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Optimized glycemic control of type 2 
diabetes with reinforcement learning:  
a proof-of-concept trial

Guangyu Wang    1,2,9 , Xiaohong Liu2,9, Zhen Ying1,9, Guoxing Yang2, 
Zhiwei Chen    3, Zhiwen Liu4, Min Zhang5, Hongmei Yan1, Yuxing Lu6, 
Yuanxu Gao    6, Kanmin Xue    7, Xiaoying Li    1,8  & Ying Chen    1 

The personalized titration and optimization of insulin regimens for treatment 
of type 2 diabetes (T2D) are resource-demanding healthcare tasks. Here 
we propose a model-based reinforcement learning (RL) framework (called 
RL-DITR), which learns the optimal insulin regimen by analyzing glycemic 
state rewards through patient model interactions. When evaluated during 
the development phase for managing hospitalized patients with T2D, 
RL-DITR achieved superior insulin titration optimization (mean absolute 
error (MAE) of 1.10 ± 0.03 U) compared to other deep learning models and 
standard clinical methods. We performed a stepwise clinical validation of the 
artificial intelligence system from simulation to deployment, demonstrating 
better performance in glycemic control in inpatients compared to junior and 
intermediate-level physicians through quantitative (MAE of 1.18 ± 0.09 U) 
and qualitative metrics from a blinded review. Additionally, we conducted a 
single-arm, patient-blinded, proof-of-concept feasibility trial in 16 patients 
with T2D. The primary outcome was difference in mean daily capillary 
blood glucose during the trial, which decreased from 11.1 (±3.6) to 8.6 (±2.4) 
mmol L−1 (P < 0.01), meeting the pre-specified endpoint. No episodes of severe 
hypoglycemia or hyperglycemia with ketosis occurred. These preliminary 
results warrant further investigation in larger, more diverse clinical studies. 
ClinicalTrials.gov registration: NCT05409391.

Type 2 diabetes (T2D) is one of the most prevalent chronic diseases 
and leads to a considerable rate of death and social burden world-
wide1. Patients with T2D with poor glycemic control require insu-
lin therapy in the course of disease progression. Although good 

glycemic control can markedly reduce diabetic complications and 
mortality in hospitalized diabetic patients, it remains challenging 
and time-consuming to adjust insulin dosages within effective and 
safe limits2,3.
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benefits in improving glycemic control for inpatients with T2D through 
dynamic management of subcutaneous insulin injections. Further 
investigation in larger, multi-center clinical studies is warranted to 
demonstrate generalizability of the tool.

Results
Dataset characteristics and system overview
A total of 12,981 inpatients with T2D with 119,941 treatment days were 
included in the AI model development phase analysis. The mean age was 
59.2 ± 14.5 years, and 42.6% were females. The demographics and clini-
cal characteristics of patients are presented in Extended Data Table 1.

To represent the patient information into a dynamic evolution pro-
cess, we processed the patient data into multi-dimensional temporal 
standardized features. We used a ClinicalBERT pre-trained model and 
natural language processing (NLP) pipeline to extract the clinically 
relevant sequential features from real-world data (Methods). All the fea-
tures were discretized to seven timesteps to obtain multi-dimensional 
temporal features (Fig. 1).

Our proposed RL-DITR as a model-based RL consists of two compo-
nents: a patient model to characterize the diabetes progressive state by 
learning the environment’s dynamics and a policy model for manage-
ment of diabetes by planning with respect to the learned model. Spe-
cifically, the patient model characterizes diabetes status via a dynamics 
function and a prediction function. Given the input of temporal features 
of a patient trajectory (for example, admission status, hospitalized 
observation and treatment plan) from admission to the timestep T, the 
dynamics function generated the hidden states of the patient. The hid-
den state is then updated iteratively and subsequently unrolled recur-
rently for ahead of K steps. At each timestep T + k (k < K), the prediction 
function receives as input the generated hidden state from the previous 
step and outputs the prediction of the clinical status, including blood 
glucose value and ‘within target range’ (WTR) for glycemia control (Fig. 1a 
and Extended Data Fig. 1). WTR indicates the blood glucose value within 
the target range 3.9–10.0 mmol L−1 for each timepoint5,26.

