
Nature Medicine | Volume 29 | October 2023 | 2489–2497 2489

nature medicine

https://doi.org/10.1038/s41591-023-02574-3Article

Early detection of autism using digital 
behavioral phenotyping

Sam Perochon1,2, J. Matias Di Martino    1, Kimberly L. H. Carpenter    3,4, 
Scott Compton3,4, Naomi Davis3, Brian Eichner5, Steven Espinosa6, 
Lauren Franz3,4,7, Pradeep Raj Krishnappa Babu1, Guillermo Sapiro1,8,9  
& Geraldine Dawson    3,4,9 

Early detection of autism, a neurodevelopmental condition associated with 
challenges in social communication, ensures timely access to intervention. 
Autism screening questionnaires have been shown to have lower accuracy 
when used in real-world settings, such as primary care, as compared to 
research studies, particularly for children of color and girls. Here we report 
findings from a multiclinic, prospective study assessing the accuracy 
of an autism screening digital application (app) administered during a 
pediatric well-child visit to 475 (17–36 months old) children (269 boys and 
206 girls), of which 49 were diagnosed with autism and 98 were diagnosed 
with developmental delay without autism. The app displayed stimuli that 
elicited behavioral signs of autism, quantified using computer vision and 
machine learning. An algorithm combining multiple digital phenotypes 
showed high diagnostic accuracy with the area under the receiver operating 
characteristic curve = 0.90, sensitivity = 87.8%, specificity = 80.8%, 
negative predictive value = 97.8% and positive predictive value = 40.6%. 
The algorithm had similar sensitivity performance across subgroups as 
defined by sex, race and ethnicity. These results demonstrate the potential 
for digital phenotyping to provide an objective, scalable approach to autism 
screening in real-world settings. Moreover, combining results from digital 
phenotyping and caregiver questionnaires may increase autism screening 
accuracy and help reduce disparities in access to diagnosis and intervention.

Autism spectrum disorder (ASD; henceforth ‘autism’) is a neurodevel-
opmental condition associated with challenges in social communica-
tion abilities and the presence of restricted and repetitive behaviors. 
Autism signs emerge between 9 and 18 months and include reduced 
attention to people, lack of response to name, differences in affective 
engagement and expressions and motor delays, among other features1. 
Commonly, children are screened for autism at their 18–24-month 

well-child visits using a parent questionnaire, the Modified Checklist 
for Autism in Toddlers-Revised with Follow-Up (M-CHAT-R/F)2. The 
M-CHAT-R/F has been shown to have higher accuracy in research set-
tings3 compared to real-world settings, such as primary care, particu-
larly for girls and children of color4–7. This is, in part, due to low rates 
of completion of the follow-up interview by pediatricians8. A study of 
>25,000 children screened in primary care found that the M-CHAT/F’s 
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autism (for example, display higher attention to nonsocial than social 
stimuli). The prediction confidence score quantified the confidence in 
the model’s prediction. As illustrated in Extended Data Fig. 1, the large 
majority of participants’ prediction confidence scores were rated with 
high confidence.

specificity was high (95.0%) but sensitivity was poor (39.0%), and its 
positive predictive value (PPV) was 14.6% (ref. 6). Thus, there is a need 
for accurate, objective and scalable autism screening tools to increase 
the accuracy of autism screening and reduce disparities in access to 
early diagnosis and intervention, which can improve outcomes9.

A promising screening approach is the use of eye-tracking tech-
nology to measure children’s attentional preferences for social versus 
nonsocial stimuli10. Autism is characterized by reduced spontaneous 
visual attention to social stimuli10. Studies of preschool and school-age 
children using machine learning (ML) of eye-tracking data reported 
encouraging findings for the use of eye-tracking for distinguishing 
autistic and neurotypical children11,12. However, because autism has 
a heterogeneous presentation involving multiple behavioral signs, 
eye-tracking tests alone may be insufficient as an autism screening 
tool. When an eye-tracking measure of social attention was used for 
autism screening in 1,863 (12–48 months old) children, the eye-tracking 
task had strong specificity (98.0%) but poor sensitivity (17.0%). The 
authors conclude that the eye-tracking task is useful for detecting a 
subtype of autism13.

By quantifying multiple autism-related behaviors, it may be pos-
sible to better capture the complex and variable presentation of autism 
reflected in current diagnostic assessments. Digital phenotyping can 
detect differences between autistic and neurotypical children in gaze 
patterns, head movements, facial expressions and motor behaviors14–18. 
We developed an application (app), SenseToKnow, which is admin-
istered on a tablet and displays brief, strategically designed movies 
while the child’s behavioral responses are recorded via the frontal cam-
era embedded in the device. The movies are designed to elicit a wide 
range of autism-related behaviors, including social attention, facial 
expressions, head movements, response to name, blink rate and motor 
behaviors, which are quantified via computer vision analysis (CVA)19–25. 
ML is used to integrate multiple digital phenotypes into a combined 
algorithm that classifies children as autistic versus nonautistic and to 
generate metrics reflecting the quality of the app administration and 
confidence level associated with the diagnostic classification.

Results
The SenseToKnow app was administered during a pediatric primary 
care well-child visit to 475 (17–36 months old) toddlers, 49 of whom 
were subsequently diagnosed with autism and 98 of whom were diag-
nosed with DD–LD without autism (see Table 1 for demographic and 
clinical characteristics). The app elicited and quantified the child’s 
time attending to the screen, gaze to social versus nonsocial stimuli 
and to speech, facial dynamics complexity, frequency and complex-
ity of head movements, response to name, blink rate and touch-based 
visual-motor behaviors. The app used ML to combine 23 digital pheno-
types into the algorithm used for the diagnostic classification of the 
participants. Figure 1 illustrates the SenseToKnow app workflow from 
data collection to fully automatic individualized and interpretable 
diagnostic predictions.

Quality of app administration metrics
Quality scores were automatically computed for each app administra-
tion, which reflected the amount of available app variables weighted by 
their predictive power. In practice, these scores can be used to deter-
mine whether the app needs to be re-administered. Quality scores were 
found to be high (median score = 93.9%, Q1–Q3 (90.0–98.4%)), with no 
diagnostic group differences.

Prediction confidence metrics
A prediction confidence score for accurately classifying an individual 
child was also calculated. The heterogeneity of the autistic condition 
implies that some autistic toddlers will exhibit only a subset of the 
potential autism-related behavioral features. Similarly, nonautistic 
participants may exhibit behavioral patterns typically associated with 

Table 1 | Study sample demographic and clinical 
characteristics

Neurotypical 
(n = 328)

Autism  
(n = 49)

DD–LD  
(n = 98)

Age (in months)—mean (s.d.) 20.4 (3.0) 24.2 (4.6) 21.2 (3.55)

Sex (%)

  Boys 170 (51.8) 38 (77.5) 61 (62.0)

  Girls 158 (48.2) 11 (22.5) 37 (38.0)

Ethnicity (%)

  Non-Hispanic/Latino 306 (93.3) 36 (73.4) 83 (84.7)

  Hispanic/Latino 22 (6.7) 13 (26.6) 15 (15.3)

Race (%)

  Unknown/declined 0 (0.0) 0 (0.0) 1 (1.0)

 � American Indian/Alaskan 
Native

1 (0.3) 3 (6.1) 0 (0.0)

