkU, 4 TssFInkD, 8 EnhG2 and
14 _TssBiv. Off-target sites were defined as 200-bp windows that lacked
the on-target annotations in all of 129 samples used to generate chro-
matin state maps in EpiMap. On-target and off-target windows were
merged and retained if the merged windows spanned 1,000 bp or more.
Off-target regions within 10,000 bp of on-target regions were excluded.

Unless otherwise specified, we included samples in downstream
analysis if the on-target to off-target enrichment ratio was >10 and
the product of the unique fragment number and enrichment ratio
was >4 x 107,

Identification of CREs
CREs were identified where cfChIP-seq or cfMeDIP-seq signal cor-
related with low-pass whole-genome sequencing (LP-WGS)-based
ctDNA estimates. We identified CREs separately for each data type
(H3K4me3, H3K27ac, pan-H3ac and MeDIP) and for each cancer type
where there were >5samples with ctDNA estimates >0.03. We excluded
samples with ichorCNA estimates <0.03, because the algorithm is
benchmarked down to this ctDNA content?®. For each analysis, peaks
fromall samples were merged to generate a union set of peaks. Unique
fragments overlapping each peak were counted to form a count matrix
with peaks versus samples. Counts were normalized to the summed
counts across common REs that are expected to be active across most
tissue types. These common REs were defined as the 10,000 sites with
DNAse hypersensitivity across the largest number of samples inref. 20.
Ateachsite, the Spearman correlation was tested between normalized
signal and ctDNA content. We reported the top 1,000 sites by signifi-
cance for each analysis as well as all CREs with FDR-adjusted g < 0.05.
CREswere assessed for overlap with gene features and CpGislands
using annotatr and ChIPSeeker?. Normalized cfChIP-seq read counts
at specific genomic loci were visualized with IGV version 2.8.243. The
GREAT tool48 (version 3.0) was used to assess for enrichment of Gene
Ontology (GO) and Molecular Signatures Database perturbation
annotations among genes near CREs. The cistromedb toolkit (http://
dbtoolkit.cistrome.org/) was used to compare H3K27ac CREs with
peaks from alarge database of uniformly analyzed published ChIP-seq
data (quantified as a ‘GIGGLE score’)*. Published TFs and histone
modification ChIP-seq datasets were ranked by similarity to the querry
cfChIP-seqdataset based onthetop1,000 peaks by enrichmentineach
published dataset. Before cistromedb toolkit analysis, ChlP-seq peaks
were mapped from hg19 to hg38 using the UCSC liftover tool (https://
genome.ucsc.edu/cgi-bin/hgLiftOver).

ctDNA estimation

ctDNA estimates were obtained from LP-WGS data usingichorCNA? with
default settings. For samples that lacked LP-WGS, we used signal at CREs
toestimate ctDNA content. Wefitalinear model to predict LP-WGS-based
tumor fraction estimates (T) given the signal at CREs that were negatively
and positively correlated at CRE (C,,; and C,,, respectively):

Cpos
2
Cneg

T+0.01

T=T+o01 ~ 8

Where possible, we used CREs identified on a given cancer type to
estimate ctDNA in samples of that type. In cases where there were
too few samples to estimate cancer-type specific CREs, we used CREs
identified using all cancer types. Estimates were scaled such that the
mean estimate for healthy plasma, which was not used for CRE identifi-
cation, was 0. In cases with LP-WGS-based ctDNA estimates, we report
these rather than CRE-based estimates. Supplementary Table 1liststhe
source of ctDNA estimates for each sample.

Assessment of gene promoter activity based on H3K4me3

To estimate gene promoter activity, we quantified H3K4me3 near
promoters. First, we merged all H3K4me3 cfChIP-seq peak calls into
asingle GRanges object and reduced them to non-overlapping inter-
vals using the reduce() function. We removed peaks in high-noise
regions (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/
hgl9-blacklist.v2.bed.gz). For each peak, we normalized H3K4me3
fragment counts to the aggregate countsinagiven sample across aset
0f10,000 regions with DNAse hypersensitivity across most cell types?,
asdescribed above. We assigned peaks to genes based on proximity to
transcriptional start sites in the annotation package TxDb.Hsapiens.
UCSC.hg19.knownGene.

The genes highlighted in this manuscript were curated based
on their clinical use in IHC for identifying cancer types or predictive
markers. To assess whether our estimation of promoter signal was
applicable beyond this set of genes, we also took a systematic approach
for selecting genes in the classifier described below.