Then, we constructed the policy model to make multi-step plan-
ning for long-term care. At each step, the policy model is optimized 
by interacting with the patient model as an environment. The policy 
model was trained through a fusion of SL and patient model-based RL 
with joint learning. Through patient model-based RL, the policy model 
can learn individualized treatment trajectories and improve long-term 
clinical outcome. At the same time, it learns the treatment practices 
of clinicians in treating patients with T2D within a reasonable range 
of dosages by SL.

Performance of AI model to predict patient glycemic states
To build a dynamic and individualized AI clinician for managing patients 
with T2D, we constructed the model-based RL framework. We first 
tested whether a patient’s glucose trajectories could be predicted by 
the patient model with two validation sets, including an internal test 
set and an external test set. For the comparison of actual state trajec-
tories and model-based state roll-outs, the predicted glucose values 
follow the transition tendency accurately in both the internal test and 
the external test set (Fig. 2a,b). Case study results also suggest that the 
AI model was able to generate personalized information of a patient’s 
glucose state in terms of large timestep (k = 7). For the overall glucose 
prediction, we aggregated the individual-level prediction to produce 
population-level results, which were then used for further analysis. 
The AI model demonstrated good performance in the internal test set, 
achieving a Pearson correlation coefficient (PCC) of 0.70 (95% confi-
dence interval (CI): 0.70, 0.71) and a mean absolute error (MAE) of 2.13 
(95% CI: 2.12, 2.15) mmol L−1 (Fig. 2c). When evaluated on the external 
test set, the AI model achieved a PCC of 0.71 (95% CI: 0.70, 0.72) and an 
MAE of 2.28 (95% CI: 2.25, 2.30) mmol L−1 (Fig. 2d). As shown in Extended 
Data Table 2, the results indicate that our model outperformed the 
other baseline models with a substantial improvement.

Although a series of clinical guidelines on rational insulin use for 
patients with T2D have been proposed by experts4, insulin dosage 
titration is typically based on the clinical guidance combined with 
physicians’ experience to achieve targeted glycemic goals5 and can-
not fully take into consideration the variability for each patient in the 
real world6,7. Some treatment regimens may suit some patients better 
than others or only for some period of time for an individual as their 
disease condition progresses. Therefore, personalized and dynamic 
titration of insulin is of great clinical importance to reduce blood glu-
cose fluctuations and prevent associated comorbidities and mortality 
in patients with T2D.

Artificial intelligence (AI) approaches have emerged as potentially 
powerful tools to aid in disease diagnosis and management8–10. Existing 
approaches have used supervised learning (SL), in which a list of correct 
labels must be provided, for disease detection or incidence predic-
tion11,12. However, SL-based methods assume the expert performance 
to be optimal, which is not always consistent with real-world outcomes 
due to the complexity of human metabolism and differential responses 
to drugs among individuals.

Reinforcement learning (RL) has been proposed as a subfield 
of machine learning, enabling an agent to learn effective strategies 
through trial-and-error interactions with a dynamic environment13. 
RL could potentially offer an attractive solution for constructing 
adaptable policies in various healthcare domains, especially in the 
dynamic treatment regimens (DTRs) for long-term patient care14. 
With the increasing availability of medical record data, RL has been 
used in sequential medical decision-making systems in various clinical 
scenarios, including sepsis15, coronary heart disease16 and glycemic 
regulation by artificial pancreas systems17. Although several studies 
have used model-free RL models for treatment recommendation18–20, 
these approaches generally face challenges, such as sample efficiency 
and potential for unsafe policies when accurate simulation of the 
environment is lacking21,22. As safety is a primary concern in complex or 
long-term treatment scenarios, model-based RL might offer potential 
in simulating diverse scenarios, thereby providing reliable forward 
planning at decision time22. Despite RL methods’ potential in optimiz-
ing treatment regimen based on the reward set by patient outcomes, 
their real-world application in therapy remains limited due to potential 
risks in clinical practice23,24. Therefore, the incorporation of RL-based 
methods from development to adoption into the real-world clinical 
workflow requires comprehensive evaluation25.