  Asian 6 (1.8) 1 (2.0) 0 (0.0)

  Black or African American 28 (8.5) 11 (22.4) 15 (15.3)

  White/Caucasian 255 (77.7) 23 (46.9) 69 (70.4)

  More than one race 32 (9.9) 7 (14.3) 8 (8.2)

  Other 6 (1.8) 4 (8.3) 5 (5.1)

Highest level of education (%)

  Unknown/not reported 2 (0.6) 0 (0.0) 0 (0.0)

 � Without high school 
diploma

1 (0.3) 4 (8.2) 5 (5.1)

 � High school diploma or 
equivalent

12 (3.6) 8 (16.3) 8 (8.2)

  Some college education 32 (9.8) 10 (20.4) 11 (11.2)

 � Four-year college degree 
or more

281 (85.7) 27 (55.1) 74 (75.5)

M-CHAT-R/F—total

  Unknown/not reported 1 (0.3) 2 (4.0) 0 (0.0)

  Positive 2 (0.6) 38 (77.5) 18 (18.4)

  Negative 325 (99.1) 9 (18.5) 80 (81.6)

ADOS calibrated severity score (CSS)

 � Unknown/not reported—
total (%)

N/A 6 (12.2) 85 (86.7)

 � Restricted/repetitive 
behavior CSS

N/A 7.76 (1.64) 5.23 (1.42)

  Social affect CSS N/A 6.97 (1.71) 3.77 (1.69)

  Total CSS N/A 7.41 (1.79) 3.69 (1.32)

Mullen Scales of Early Learning

 � Unknown/not reported—
total (%)

N/A 6 (12.2) 82 (100.0)

 � Early learning composite 
score

N/A 63.6 (10.12) 73.85 (15.30)

  Expressive language T-score N/A 28.34 (7.56) 35.23 
(10.00)

  Receptive language T-score N/A 23.37 (5.60) 32.46 (12.94)

  Fine motor T score N/A 34.24 (10.06) 39.30 (6.60)

  Visual reception T score N/A 33.42 (10.60) 36.30 (12.03)
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Diagnostic accuracy of SenseToKnow for autism detection
Using all app variables, we trained a model comprised of K = 1,000 
tree-based EXtreme Gradient Boosting (XGBoost) algorithms to classify 
diagnostic groups26. Figure 2a displays the area under the curve (AUC) 
results for the classification of autism versus each of the other groups 
(neurotypical, nonautism, developmental delay and/or language delay 
(DD–LD)), including accuracy based on the combination of the app 
results with the M-CHAT-R/F2, which was administered as part of the 
screening protocol.

Based on the Youden Index27, an algorithm integrating all app vari-
ables showed a high level of accuracy for the classification of autism 
versus neurotypical development with AUC = 0.90 (confidence interval 
(CI) (0.87–0.93)), sensitivity 87.8% (s.d. = 4.9) and specificity 80.8% 
(s.d. = 2.3). Restricting administrations to those with high prediction 
confidence, the AUC increased to 0.93 (CI (0.89–0.96)).

Classification of autism versus nonautism (DD–LD combined 
with neurotypical) also showed strong accuracy: AUC = 0.86 (CI (0.83–
0.90)), sensitivity 81.6% (s.d. = 5.4) and specificity 80.5% (s.d. = 1.8). 
Table 2 shows performance results for autism versus neurotypical and 
autism versus nonautism (DD–LD and neurotypical combined) classi-
fication based on individual and combined app variables. Supplemen-
tary Table 1 provides the performances for all the cut-off thresholds 
defining the operating points of the associated receiver operating 
characteristic curve (ROC).

Nine autistic children who scored negative on the M-CHAT-R/F 
were correctly classified by the app as autistic, as determined by expert 
evaluation. Among 40 children screening positive on the M-CHAT-R/F, 
there were two classified neurotypical based on expert evaluation, and 
both were correctly classified by the app. Combining the app algorithm 
with the M-CHAT-R/F further increased classification performance to 
AUC = 0.97 (CI (0.96–0.98)), specificity = 91.8% (s.d. = 4.5) and sensitiv-
ity = 92.1% (s.d. = 1.6).

Diagnostic accuracy of SenseToKnow for subgroups
Classification performance of the app based on AUCs remained largely 
consistent when stratifying groups by sex (AUC for girls = 89.1 (CI  
(82.6–95.6)), and for boys AUC = 89.6 (CI (86.2–93.0))), as well as race, 
ethnicity and age. Table 3 provides exhaustive performance results for 
all these subgroups, as well as the classification of autism versus DD–LD. 
However, CIs were larger due to smaller sample sizes for subgroups.

Model interpretability
Distributions for each app variable for autistic and neurotypical  
participants are shown in Fig. 3. To address model interpretability, we 
used SHapley Additive exPlanations (SHAP) values28 for each child to 
examine the relative contributions of the app variables to the model’s 
prediction and disambiguate the contribution of each feature from 
their missingness (Fig. 2b,c). Figure 2c illustrates the ordered nor-
malized importance of the app variables for the overall model. Fac-
ing forward during social movies was the strongest predictor (mean 
|SHAP| = 11.2% (s.d. = 6.0%)), followed by the percent of time gazing at 
social stimuli (mean |SHAP| = 11.1% (s.d. = 5.7%)) and delay in response 
to a name call (mean |SHAP| = 7.1% (s.d. = 4.9%)). The SHAP values as a 
function of the app variable values are provided in Supplementary Fig. 1.

SHAP interaction values indicated that interactions between pre-
dictors were substantial contributors to the model; average contribu-
tion of app variables alone was 64.6% (s.d. = 3.4%) and 35.4% (s.d. = 3.4%) 
for the feature interactions. Analysis of the missing data SHAP values 
revealed that missing variables were contributing to 5.2% (s.d. = 13.2%) 
of the model predictions, as illustrated in Extended Data Fig. 2.

Individualized interpretability
Analysis of the individual SHAP values revealed individual behavioral 
patterns that explained the model’s prediction for each participant. 
Figure 2b shows individual cases illustrating how the positive or nega-
tive contributions of the app variables to the predictions can be used 
to (1) deliver intelligible explanations about the child’s app adminis-
tration and diagnostic prediction, (2) highlight individualized behav-
ioral patterns associated with autism or neurotypical development 
and (3) identify misclassified digital profile patterns. Extended Data  
Fig. 3 shows the following three additional illustrative cases: participant 3— 
an autistic child who did not receive an M-CHAT-R/F administration; 
participant 4—a neurotypical child incorrectly predicted as autistic; 
and participant 5—an autistic participant incorrectly predicted as neu-
rotypical. The framework also enables us to provide explanations for 
the misclassified cases.

Discussion
When used in primary care, the accuracy of autism screening parent 
questionnaires has been found to be lower than in research contexts, 
especially for children of color and girls, which can increase disparities 
in access to early diagnosis and intervention. Studies using eye-tracking 
of social attention alone as an autism screening tool have reported 
inadequate sensitivity, perhaps because assessments based on only one 
autism feature (differences in social attention) do not adequately cap-
ture the complex and heterogeneous clinical presentation of autism13.