Cancer classification based on promoter signal

Logistic regression with £,-norm regularization was used to train
biologically grounded and robust classifiers based on promoter
H3K4me3 at lineage-enriched genes from the Human Protein Atlas
(HPA)** using scikit-learn®. The classifier considered 12,664 genes
that were annotated as ‘tissue enriched’ or ‘tissue enhanced’ as well
as ‘Not detected inimmune cells’in the HPA database. We employed
atenfold cross-validation technique to assess the performance of
the predictive models. Within each fold, we fine-tuned the model’s
hyperparameters using a threefold cross-validation approach, spe-
cifically on the training samples. Our objective was to optimize the
algorithm parameters to maximize the AUC. To measure the model’s
performance, we exclusively used the test samples and reported
the average AUC values over the ten folds. We classified all cancer
plasma samples versus healthy samples and classified cancer type
for the three most abundant typesin our cohort (prostate, lung and
colorectal cancer).

Enhancer signal quantification at transcription factor binding
sites

We inferred RE activity at transcription factor binding sites (TFBSs)
based on H3K27ac at these sites. This approach builds upon previ-
ous work that measured signals of nucleosome depletion in cfDNA at
phenotype-defining REs*’. Samples were included in this analysis only
ifthey had >4 x 10° unique fragments and, except for healthy volunteer
plasma, estimated ctDNA content >0.03. Wefirst filtered out sites with
peaks present in plasma types that were not considered for a given
analysis and that had zero estimated ctDNA content, to exclude sites
with high background signal from nucleosomes that do not originate
from cancer. MACS2 peak calls for TFBS were obtained, filtered to
remove sites of width >4 kb and thenresized to a 3-kbinterval centered
on the original peak. Peaks were separated into 40-bp windows, and
fragment counts were aggregated across agiven window for all peaks
toobtainaggregate profiles for asample. We performed two normaliza-
tion steps. First, to account for variation in background signal across
samples, we performed a ‘shoulder normalization’ step. We considered
theregionbetween[-3,000,-2,800] bpand[2,800,3000] bp around
the center of each TFBS and aggregated counts at these sites for each

Nature Medicine


http://www.nature.com/naturemedicine
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state
https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state
http://dbtoolkit.cistrome.org/
http://dbtoolkit.cistrome.org/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg19-blacklist.v2.bed.gz
https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg19-blacklist.v2.bed.gz

Brief Communication

https://doi.org/10.1038/s41591-023-02605-z

sample. This value was subtracted from the aggregate counts toset the
‘shoulder’ of peaks to zero.Second, we normalized signal ineach bin to
the aggregated signal at the common 10,000 DNAse hypersensitivity
sites as described above.

Correlation of cfChIP signal with expression

We measured correlation of promoter H3K4me3 cfChIP-seq signal in
arepresentative healthy volunteer plasma sample (HP030642) with
RNA sequencing (RNA-seq)-based gene expression measurements. For
gene expression, we used transcripts per million (TPM) annotations
for whole blood from GTEx, because most nucleosomes in healthy
individuals derive form hematopoietic cells. To aggregate signal across
multiple genes, we first ranked all genes by expressioninwhole blood
and then created metagenes containing promoter cfChIP-seq signal
from approximately 10 genes of similar expression levels. Signal was
measured as fragment counts between 500 bp upstreamand 1,500 bp
downstream of the gene transcriptional start site. This analysis was also
performed using cfMeDIP-seq from the same individual for comparison
with H3K4me3.

Detection of NE-diff

We classified samples by the activity of REs associated with NE-diff,
as assessed by H3K27ac cfChIP-seq signal at these REs. Our feature
set was a group of 16,098 sites with chromatin accessibility that is
consistently higher in neuroendocrine tumors of multiple lineages
compared to adenocarcinomas'®. These sites were obtained from the
original set of 16,571 sites by filtering out sites with peaks present in
healthy volunteer H3K27ac cfChIP-seq profiles. We measured H3K27ac
cfChlIP-seq signal at these sites as described above for ‘enhancer signal
quantification of TFBS’. The aggregated and normalized signal at these
siteswas used as aninput to the classifier. Classifier performance was
assessed by measuring the areaunder the receiver operating charac-
teristic (ROC) curve.

Detection of Merkel cell polyomavirus DNA

Reads that failed initial alignment (unmapped reads) were mapped
to an hgl9 assembly that contained viral sequences®. The resulting
alignment files were then filtered where only properly paired reads
with high mapping quality (mapq =30) and a minimal number of mis-
matches ((NM) <1) were kept, and duplicate reads were removed. Viral
read counts were then quantified using BEDTools multicov”,and TPM
was calculated.