In the present study, we constructed a large dataset of electronic 
health records (EHRs) of hospitalized patients with T2D with continu-
ous recording of insulin use protocols and glycemic response for at 
least 7 d. Every patient was represented as a temporal sequence of 
feature vector, including demographics, blood biochemical meas-
urements, medications and insulin usage information. Based on the 
sequential inpatient EHR data, we developed an RL-based dynamic 
insulin titration regimen (RL-DITR), which consisted of a patient model 
to track an individual’s evolving glucose states and a policy model for 
multi-step planning in long-term care. This model-based RL approach 
learns the optimal policy by iteratively interacting with the patient 
model as the environment. Furthermore, we introduced SL to guar-
antee the safe states by using clinician expertise while optimizing 
outcomes through trial-and-error interactions with a dynamic envi-
ronment, which could mimic and potentially augment the physicians 
in clinical decision-making. To evaluate our proposed AI system in 
clinical use25, we conducted stepwise clinical evaluations of the AI 
system in inpatient management from development to deployment, 
including (1) an internal validation of AI versus physician using both 
quantitative metrics and qualitative evaluations; (2) an external valida-
tion of AI versus physician using qualitative clinical evaluations with 
test–retest; (3) a prospective deployment study with test–retest; and 
(4) a final proof-of-concept feasibility clinical trial (Fig. 1). The clinical 
evaluations indicated that the RL-DITR system could potentially offer 
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We further validated the AI’s performance in predicting WTR  
(3.9–10.0 mmol L−1) of glucose values, which physicians can use to evalu-
ate an individual’s overall insulin response and avoid the risk of hypergly-
cemic or hypoglycemic events. When evaluated using the internal test set, 
the AI model achieved an area under the curve of 0.830 for the prediction 
of WTR of preprandial blood glucose values, 0.808 for the prediction 
of WTR of postprandial blood glucose values and 0.848 for the aver-
age performance (Extended Data Fig. 2c,d). The model showed reliable 
performance validated on the external test set. We further investigated 
the model performance on predicting daily WTR status (glucose values 
within the target range of 3.9–10.0 mmol L−1 over the past 24 h) of patients 
along the timeline (Fig. 2e,f). We observed that the model becomes more 
accurate with more information input about a patient as time goes on.

We investigated the correlation between the patient outcome 
(WTR ratio) and the cumulative rewards estimated by the patient 

model. The AI model demonstrated good performance with a Spear-
man correlation coefficient (SCC) of 0.80 in the internal test set and 
an SCC of 0.73 in the external test set (Extended Data Fig. 2e,f). We 
observed that treatment actions with low cumulative rewards were 
associated with a low rate of WTR ratio, whereas treatments with high 
cumulative rewards achieved better glucose outcome with a high rate 
of WTR ratio. The results show that the patient model evaluation is 
highly correlated with the clinical outcome and could be used as the 
interaction environment for the RL model.

Insulin titration optimization using model-based RL system
We further evaluated the RL system’s performance for optimization 
of personalized insulin recommendations. Figure 3a,b shows the cor-
relation between the clinician policy and the AI policy in the develop-
ment phase (internal and external test sets). For daily treatment dosage 
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Fig. 1 | Schematic illustration of the AI system from development to 
deployment for dynamic insulin dosage titration for patients with T2D.  
a, Model development of the AI system—a model-based RL-DITR system 
consisting of ‘patient model’ and ‘policy model’. Left, we constructed a large 
multi-center EHR dataset consisting of records of long-term continuous clinical 
observation and medication of hospitalized patients with T2D. Middle, with 
the standardized time-series data as input, the patient model generated hidden 
state transition, status prediction and reward estimation. Right, the policy 