We evaluated the accuracy of an ML and CVA-based algorithm 
using multiple autism-related digital phenotypes assessed via a mobile 
app (SenseToKnow) administered on a tablet in pediatric primary care 
settings for identification of autism in a large sample of toddler-age 
children, the age at which screening is routinely conducted. The app 
captured the wide range of early signs associated with autism, including 
differences in social attention, facial expressions, head movements, 
response to name, blink rates and motor skills, and was robust to miss-
ing data. ML allowed optimization of the prediction algorithm based 
on weighting different behavioral variables and their interactions. 
We demonstrated high levels of usability of the app based on quality 
scores that were automatically computed for each app administra-
tion based on the amount of available app variables weighted by their 
predictive power.

The screening app demonstrated high diagnostic accuracy for the 
classification of autistic versus neurotypical children with AUC = 0.90, 
sensitivity = 87.8%, specificity = 80.8%, negative predictive value 
(NPV) = 97.8% and PPV = 40.6%, with similar sensitivity levels across 
sex, race and ethnicity. Diagnostic accuracy for the classification of 
autism versus nonautism (combining neurotypical and DD–LD groups) 
was similarly high. The fact that the sensitivity of SenseToKnow for 
detecting autism did not differ based on the child’s sex, race or ethnicity 

Fig. 1 | The SenseToKnow app workflow from data collection to fully 
automatic individualized and interpretable predictions. a, Video and touch 
data are recorded via the SenseToKnow application, which displays brief movies 
and a bubble-popping game (see Supplementary Video 1 for short clips of movies 
and Supplementary Video 2 showing a child playing the game). b, Faces are 
automatically detected using CVA, and the child’s face is identified and validated 
using sparse semi-automatic human annotations. Forty-nine facial landmarks, 
head pose and gaze coordinates are extracted for every frame using CVA. c, 
Automatic computation of multiple digital behavioral phenotypes. d, Training 
of the K = 1,000 XGBoost classifier from multiple phenotypes using fivefold 

cross-validation and overall performance evaluation, and estimation of the final 
prediction confidence score based on the Youden optimality index. e, Analysis 
of model interpretability using SHAP values analysis, showing features’ values 
in blue/red, and the direction of their contributions to the model prediction 
in blue/orange. f, An illustration (not real data) of how an individualized app 
administration summary report would provide information regarding a child’s 
unique digital phenotype (red dot on the graphs), along with group-wise 
distributions (ASD in orange and neurotypical in blue), confidence and quality 
scores and the app variables contributions to the individualized prediction.
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Participant 1 | neurotypical boy (25 months old)
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Fig. 2 | Accuracy metrics and normalized SHAP value analysis. a, ROC curve 
illustrating the performance of the model for classifying different diagnostic 
groups, using all app variables. n = 475 participants; 49 were diagnosed with autism 
and 98 were diagnosed with developmental delay or language delay without 
autism. The final score of the M-CHAT-R/F screening questionnaire was used when 
available (n = 374/377). Error bands correspond to 95% CI computed by the Hanley 
McNeil method. b, Examples of app administration reports are shown, one for 
a 25-month-old neurotypical boy and one for a 30-month-old autistic girl, both 
correctly classified, including each child’s app quality score, confidence score and 

the contributions of each app variable to the child’s individualized prediction.  
c, Normalized SHAP value analysis showing the app variables importance for the 
prediction of autism. The x axis represents the features’ contribution to the final 
prediction, with positive or negative values associated with an increase in the 
likelihood of an autism or neurotypical diagnosis, respectively. The y axis lists the 
app variables in descending order of importance. The blue–red color gradient 
indicates the relevance of each of the app variables to the score, from low to high 
values; gray indicates missing variables. For each app variable, a point represents 
the normalized SHAP value of an individual participant. NT, neurotypical.
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Table 2 | App performance based on individual and combined app variables

AUROC (95% CI) Sensitivity Specificity PPVa NPVa

All app variables 89.9 (3.0) 87.8 (4.9) 80.8 (2.3) 40.6 (8.8) 97.8 (99.7)
Facing forward 83.8 (3.7) 87.8 (4.4) 65.9 (2.6) 27.7 (5.2) 97.3 (99.6)
Gazeb 77.6 (4.0) 63.3 (7.7) 85.4 (1.8) 39.2 (8.4) 94.0 (99.1)
Facial dynamics complexity 75.9 (4.2) 63.3 (6.5) 82.9 (2.3) 35.6 (7.3) 93.8 (99.1)
Head movements 86.4 (3.4) 87.8 (4.1) 74.4 (2.4) 33.9 (6.8) 97.6 (99.7)
Response to name 65.8 (4.4) 83.7 (5.1) 46.6 (2.4) 19.0 (3.2) 95.0 (99.3)

Touch-based (game) 57.6 (4.5) 79.6 (5.2) 39.0 (2.5) 16.3 (2.7) 92.8 (8.9)
All app variables + M-CHAT-R/F score 96.6 (1.8) 91.8 (4.5) 92.1 (1.6) 63.4 (19.7) 98.7 (99.8)

Results represent the performance of the XGBoost model trained to classify autistic and neurotypical groups based on individual and combined app variables (digital phenotypes). aPPV and 
NPV values adjusted for population prevalence (Supplementary Table 1). bGaze silhouette score, gaze speech correlation and gaze percent social. AUROC, area under the ROC curve.

Table 3 | App performance stratified by sex, race, ethnicity, age, quality score and prediction confidence threshold

Group n NT Correct Not 
correct

AUC (%;  
95% CI)

Sensitivity 
(STD)

Specificity 
(STD)

PPV 
(adjusted)

NPV 
(adjusted)Autism

Sex
Boys 196

158 123 35
89.6 (3.4) 86.8 (5.3) 77.8 (3.2) 48.5 (7.7) 96.1 (99.6)

38 33 5

Girls 181
170 142 28

89.1 (6.5) 90.9 (9.1) 83.5 (2.9) 26.3 (10.5) 99.3 (99.8)
11 10 1

Race

White 278
255 211 44

86.9 (4.9) 82.6 (7.8) 82.7 (2.4) 30.2 (9.2) 98.1 (99.5)
23 19 4

Black 39
28 15 13

81.2 (8.5) 90.9 (9.0) 53.6 (9.5) 43.5 (4.0) 93.8 (99.6)
11 10 1

Other 60
45 39 6

97.6 (2.8) 93.3 (7.2) 86.7 (4.6) 70.0 (12.9) 97.5 (99.8)
15 14 1

Ethnicity
Not Hispanic/Latino 342

306 245 61
87.8 (3.8) 86.1 (5.7) 80.1 (2.3) 33.7 (8.4) 98.0 (99.8)

36 31 5

Hispanic/Latino 35
22 20 2

95.3 (4.3) 92.3 (7.1) 90.9 (6.2) 85.7 (17.7) 95.2 (99.8)
13 12 1

Age (months)

17–18.5 164
159 125 34

94.5 (7.1) 1.00 (0.0) 78.6 (2.8) 12.8 (9.0) 1.0 (1.0)
5 5 0

18.5–24 104
86 72 14

89.5 (5.1) 83.3 (9.5) 83.7 (4.7) 51.7 (9.8) 96.0 (99.6)
18 15 3

24–36 109
83 68 15

90.1 (4.2) 88.5 (6.0) 81.9 (4.3) 40.6 (8.8) 97.8 (99.7)
26 23 3

Quality score
Higher than 75% 349

310 259 51
89.6 (3.4) 84.6 (5.0) 83.5 (2.1) 39.3 (9.8) 97.7 (99.6)