Statistics and reproducibility

Sample sizes were determined by sample availability. No statistical
method was used to predetermine sample size, but numbers of sam-
plesexceeded thosein previous studies'®, All data generated for this
study areincluded and reported here. For most analyses, we imposed
quality cutoffs based on unique fragment counts and enrichment.
Unless otherwise specified, weincluded samplesin downstream analy-
ses if the on-target to off-target fragment enrichment ratio was >10
and the product of the unique fragment number and enrichment ratio
was >4 x 10”. The experiments were not randomized. The investiga-
torswere notblinded to allocation during experiments and outcome
assessment.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

BED files containing genomic alignments of all sequenced fragments
as well as ChIP-seq peak locations are available through GEO under
accession number GSE243474. Due to privacy restrictions regarding
genomic data, raw sequencing data can be shared upon reasonable

request under a data use agreement. Requests should be directed to
the corresponding author at freedman@broadinstitute.org and should
receive aresponse within 2 weeks.

The following public datasets were used: DNAse hypersensitivity sites
(https://zenodo.org/record/3838751/files/DHS_Index_and_Vocabu-
lary_hgl9_WM20190703.txt.gz), TCGA ATAC-seq peak calls (https://
api.gdc.cancer.gov/data/116ebba2-d284-485b-9121-faf73ceOa4ec;
lifted over to hgl19 from hg38), Human Protein Atlas database annota-
tions (https://www.proteinatlas.org/download/proteinatlas.tsv.zip)
and Encode list of high-noise regions for exclusion from ChIP-seq
analysis (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/
hg19-blacklist.v2.bed.gz).

Code availability
Scripts to reproduce analyses from this study are available at https://
github.com/Baca-Lab/cfchip_manuscript.
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Extended Data Fig. 4 | H3K4me3 cfChIP-seq signal at promoters of selected

genes of interest. Promoter H3K4me3 signal is shown at selected genes across

because these genes are expressed across various cancer types. Signal at GAPDH
is shown as a control. Lower, middle, and upper hinges indicate 25%, 50", and 75"

percentiles

202biologically independent plasma samples stratified by cancer type.
Orange indicates cancer types in which the indicated gene is expected to be

N=

whiskers extend to 1.5 x the inter-quartile ranges (IQR).

y

expressed. Wilcoxon two-sided p-values are indicated for comparison of samples
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Bed files containing genomic alignments of all sequencing reads are available at Zenodo via the following links: https://zenodo.org/record/8353657, https://
zenodo.org/record/8353863, and https://zenodo.org/record/8355970. ChIP-seq peak calls in bed format are available at https://zenodo.org/record/8356068. Due




to privacy restrictions regarding genomic data, raw sequencing data can be shared upon request under a data use agreement. Requests should be directed to the
corresponding author at freedman@broadinstitute.org and should receive a response within two weeks.

The following public data sets were used: DNAse hypersensitivity sites (https://zenodo.org/record/3838751/files/

DHS_Index_and_Vocabulary_hgl9 WM20190703.txt.gz), TCGA ATAC-seq peak calls (https://api.gdc.cancer.gov/data/116ebba2-d284-485b-9121-faf73ceOadec;
lifted over to hg19 from hg38), Human Protein Atlas database annotations (https://www.proteinatlas.org/download/proteinatlas.tsv.zip), Encode list of high-noise
regions for exclusion from ChIP-seq analysis (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg19-blacklist.v2.bed.gz).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No sex-based or gender-based analyses were performed in this study as these data were not collected for most samples

Reporting on race, ethnicity, or = No such groupings were used in this study
other socially relevant

groupings

Population characteristics Participants were adult (>= years of age) patients treated for advanced cancer at tertiary academic medical centers (the
Dana-Farber Cancer Institute, Massachusetts General Hospital, or the National Cancer Institute) or cancer-free patients seen
in primary care clinics at Mass General Hospital or Brigham and Women's Hospital. Individual-level and population-level data,
including age, were not collected for this study.

Recruitment Samples were obtained from patients treated for advanced cancers. Therefore, the extensibility of these results to patients
with early stage cancers remains to be explored.

Ethics oversight Plasma samples from the Dana-Farber Cancer Institute were collected under the following protocols approved by the Dana-

Farber/Harvard Cancer Center (DF/HCC): 17-324 for patients with triple-negative breast cancer, 16-588 for patients with
metastatic hormone receptor positive breast cancer, 14-147 for patients with NSCLC, 02-180 for patients with SCLC, 05-042
for patients with melanoma, 10-417 for patients with glioma, 01-045 for patients with NEPC, 03-189 for patients with
colorectal and esophageal cancers, 09-156 for patients with Merkel cell carcinoma.