model is optimized by interacting with the patient model as an environment. 
b, Comprehensive evaluation of the AI system step-by-step for integration into 
the real-world clinical workflow. Left, we conducted multi-center retrospective 
studies, including quantitative and qualitative evaluations in the internal and 
external cohorts. Middle, a prospective study with test–retest was conducted in 
an academic hospital after AI deployment in the HIS. Right, a proof-of-concept 
feasibility trial was conducted to evaluate the glycemic control of and physician 
satisfaction with the AI system.
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prediction, the AI policy achieved an MAE of 1.10 U (95% CI: 1.07, 1.12) on 
the internal test set and a good prediction performance on the external 
test set with an MAE of 1.20 U (95% CI: 1.15, 1.26). We found that the 
model becomes more accurate as the observed time window expands 
due to more trial-and-error interactions with the environment. The 
performance of the model was accurate when validated on different 
insulin types (including short/rapid-acting insulin, long-acting insulin 
and biphasic/premixed insulin) (Extended Data Fig. 3a–f).

Our proposed approach was then tested against several SL meth-
ods, including convolutional neural network (CNN), long-short term 
memory (LSTM), transformer and the standard clinical method. We 
found that our model-based RL method was able to export an accurate 
treatment regimen and outperformed other methods in the internal 
test set and the external test set (Extended Data Table 3). The results 
presented in Extended Data Table 3 demonstrate that our policy model, 
guided by our blood glucose model, outperformed other models sub-
stantially. We conducted further evaluation of the RL model by employ-
ing off-policy evaluation of weighted importance sampling (WIS)27, 
demonstrating the model’s superior performance in comparison to 
other methods (Extended Data Fig. 3g).

Figure 3c,d shows the dynamic treatment strategies generated 
by clinicians and model-based RL for two individual patients on dif-
ferent hospital days. The results demonstrated an overall trend of high 
similarity/correlation between the daily prescriptions of the clinicians 
and AI policies, indicating that AI was able to learn and mimic physi-
cian practice. We further investigated whether the patient outcome 
(WTR ratio) varied with the difference of the dose actually adminis-
tered and the dose suggested by the RL method by correlation analysis  
(Fig. 3e,f). The results showed that patients who received doses similar 
to the doses recommended by the AI algorithm can typically achieve 
desired glucose control, both in the internal set (interquartile range, 
−2 to 0 U) and the external test set (interquartile range, 0–1 U). When 
the dose actually administered differed from the dose suggested by 
the AI algorithm, the average outcome got worse.

Simulation study of performance of AI versus physicians
First, we conducted two retrospective simulation studies including an 
internal cohort and an external cohort for validation of the AI’s feasibil-
ity. For the internal validation cohort, we compared the performance 
between our AI system and human physicians in giving insulin dosage 
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Fig. 2 | Performance of AI model system in the prediction of patient state 
trajectory. a,b, Comparison of actual patient trajectories and model-based 
state roll-outs for patients from the internal test set (a) and the external test set 
(b). Each predicted value, based on an individual patient, is generated within K 
steps from the last timestep of the previous day (K = 7 for 1 d ahead of time). The 
blue curve is measured patient glucose values, and the orange curve is predicted 
glucose values. c,d, Correlation analysis of the predicted glucose value versus 
the actual glucose value generated using the AI glucose model in the internal 
test set (c) and the external test set (d). e,f, ROC curves showing performance 