39 33 6

Lower than 75% 28
18 6 12

76.1 (10.0) 1.0 (0.0) 33.3 (12.3) 45.5 (3.1) 1.0 (1.0)
10 10 0

Prediction 
confidence threshold

Threshold 5% 251
216 201 15

92.6 (3.1) 91.4 (4.4) 93.1 (1.6) 68.1 (21.9) 98.5 (99.8)
35 32 3

Threshold 10% 279
243 219 24

92.4 (3.0) 88.9 (4.9) 90.1 (2.1) 57.1 (16.0) 98.2 (99.7)
36 32 4

Threshold 15% 297
258 228 30

92.0 (3.0) 89.7 (5.1) 88.4 (2.0) 53.8 (14.1) 98.3 (99.7)
39 35 4

Threshold 20% 311
270 238 32

91.6 (3.0) 87.8 (5.4) 88.1 (1.7) 52.9 (13.6) 97.9 (99.7)
41 36 5

Diagnostic groups

Autistic versus nonautistic 475
426a 343 83

86.4 (3.4) 81.6 (5.4) 80.5 (1.8) 32.5 (8.2) 97.4 (99.5)
49b 40 9

Autistic + DD–LD versus NT 475
328c 267 61

71.7 (2.7) 53.7 (3.9) 81.4 (2.1) 56.4 (5.8) 79.7 (98.8)
147d 79 68

DD–LD versus NT 426
328c 227 101

65.1 (3.3) 55.1 (5.2) 69.2 (2.6) 34.8 (3.7) 83.8 (98.6)
98e 54 44

Autistic versus DD–LD 426
49b 10 39

83.3 (3.9) 80.1 (6.0) 74.6 (4.3) 60.9 (6.2) 88.0 (99.4)
98e 73 25

The operating point (or positivity threshold) corresponds to the one maximizing the Youden index. PPV and NPV values were adjusted for population prevalence. Stratification by diagnosis 
group refers to neurotypical (NT; first row) and autistic (second row) except for the diagnostic groups category; aNonautistic group (neurotypical + DD–LD). bAutistic. cNeurotypical (NT). 
dAutistic + DD–LD. eDD–LD. Correct, number of correct diagnosis predictions; not correct, number of incorrect predictions.
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Fig. 3 | Distributions for each of the app variables. Empirical probability distributions of all nonmissing samples of the app variables are shown for all autistic (n = 49, 
orange) and neurotypical (n = 328, blue) participants. The app variables values for one neurotypical (red) and one autistic (purple) participant who were correctly 
classified are overlayed on the distributions.
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suggests that an objective digital screening approach that relies on 
direct quantitative observations of multiple behaviors may improve 
autism screening in diverse populations. Specificity levels for boys ver-
sus girls and for Hispanic/Latino versus non-Hispanic/Latino children 
were similar, whereas specificity was lower for Black children (53.6%) 
compared to White (82.7%) and other races (86.7%). There is a clear 
need for further research with larger samples to more fully assess the 
app’s performance based on race, ethnicity, sex and age differences. 
Such studies are underway.

We developed methods for automatic assessment of the quality 
of the app administration and prediction confidence scores, both of 
which could facilitate the use of SenseToKnow in real-world settings. 
The quality score provides a simple, actionable means of determining 
whether the app should be re-administered. This can be combined 
with a prediction confidence score, which can inform a provider about 
the degree of certainty regarding the likelihood a child will be diag-
nosed with autism. Children with uncertain values could be followed to 
determine whether autism signs become more pronounced, whereas 
children with high confidence values could be prioritized for referral or 
begin intervention while the parent waits for their child to be evaluated. 
Using SHAP analyses, the app output provides interpretable infor-
mation regarding which behavioral features are contributing to the 
diagnostic prediction for an individual child. Such information could 
be used prescriptively to identify areas in which behavioral interven-
tion should be targeted. This approach is supported by a recent study 
that included some participants in the present sample that examined 
the concurrent validity of the individual digital phenotypes generated 
by the app and reported significant correlations between specific 
digital phenotypes and several independent, standardized measures 
of autism-related behaviors, as well as social, language, cognitive and 
motor abilities29. Notably, the app quantifies autism signs related to 
social attention, facial expressions, response to language cues and 
motor skills, but does not capture behaviors in the restricted and 
repetitive behavior domain.

In the context of an overall pathway for autism diagnosis, our 
vision is that autism screening in primary care should be based on 
integrating multiple sources of information, including screening ques-
tionnaires based on parent report and digital screening based on direct 
behavioral observation. Recent work suggests that ML analysis of a 
child’s healthcare utilization patterns using data passively derived 
from the electronic health record (EHR) could also be useful for early 
autism prediction30. Results of the present study support this multi-
modal screening approach. A large study conducted in primary care 
found that the PPV of the M-CHAT/F was 14.6% and was lower for girls 
and children of color6. In comparison, the PPV of the app in the present 
study was 40.6%, and the app performed similarly across children of dif-
ferent sex, race and ethnicity. Furthermore, combining the M-CHAT-R/F 
with digital screening resulted in an increased PPV of 63.4%. Thus, our 
results suggest that a digital phenotyping approach will improve the 
accuracy of autism screening in real-world settings.

Limitations of the present study include possible validation bias 
given that it was not feasible to conduct a comprehensive diagnostic 
evaluation on participants considered neurotypical. This was miti-
gated by the fact that diagnosticians were naïve with respect to the app 
results. The percentage of autism versus nonautism cases in this study is 
higher than in the general population, raising the potential for sampling 
bias. It is possible that parents who had developmental concerns about 
their child were more likely to enroll the child in the study. Although 
prevalence bias is addressed statistically by calibrating the perfor-
mance metrics to the population prevalence of autism, this remains a 
limitation of the study. Accuracy assessments potentially could have 
been inflated due to differences in language abilities between the 
autism and DD groups, although the two groups had similar nonverbal 
abilities. Future studies are needed to evaluate the app’s performance 
in an independent sample with children of different ages and language 

and cognitive abilities. This study has several strengths, including its 
diverse sample, the evaluation of the app in a real-world setting during 
the typical age range for autism screening, and the follow-up of children 
up to the age of 4 years to determine their final diagnosis.

We conclude that quantitative, objective and scalable digital  
phenotyping offers promise in increasing the accuracy of autism 
screening and reducing disparities in access to diagnosis and inter-
vention, complementing existing autism screening questionnaires. 
Although we believe that this study represents a substantial step for-
ward in developing improved autism screening tools, accurate use of 
these screening tools requires training and systematic implementation 
by primary providers, and a positive screen must then be linked to 
appropriate referrals and services. Each of these touch points along the 
clinical care pathway contributes to the quality of early autism iden-
tification and can impact timely access to interventions and services 
that can influence long-term outcomes.
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maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
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Methods
Study cohort
The study was conducted from December 2018 to March 2020 
(Pro00085434). Participants were 475 children, 17–36 months, who 
were consecutively enrolled at one of four Duke University Health 
System (DUHS) pediatric primary care clinics during their well-child 
visit. Inclusion criteria were age 16–38 months, not ill and caregiver’s 
language was English or Spanish. Exclusion criteria were sensory or 
motor impairment that precluded sitting or viewing the app, unavail-
able clinical data and child too upset at their well-child visit29. Table 1 
describes sample demographic and clinical characteristics.