Plasma samples from patients treated at the National Cancer Institute were collected under the following clinical trial
protocols: hepatocellular carcinoma (11-C-0102), colorectal cancer (12-C-0187, 15-C-0021), ovarian cancer (12-C-0191), lung
cancer (05-C-0049, 08-C-0078), prostate cancer (08-C-0074, 10-C-0062), RCC (02-C-0130), and thymic cancer (08-C-0033, 10-
C-0077). All the patients gave written informed consent in accordance with federal, state, and institutional guidelines. The
studies were conducted according to the Declaration of Helsinki and were approved by the National Cancer Institute Central
Institutional Review Board.

Plasma samples from healthy individuals without a history of diabetes, cancer, or major medical illnesses were obtained from
the Mass General Brigham Biobank. Written informed consent was obtained from all healthy donors, and sample collection
was approved by the Brigham and Women's Hospital IRB 2009P002312, following ethical regulations.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. Sample size was determined by sample availability. Where available, we aimed to sample 10 or
more samples for each epigenetic mark for each cancer type as this approximate sample size has proven sufficient for identifying
distinguishing epigenetic features of cancer subtypes in prior work (eg PMID: 36681680)

Data exclusions  All data generated for this study are included and reported here. For most analyses, we imposed quality cutoffs based on unique fragment
counts and enrichment. Unless otherwise specified, we included samples in downstream analysis if the on-target to off-target enrichment
ratio was > 10 and the product of the unique fragment number and enrichment ratio was > 4 x 107

Replication Reproducibility was confirmed by generating high-quality cfChIP data on plasma samples collected at different centers. Experiments were
performed by different operators at different times over the course of approximately 2 years. Similar data quality was observed across these
conditions. ~12% of H3K27ac cfChIP-seq samples and ~ 26% of H3K4me3 were run multiple times.
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Randomization  Randomization was not relevant to this study because it was performed on retrospectively collected samples

Blinding Blinding was not relevant to this study because this study did not involve an intervention or prospective classification of samples/patients
to different groups

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

|:| Antibodies |:| ChiIP-seq

|Z |:| Eukaryotic cell lines |Z |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging
XI|[] Animals and other organisms

[] clinical data

X |:| Dual use research of concern

|Z |:| Plants

Antibodies

Antibodies used H3K4me3: Thermo Fisher # PA5-27029 (dilution 1ug/900ul)
H3K27ac: Abcam # ab4729 (dilution 1ug/900ul)
panAc : Active Motif # 39139 (dilution 1ug/900ul)

MeDIP : Diagenode # C02010021 (dilution 1:100)

Validation Validation data and publications are listed on the manufacturers websites here:
https://www.thermofisher.com/antibody/product/H3K4me3-Antibody-Polyclonal /PA5-27029
https://www.abcam.com/products/primary-antibodies/histone-h3-acetyl-k27-antibody-chip-grade-ab4729.html
https://www.activemotif.com/catalog/details/39139/histone-h3ac-pan-acetyl-antibody-pab-1
https://www.diagenode.com/en/p/magmedip-kit-x48-48-rxns

Plants
Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

ChlIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links Bed files containing genomic alignments of all sequencing reads are available at Zenodo via the following links: https://

May remain private before publication.  zenodo.org/record/8353657, https://zenodo.org/record/8353863, and https://zenodo.org/record/8355970. ChiP-seq peak
calls in bed format are available at https://zenodo.org/record/8356068.

Files in database submission The files are listed in Table S1 and omitted here for conciseness as there are > 2,000

>
Q
]
(e
D
1®)
O
=
o
c
-
(D
1®)
O
=
5
(@]
wn
(e
3
=
Q
A




Genome browser session
(e.g. UCSC)

Methodology

Replicates

Sequencing depth
Antibodies

Peak calling parameters
Data quality

Software

No longer applicable.

Replicates were not used in this study.

150bp paired-end sequencing was performed on the Illumina platform. The number of reads is indicated in Table S1 (median ~46
million paired end reads).

The following antibodies were used: H3K4me3, Thermo Fisher # PA5-27029; H3K27ac, Abcam # ab4729; panAc, Active Motif #
39139; MeDIP, Diagenode # C02010021.

Narrow peaks were called on deduplicated bam files using the following command: macs2 callpeak --SPMR -B -q 0.01 --keep-dup 1 -g
hs -f BAMPE --extsize 146 --nomodel -t {treat.bam} -c {input.bam}.

Data quality were assessed by several means, including peak number, number of unique fragments, and on-/off-target enrichment
ratio, as described in the methods.

Code to reproduce analyses from this study is available at https://github.com/Baca-Lab/cfchip_manuscript.
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