of daily WTR prediction on the internal test set (e) (n = 20,961 treatment days) 
and the external test set (f) (n = 16,077 treatment days). Each predicted value 
is based on the last timestep of the previous day. Box plots show the median 
(center lines), interquartile range (hinges) and 1.5× interquartile range (whiskers) 
(bootstrapping with n = 1,000 resamples). Each value generated by our RL-DITR 
system represents an individual-level prediction. These were then aggregated 
to produce population-level results. The correlation analysis is shown with 95% 
CIs in c and d. AUROC, area under the receiver operating characteristic; ROC, 
receiver operating characteristic.
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recommendation using 40 patients with T2D (with 226 insulin data 
points) (Extended Data Fig. 4a,c). A total of 15 physicians with different 
levels of clinical experience were enrolled and assigned to three groups: 
group 1, junior physicians with 1–3 years of clinical experience (n = 5); 
group 2, intermediate physicians with 4–7 years of clinical experience 
(n = 5); and group 3, senior physicians with 8–20 years of clinical experi-
ence (n = 5). RL-generated and physician-generated dosage titrations 
were evaluated by an expert panel, including quantitative metrics and 
qualitative metrics from clinical experience.

Taking the dosage recommended by the expert panel as refer-
ences, the MAE of the AI system was 1.18 U, outperforming junior phy-
sicians in group 1 with 1.46 U and intermediate physicians in group 2 
with 1.27 U and slightly inferior to senior physicians in group 3 with 
0.95 U (Fig. 4a). The percentage of ‘clinical agreement’ (defined as same 
direction, dose difference ≤20%) was 81.42% with the AI model, higher 
than that with group 1 ( junior physicians) and slightly lower than that 
with group 3 (senior physicians). Likewise, the percentage of ‘identi-
cal agreement’ (defined as same direction, same dosage) with the AI 
system was higher than that with group 1 ( junior physicians) (Fig. 4b).

The performance of RL and physicians’ treatment regimens was 
further evaluated by blinded consensus review using a subjective 
questionnaire, including effectiveness (if the regimen could control 
hyperglycemia, rated on Likert scale 1–5), safety (if the regimen could 
reduce hypoglycemia, rated on Likert scale 1–5) and overall accept-
ability (if the regimen would be acceptable for patient treatment). The 
perceived effectiveness, safety and acceptability of the AI model were 
higher than the junior and intermediate physician groups’ (group 1 and 
group 2) plans and slightly lower than those for the senior physician 
group’s (group 3) plans (Fig. 4c–e). These results suggest that our AI 
model is superior to junior physicians and similar to experienced phy-
sicians in the overall treatment regimen acceptability, hyperglycemia 
and hypoglycemia control.

Furthermore, we performed an external validation in 45 patients 
with T2D to compare the performance of AI plans and treating physi-
cian plans under a blinded review by an expert panel and by another 
blinded review for retesting at 2-week intervals at least (Extended Data 
Fig. 4b,c). The results demonstrated that the acceptability, effective-
ness and safety of the AI plans were similar to the treating physicians 
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Fig. 3 | Performance of AI treatment model in the insulin dosage prediction. 
a,b, Performance of daily treatment dosage prediction on the internal test set 
(a) (n = 42,037 insulin data points) and the external test set (b) (n = 32,484 insulin 
data points). Each predicted value was subsequently unrolled recurrently for K 
steps from the last timestep of the previous day (K = 7 for 1 d ahead of time). The 
error bars represent the 95% CIs. We aggregated the individual-level predictions 
to obtain population-level results. c,d, Comparison of actual treatment regimens 
and model-based treatment roll-outs of two individual patients from the internal 

test set (c) and the external test set (d). The blue curve is measured patient 
glucose values, and the orange curve is predicted glucose values given by the 
AI model. e,f, Association analysis of the patient outcome (for example, WTR) 
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who were board-certified endocrinologists, evaluated by subjective 
measurements made by an expert panel (Fig. 4f–h). Moreover, the AI 
system performed well across insulin categories (short/rapid-acting, 
biphasic/premixed and long-acting insulins) (Extended Data Fig. 4d). 
Then, a direct head-to-head comparison with test and retest review was 
conducted to select the superior plan (AI versus human physicians) by 
the expert panel review (n = 3) for the same cases. The percentage of 
selected superior AI plans was 64.2% in the test review and 65.8% in the 
retest review, suggesting that the AI model was superior to human plans 
based on expert evaluations (Extended Data Fig. 4e). These results dem-
onstrate consistently superior performance of the AI model compared 
to its physician counterparts.