In total, 754 participants were approached and invited to partici-
pate, 214 declined participation and 475 (93% of enrolled participants) 
completed study measures. All parents or legal guardians provided 
written informed consent, and the study protocol (Pro00085434) was 
approved by the DUHS Institutional Review Board.

Diagnostic classification
Children were administered the M-CHAT-R/F2, a parent survey query-
ing different autism signs. Children with a final M-CHAT-R/F score of 
>2 or whose parents and/or provider expressed any developmental 
concern were provided a gold standard autism diagnostic evaluation 
based on the Autism Diagnostic Observation Schedule-Second Edi-
tion (ADOS-2)31, a checklist of ASD diagnostic criteria based on the 
American Psychiatric Association Diagnostic and Statistical Manual 
of Mental Disorders, Fifth Edition (DSM-5), and Mullen Scales of Early 
Learning32, which was conducted by a licensed, research-reliable  
psychologist who was naïve with respect to app results29. Mean length of 
time between app screening and evaluation was 3.5 months, which is a 
similar or shorter duration compared to real-world settings. Diagnosis 
of ASD required meeting full DSM-5 diagnostic criteria. Diagnosis of 
DD–LD without autism was defined as failing the M-CHAT-R/F and/or 
having provider or parent concerns, having been administered the 
ADOS-2 and Mullen scales and determined by the psychologist not to 
meet diagnostic criteria for autism, and exhibiting DD–LD based on 
the Mullen scales (scoring ≥9 points below the mean on at least one 
Mullen scales subscale; s.d. = 10).

In addition, each participant’s DUHS EHR was monitored through 
age 4 years to confirm whether the child subsequently received a diag-
nosis of either ASD or DD–LD. Following validated methods used in 
ref. 6, children were classified as autistic or DD–LD based on their 
EHR record if an International Classification of Diseases, Ninth and 
Tenth Revisions diagnostic code for ASD or DD–LD (without autism) 
appeared more than once or was provided by an autism specialty clinic. 
If a child did not have an elevated M-CHAT-R/F score, no developmental 
concerns were raised by the provider or parents, and there were no 
autism or DD–LD diagnostic codes in the EHR through age 4 years, 
they were considered neurotypical. There were two children classi-
fied as neurotypical who scored positive on the M-CHAT-R/F and were 
considered neurotypical based on expert diagnostic evaluation and 
had no autism or DD–LD EHR diagnostic codes.

Based on these procedures, 49 children were diagnosed with ASD 
(six based on EHR only), 98 children were diagnosed with DD–LD with-
out autism (78 based on EHR only) and 328 children were considered 
neurotypical. Diagnosis of autism or DD was made naïve to app results.

SenseToKnow app stimuli
The parent held their child on their lap while brief, engaging movies 
were presented on an iPad set on a tripod approximately 60 cm away 
from the child. The parent was asked to refrain from talking during 
the movies. The frontal camera embedded in the device recorded the 
child’s behavior at resolutions of 1280 × 720, 30 frames per second. 
While the child was watching the movies, their name was called three 
times by an examiner standing behind them at predefined timestamps. 
The child then participated in a bubble-popping game using their 

fingers to pop a set of colored bubbles that moved continuously across 
the screen. App completion took approximately 10 min. English and 
Spanish versions were shown29. The stimuli (brief movies) and game 
used in the app are illustrated in Fig. 1, Extended Data Fig. 4 and Sup-
plementary Videos 1 and 2. Consent was obtained from all individuals 
(or their parents or guardians) whose faces are shown in the figures or 
videos for publication of these images.

Description of app variables
CVA was used for the identification and recognition of the child’s face 
and the estimation of the frame-wise facial landmarks, head pose and 
gaze19. Several CVA-based and touch-based behavioral variables were 
computed, described next29.

Facing forward. During the social and nonsocial movies (Supplementary  
Video 1), we computed the average percentage of time the children 
faced the screen, filtering in frames using the following three rules: eyes 
were open, estimated gaze was at or close to the screen area and the 
face was relatively steady, referred to as facing forward. This variable 
was used as a proxy for the child’s attention to the movies19.

Social attention. The app includes two movies featuring clearly  
separable social and nonsocial stimuli on each side of the screen 
designed to assess the child’s social/nonsocial attentional preference 
(Supplementary Video 1). The variable gaze percent social was defined 
as the percentage of time the child gazed at the social half of the screen, 
and the gaze silhouette score reflected the degree to which the gaze 
clusters concentrated on specific elements of the video (for example, 
person or toy) versus spread out19.

Attention to speech. One of the movies features two actors, one on 
each side of the screen, taking turns in a conversation (Supplemen-
tary Video 1). We computed the correlation between the child’s gaze  
patterns and the alternating conversation, defined as the gaze speech 
correlation variable19.

Facial dynamics complexity. The complexity of the facial landmarks’ 
dynamics was estimated for the eyebrows and mouth regions of the 
child’s face using multiscale entropy. We computed the average com-
plexity of the mouth and eyebrows regions during social and non-
social movies, referred to as the mouth complexity and eyebrows 
complexity20.

Head movement. We evaluated the rate of head movement (computed 
from the time series of the facial landmarks) for social and nonso-
cial movies (Supplementary Video 1). Average head movement was 
referred to as head movement. Complexity and acceleration of the head 
movements were computed for both types of stimuli using multiscale 
entropy and the derivative of the time series, respectively22.

Response to name. Based on automatic detection of the name calls 
and the child’s response to their name by turning their head computed 
from the facial landmarks, we defined the following two CVA-based 
variables: response to name proportion, representing the proportion 
of times the child oriented to the name call, and response to name 
delay, the average delay (in seconds) between the offset of the name 
call and head turn23.

Blink rate. During the social and nonsocial movies, CVA was used to 
extract the blink rates as indices of attentional engagement, referred 
to as blink rate24.

Touch-based visual-motor skills. Using the touch and device kinetic 
information provided by the device sensors when the child played 
the bubble-popping game (Supplementary Video 2), we defined 
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touch popping rate as the ratio of popped bubbles over the number 
of touches, touch error s.d. as the standard deviation of the distance 
between the child’s finger position when touching the screen and 
the center of the closest bubble, touch average length as the average 
length of the child’s finger trajectory on the screen and touch average 
applied force as the average estimated force applied on the screen 
when touching it25.

In total, we measured 23 app-derived variables, comprising 19 
CVA-based and four touch-based variables. The app variables pair-
wise correlation coefficients and the rate of missing data are shown in 
Extended Data Figs. 5 and 6, respectively.

Statistical analyses
Using the app variables, we trained a model comprising K = 1,000 
tree-based XGBoost algorithms to differentiate diagnostic groups26. 
For each XGBoost model, fivefold cross-validation was used while 
shuffling the data to compute individual intermediary binary predic-
tions and SHAP value statistics (metrics mean and s.d.)28. The final 
prediction confidence scores, between 0 and 1, were computed 
by averaging the K predictions. We implemented a fivefold nested 
cross-validation stratified by diagnosis group to separate the data 
used for training the algorithm and the evaluation of unseen data33. 
Missing data were encoded with a value out of the range of the app 
variables, such that the optimization of the decision trees consid-
ered the missing data as information. Overfitting was controlled 
using a tree maximum depth of 3, subsampling app variables at a rate 
of 80% and using regularization parameters during the optimization 
process. Diagnostic group imbalance was addressed by weighting 
training instances by the imbalance ratio. Details regarding the algo-
rithm and hyperparameters are provided below. The contribution 
of the app variables to individual predictions was assessed by the 
SHAP values, computed for each child using all other data to train 
the model and normalized such that the features’ contributions to 
the individual predictions range from 0 to 1. A quality score was 
computed based on the amount of available app variables weighted 
by their predictive power (measured as their relative importance 
to the model).

Performance was evaluated using the ROC AUC, with 95% CIs com-
puted using the Hanley McNeil method34. Unless otherwise mentioned, 
sensitivity, specificity, PPV and NPV were defined using the operating 
point of the ROC that optimized the Youden index, with an equal weight 
given to sensitivity and specificity27. Given that the study sample autism 
prevalence (πstudy =

49
328

≈ 14.9%) differs from the general population in 
which the screening tool would be used (πpopulation ≈ 2%), we also report 
the adjusted PPV and NPV to provide a more accurate estimation of the 
app performance as a screening tool deployed at scale in practice. 
Statistics were calculated in Python V.3.8.10, using SciPy low-level 
functions V.1.7.3, XGBoost and SHAP official implementations V.1.5.2 
and V.0.40.0, respectively.

Computation of the prediction confidence score
The prediction confidence score was used to compute the model per-
formance and assess the certainty of the diagnostic classification 
prediction. Given that autism is a heterogeneous condition, it is antici-
pated that some autistic children will only display a subset of potential 
autism signs. Similarly, it is anticipated that neurotypical children will 
sometimes exhibit behaviors typically associated with autism. From a 
data science perspective, these challenging cases may be represented 
in ambiguous regions of the app variables space, as their variables 
might have a mix of autistic and neurotypical-related values. Therefore, 
the decision boundaries associated with these regions of the variable 
space may fluctuate when training the algorithm over different splits 
of the dataset, which we used to reveal the difficult cases. We counted 
the proportion of positive and negative predictions of each partici-
pant, over the K = 1,000 experiments. The distribution of the averaged 

prediction for each participant (which we called the prediction confi-
dence score; Extended Data Fig. 1) shows participants with consistent 
neurotypical predictions (prediction confidence score close to 0; at 
the extreme left of Extended Data Fig. 1) and with consistent autistic 
predictions (prediction confidence score close to 1; at the extreme 
right of Extended Data Fig. 1). The cases in between are considered 
more difficult because their prediction fluctuated between the two 
groups over the different training of the algorithm. We considered 
conclusive the administrations whose predictions were the same in 
at least 80% of the cases (either positive or negative predictions) and 
inconclusive otherwise. Interestingly, as illustrated in Extended Data 
Fig. 1, the prediction confidence score can be related to the SHAP 
values of the participants. Indeed, conclusive administrations of the 
app have app variables contributions to the prediction that point to 
the same direction (either toward a positive or negative prediction), 
while inconclusive administrations show a mix of positive and negative 
contributions of the app variables.

XGBoost algorithm implementation
XGBoost algorithm is a popular model based on several decision trees 
whose node variables and split decisions are optimized using gradi-
ent statistics of a loss function. It constructs multiple graphs that 
examine the app variables under various sequential ‘if’ statements. 
The algorithm progressively adds more ‘if’ conditions to the decision 
tree to improve the predictions of the overall model. We used the 
standard implementation of XGBoost as provided by the authors26. We 
used all default parameters of the algorithms, except the ones in bold 
that we changed to account for the relatively small sample size and 
the class imbalance, and to prevent overfitting. n_estimators = 100; 
max_depth = 3 (default is 6, prompt to overfitting in this setting); 
objective = ‘binary:logistic’; booster = ‘gbtree’; tree_method = ‘exact’ 
instead of ‘auto’ because the sample size is relatively small; colsam-
ple_bytree = 0.8 instead of 0.5 due to the relatively small sample size; 
subsample = 1; colsumbsample = 0.8 instead of 0.5 due to the relatively 
small sample size; learning_rate = 0.15 instead of 0.3; gamma = 0.1 
instead of 0 to prevent overfitting, as this is a regularization parameter; 
reg_lambda = 0.1; alpha = 0. Extended Data Fig. 7 illustrates one of the 
estimators of the trained model.

SHAP computation
The SHAP values measure the contribution of the app variables to the 
final prediction. They measure the impact of having a certain value for 
a given variable in comparison to the prediction we would be making if 
that variable took a baseline value. Originating in the cooperative game 
theory field, this state-of-the-art method is used to shed light on ‘black 
box’ ML algorithms. This framework benefits from strong theoretical 
guarantees to explain the contribution of each input variable to the 
final prediction, accounting and estimating the contributions of the 
variable’s interactions.

In this work, the SHAP values were computed and stored for  
each sample of the test sets when performing cross-validation, that is, 
training a different model every time with the rest of the data.  
Therefore, we needed to normalize the SHAP values first to compare 
them across different splits. The normalized contribution of the app 
variable was denoted as k(k ∈ [1,K]) , for an individual i(i ∈ [1,n]) , is 

ϕi
k,normalized =

ϕi
k

∑K

k=1 |ϕ
i
k |
∈ [−1, 1]. We conserved the sign of the SHAP values 

as it indicates the direction of the contribution, either toward autistic 
or neurotypical-related behavioral patterns.

In the learning algorithm used, being robust to missing values, an 
individual  may have a missing value for variable k, which will be used 
by the algorithm to compute a diagnosis prediction. In this case, the 
contribution (that is, a SHAP value) of the missing data to the final 
prediction, still denoted as ϕi

k
, accounts for the contribution of this 

variable being missing.
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To disambiguate the contribution of actual variables from their 
missingness, we set to 0 the SHAP value associated with variable k  for 
that sample and defined as ϕi

Zk
 the contribution of having variable k  

missing for that sample. This is illustrated in Extended Data Fig. 2.
This process leads to 2NK  SHAP values for the study cohort, used 

to compute:

•	 The importance of variable k  to the model as the average contribu-
tion of that variable is measured as ϕk =

1
n
∑n

i=1 |ϕ
i
k
| ∈ [0, 1]. These 

contributions are represented in dark blue in Extended Data  
Fig. 2b.

•	 The importance of the missingness of variable k  to the model, 
measured as the average contribution of the missingness of that 
variable as follows: ϕZk

= 1
n
∑n

i=1 |ϕ
i
Zk
| ∈ [0, 1]. These contributions 

are represented in sky blue in Extended Data Fig. 2b.

Computation of the app variables confidence score
Given the set of app variables (x i

k
)
k∈[1,K]

 for a participant i, we first com-
pute a measure of confidence (or certainty) of each app variable, 
denoted by (ρi

k
)
k∈[1,K]

. The intuition behind the computation of these 

confidence scores follows the weak law of large numbers, which states 
that the average of a sufficiently large number of observations will be 
close to the expected value of the measure. We describe next the com-
putation of the app variables confidence scores ρ.

•	 As illustrated in Extended Data Fig. 8, some app variables are 
computed as aggregates of several measurements. For instance, 
the gaze percent social variable is the average percentage the 
participants spent looking at the social part of two of the 
presented movies. The confidence ρi

k
 of an aggregated variable 

k  for participant i is the ratio of available measurements 
computed for participant i over the maximum number of 
measurements to compute that variable. Reasons for missing a 
variable for a movie include (1) the child did not attend to 
enough of the movie to trust the computation of that measure-
ment, (2) the movie was not presented to the participant due to 
technical issues or (3) the administration of the app was 
interrupted.

•	 For the two variables related to the participant’s response when 
their name is called, namely the proportion of response and the 
average delay when responding, the confidence score was the 
proportion of valid name-call experiments. Because their name 
was called a maximum of three times, the confidence score 
ranges from 0/3 to 3/3.

•	 For the variables collected during the bubble-popping game, we 
used as a measure of confidence the number of times the partici-
pant touched the screen. The confidence score is proportional 
to the number of touches when it is below or equal to 15, with 1 
for higher number of touches and 0 otherwise.

•	 The confidence score of a missing variable is set to 0.

Computation of the app variables predictive power
When assessing the quality of the administration, one might want to 
put more weight on variables that contribute the most to the predictive 
performances of the model. Therefore, to compute the quality score 
of an administration, we used the normalized app variables importance 
(G (Xk))k∈[1,K] to weight the app variables. Note that for computing the 
predictive power of the app variables, we used only the SHAP values of 
available variables, setting to 0 the SHAP values of missing variables.

Computation of the app administration quality score
A quality score is computed for each app administration, based on 
the amount of available information computed using the app data 
and weighted by the predictive ability (or variables importance) of 

each of the app variables. This score, between 0 and 1, quantifies the 
potential for the collected data on the participant to lead to a meaning-
ful prediction of autism.

After we compute for each administration i the confidence score 
(ρi

k
)
k∈[1,K]

 of each app variable (x i
k
)
k∈[1,K]

 and gain an idea of their expected 

predictive power (EX[G (Xk)])k∈[1,K], the quality score is computed as

Quality score (x i) =
K

∑
k=0

EX [G (Xk)] ρi
k
.

When all variables are missing, (ρi
k
)
k∈[1,K]

= (0,… ,0), the score is equal 
to 0, and when all the app variables are measured with the maximum 
amount of information, (ρi

k
)
k∈[1,K]

= (1,… , 1), then the quality score is 
equal to the sum of normalized variables contributions, which is equal 
to 1. Extended Data Fig. 9 shows the distribution of the quality score.

Adjusted/calibrated PPV and NPV scores
The prevalence of autism in the cohort analyzed in this study, as in many 
studies in the field, differs from the reported prevalence of autism in 
the broader population. While the 2018 prevalence of autism in the 
United States is of 1 over 44 (πpopulation =

1
44

≈ 2.3% ), the analyzed  
cohort in this study is composed of 49 autistic participants and 328 
nonautistic participants (πpopulation =

49
328

≈ 14.9%). Some screening tool 
performance metrics, such as the specificity, sensitivity or the area 
under the ROC curve, are invariant to such prevalence differences, as 
their values do not depend on the group ratio (for example, the sensi-
tivity only depends on the measurement tool performance on the 
autistic group; the specificity only depends on the measurement tool 
performance on the nonautistic group). Therefore, providing an unbi-
ased sampling of the population and a large enough sample size, the 
reported prevalence-invariant metrics should provide a good estimate 
of what would be the value of those metrics if the tool were imple-
mented in the general population.

However, precision-based performance measures, such as the 
precision (or PPV), the NPV or the Fβ  scores depend on the autism 
prevalence in the analyzed cohort. Thus, these measures provide inac-
curate estimates of the expected performance when the measurement 
tool is deployed outside of research settings.

Therefore, we now report the expected performance we would 
have if the autism prevalence in this study was the same as that in the 
general population, following the procedure detailed in Siblini et al.35

For a reference prevalence, πpopulation , and a study prevalence 
ofπstudy, the corrected PPV (or precision), corrected NPV and Fβ are:

PPVC =
TP

TP+
πstudy (1−πpopulation )

πpopulation (1−πstudy )
FP
,

Fβ,C = (1 + β2) PrecisionC .Sensitivity
β2Sensitivity+PrecisionC

,

and NPVC =
πstudy (1−πpopulation )

πpopulation (1−πstudy )
TN

FN+
πstudy (1−πpopulation )

πpopulation (1−πstudy )
TN
.
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of autistic children and other key representatives from the broader 
stakeholder community.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Per National Institutes of Health policy, individual-level descriptive 
data from this study are deposited in the National Institute of Mental 
Health National Data Archive (NDA; https://nda.nih.gov) using an 
NDA Global Unique Identifier (GUID) and made accessible to mem-
bers of the research community according to provisions defined 
in the NDA Data Sharing Policy and Duke University Institutional 
Review Board.

Code availability
Custom code used in this study is available at: https://github.com/
samperochon/Perochon_et_al_Nature_Medicine_2023.
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Extended Data Fig. 1 | Distribution of the prediction confidence scores for the autistic and neurotypical groups. Participants having a prediction confidence 
score closer to 0 or 1 correspond to app variables either consistently related to neurotypical or autistic behavioral phenotypes.
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Extended Data Fig. 2 | Present and missing app variables’ contributions to 
the predictions. Illustration of the computation of the variables contributions 
for present and missing app variables (a), and normalized variables contribution 
for discriminating autistic from neurotypical participants, including the 

contribution of missing variables (b). Note that only the contributions of 
available variables (in dark blue) are used to compute the variables importance 
used in the computation of the quality score.
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Extended Data Fig. 3 | Additional illustrative digital phenotypes. (a) An 
autistic girl who did not receive the M-CHAT-R/F. Her digital phenotype shows 
a mix of autistic and neurotypical-related variables, as illustrated in her SHAP 
values and prediction confidence score of .48. (b) App variables contributions 
of a misclassified neurotypical participant, whose digital phenotype was 
typically associated with autistic behavioral patterns. (c) App variables of 

a misclassified autistic participant, whose digital phenotype was typically 
associated with neurotypical patterns. Note that even misclassifications are 
provided with detailed explanations by the proposed framework. SHAP values 
of these participants are reported in Supplementary Fig. 1 of the Supplementary 
Information with gray, green and sky-blue points.
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Extended Data Fig. 4 | SenseToKnow app administration and movies.  
(a) An illustrative example of the app administration, a toddler watches a set of 
developmentally appropriate movies on a tablet (see Video 1 online). (b) After 
watching the movies, participants play a ‘bubble popping’ game (see Video 2 
online). (c) Illustration of the movies presented (in order), from left to right. 
The movies are referred to as: Floating Bubbles, Dog in Grass, Spinning Top, 

Mechanical Puppy, Blowing Bubbles, Rhymes and Toys, Make Me Laugh, Playing 
with Blocks, and Fun at the Park. Around each image representing the movies, 
a green/yellow box indicates if the movies present mainly social or non-social 
content. Movies are presented in English or Spanish and include actors of diverse 
ethnic/racial backgrounds.
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Extended Data Fig. 5 | App variables pairwise correlation coefficients.  
‘W,’ ‘M,’ and ‘S’ denote Weak, Medium, and Strong associations, respectively. An 
association between two variables was considered weak if their Spearman rho 
correlation coefficient was higher than 0.3 in absolute value, 0.5 for a medium 

association, and 0.5 for a strong association. We used a two-sided Spearman’s 
rank correlation test to test. No adjustment for multiple comparisons were made. 
*: p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.
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Extended Data Fig. 6 | Rate of missing data per app variables. For each variable, we computed the number of missing data over the sample size. As we can observe, 
the rate of missingness is relatively low, with a higher percentage in the case of the average delay when responding to the name calls. This is expected since participants 
who did not respond to the name calls miss this variable.
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Extended Data Fig. 7 | Sample of one of the XGBoost optimized trees. The final leaf score attributed to a participant on this tree depends on the value of their app 
variables. The final prediction is computed averaging the leaf scores of the 100 estimators.
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Extended Data Fig. 8 | Illustration of the different steps to compute the 
quality score. (a) Computation of the confidence score for each app variable. 
This score accounts for how many times the measurement was available and 
resulted in a confidence score between 0 and 1. (b) Computation of the app 
variables importance. These scores are normalized and represent the average 
contribution of each app variable to the model performances. See Fig. 2-c where 

actual numbers are reported. Note that (i) these scores are global (as computed 
from all participants’ SHAP values) and fixed to compute the quality score of all 
participants and (ii) missing data were discarded following the methodology 
explained in Extended Data Fig. 2 to estimate the true importance of each app 
variable when they were available. (c) Computation of the quality score as a 
weighted sum of the confidence score by the variables importance.
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Extended Data Fig. 9 | Distribution of the quality score of the analyzed cohort. A quality score close to 1 implies an administration with all app variables computed, 
while a quality score close to 0 implies that none of the app variables were collected during the assessment.
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Behavioural & social sciences study design
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Study description

Research sample

Sampling strategy

Data collection

Timing

Data exclusions

Non-participation

Randomization

Data were collected during a well-child visit to primary care. Parents held their child on their lap while brief, engaging movies were presented on an iPad set on a tripod approximately 60 cm away from the child. Parents were asked to refrain from talking during the movies. The 
frontal camera embedded in the device recorded the child’s behavior at resolutions of 1280 × 720, 30 frames per second. While children were watching the movies, their name was called three times by an examiner standing behind them at pre-defined timestamps. 
The children then participated in a game using their finger to pop a set of colored bubbles that moved continuously across the screen. App completion took <10 minutes. Study staff responsible for app administration were blind to the child’s diagnosis and clinicians resp
onsible for making the child’s clinical diagnosis were blind to the SenseToKnow app’s diagnostic classification.

269 boys; 206 girls

 425 Not Hispanic/Latino; 50 Hispanic/Latino; 4 American Indian/Alaska Native; 7 Asian; 54 Black or African American; 
47 More than one race reported; 15 Not reported/Other

Participants were patients at one of four Duke University Health System pediatrics primary care clinics who were 17-36 months of age and did not have 
significant sensory or motor impairments, were not ill, and whose parents spoke English or Spanish. Of the 475 participants, 49 were diagnosed with autism 
spectrum disorder, 98 with developmental or language delay without autism, and 328 were considered to have neurotypical development.

Parents or legal guardians of potential participants were approached by study staff during their child’s well-child visit to a Duke University Health System (DUHS) pediatric primary care clinic and invited to participate in the present study. 
The clinic population roughly matches that of Durham, NC; approximately 86% of children living in Durham County, North Carolina, receive their primary care within the DUHS. Potential biases include exclusion of children with sensory 
and/or motor impairments and those whose parents did not speak English or Spanish. Racial and ethnic diversity of enrolled participants was greater for participants diagnosed with autism or developmental/language delay than for those
 with neurotypical development, with the clinical groups more closely matching the ethnic and racial distribution of the DUHS and Durham County, NC.

Duke University Institutional Review Board

Prospective, non-experimental study design based on quantitative data.
The research sample was chosen based on the intended use of the SenseToKnow app as an autism screening tool administered as part of a child’s routine 18-24 month well child visit in pediatric primary care. Participants were representative of patients at one 
of four Duke University Health System (DUHS) pediatrics primary care clinics who were 17-36 months of age and did not have significant sensory or motor impairments, were not ill, and whose parents spoke English or Spanish. Racial and ethnic diversity 
of enrolled participants was greater for participants diagnosed with autism or developmental/language delay than for those with neurotypical development, with the clinical groups more closely matching the ethnic and racial distribution of the DUHS and Durham County, NC.

Consecutive recruitment and enrollment of Duke University Health System patients in pediatric primary care clinics and sample size providing adequate statistical power 
to test of the hypothesis that the sensitivity and specificity of the SenseToKnow app for autism detection relative to expert clinical diagnosis are > 70% (alpha=0.05).

The study was conducted from December 2018 to March 2020.

No data excluded.

754 patients invited to participate; 214 declined; 513 eligible and consented; 475 (93% of patients enrolled) completed study measures.

Diagnostic classification was made naive to results of the autism screening app results. Children were administered the Modified Checklist for Autism in Toddlers (M-CHAT-R/F), 
a parent survey querying different autism signs. Children with a final M-CHAT-R/F score of >2 or whose parents and/or provider expressed any developmental concern were 
provided a gold standard autism diagnostic evaluation based on the Autism Diagnostic Observation Schedule–Second Edition (ADOS-2),2 DSM-5 criteria checklist, 
and Mullen Scales of Early Learning,3 conducted by a licensed, research-reliable psychologist who was blind with respect to app results. Mean duration between 
app screening and evaluation = 3.5 months, which is a similar or shorter duration compared to real-world settings. Diagnosis of autism spectrum disorder required 
meeting full DSM-5 diagnostic criteria. Diagnosis of developmental or language delay without autism (DD-LD) was defined as failing the M-CHAT-R/F and/or having 
provider or parent concerns and having been administered the ADOS-2 and Mullen Scales and determined by the psychologist not to meet diagnostic criteria for autism 
and exhibiting developmental and/or language delay based on the Mullen Scales (scoring > 9 points below the mean on at least one Mullen Scales subscale; SD=10).

In addition, each participant’s Duke University Health System electronic health record (EHR) was monitored through age 4 years to confirm whether the child subsequently 
received a diagnosis of either autism spectrum disorder or DD-LD. Following validated methods used by Guthrie et al., children were classified as autistic or DD-LD based on 
their EHR record if an ICD-9/10 diagnostic code for autism spectrum disorder or DD-LD (without autism) appeared more than once or was provided by an autism specialty clinic.
4 If a child did not have an elevated M-CHAT-R/F score, no developmental concerns were raised by the provider or parents, and there were no autism or DD-LD diagnostic codes
 in the EHR through age four, they were considered neurotypical. There were 2 children classified as neurotypical who scored positive on the M-CHAT-R/F who were considered 
neurotypical based on expert diagnostic evaluation and had no autism or DD-LD EHR diagnostic codes.
Based on these procedures, 49 children were diagnosed with autism spectrum disorder (6 based on EHR only), 98 children were diagnosed DD-LD without autism 
(78 based on EHR only), and 328 children were considered neurotypical.
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Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
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DUHSPro00085434

Duke University Protocol # Pro00085434

Data was collected in Duke Primary Care pediatric clinics from December 2018 through March 2020.

Outcome was a diagnostic classification of autism spectrum disorder (DSM-5 criteria), language or developmental delay 
without autism, or neurotypical development as assessed via expert clinical evaluation and/or diagnostic codes in the 
patient's electronic health record. 
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