Prospective deployment study of the AI system
In the prospective deployment study in 20 patients with T2D, the AI sys-
tem’s performance was evaluated by endocrinologists at the bedside, 

including effectiveness, safety and acceptability as well as the adop-
tion rate. We used adoption rate to evaluate the percentage of the AI 
regimens adopted by endocrinologists for patient treatment. All the 
evaluations were under test–retest review with an interval of 2 weeks 
at least with human–machine interaction (Extended Data Fig. 5a,b). 
Our proposed RL model demonstrated stable performance of effec-
tiveness, safety and acceptability over time, even better in the retest 
review (Fig. 5a–c).

Moreover, the AI regimen was deemed to be acceptable for about 
70% of acceptance rate at the initial test review while the endocri-
nologists initially contacted with the AI system, which is similar to the 
acceptability in the simulation phases (Fig. 5c). Intriguingly, a higher 
adoption rate of 77.5% was attained at the retest review after a period of 
clinical practice with the AI system. Although the adoption rate of the 
AI plan was relatively low at the initial test review, we found an increase 
of 31.25% between the test–retesting intervals (Fig. 5d). These results 
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suggested a step-by-step increase of trust of the AI treatment regimen 
by physicians through human–machine interaction, and the AI system 
was gradually adopted by physicians into routine clinical practice.

Proof-of-concept feasibility clinical trial of the AI system
A proof-of-concept feasibility trial was performed to investigate the 
clinical utility and safety of AI in hospitalized patients with T2D for 
glycemic control. Sixteen inpatients with T2D were enrolled in the trial 
(Extended Data Fig. 6). Their mean HbA1c was 8.8 ± 1.1% at baseline, 
and mean diabetes duration was 12.0 ± 8.9 years (Fig. 6a). All inpatients 
underwent 5 d of intervention by AI. Over the trial, 90.2% of the AI rec-
ommendations were adopted by physicians, indicating a high level of 
confidence in the algorithm’s dosing.

A considerable improvement in seven-point capillary blood glu-
cose profile was observed across timepoints in the last 24 h of the treat-
ment period compared to the first 24 h of the treatment period (Fig. 6b). 
The mean daily capillary blood glucose, preprandial capillary blood 
glucose and postprandial capillary blood glucose were decreased with 
AI’s treatment, from the mean (±s.d.) of 11.1 (±3.6) mmol L−1 to 8.6 (± 2.4) 
mmol L−1, 10.2 (±2.8) mmol L−1 to 7.8 (±2.2) mmol L−1 and 12.3 (±4.2) 
mmol L−1 to 9.7 (±2.4) mmol L−1, respectively, in the first 24 h compared 
to the last 24 h of treatment (Fig. 6b), which achieved our pre-specified 
primary endpoint. At the end of the trial, 70.3% preprandial capil-
lary blood glucose achieved the target range of 5.6–7.8 mmol L−1, 
and 68.8% postprandial capillary blood glucose achieved the target 
<10.0 mmol L−1. A patient example of the seven-point capillary blood 
glucose during the AI intervention is shown in Extended Data Fig. 7a.

We also used continuous glucose monitoring (CGM) for the evalu-
ation of the algorithm-directed glycemic control for the secondary 
outcomes. The percentage of glucose concentration in time in range 
(TIR) (3.9–10.0 mmol L−1) by CGM was constantly improved, and the 
percentage of glucose concentration <3.9 mmol L−1 was less than 4% 
over the trial (Fig. 6c). TIR (3.9–10.0 mmol L−1) was improved from 
61.4% in the first 24 h to 85.5% in the last 24 h of the treatment period 
(P = 0.03). Time spent above 13.9 mmol L−1 was decreased from 10.6% 
to 0.9%, and time spent above 10.0 mmol L−1 was decreased from 37.5% 
to 13.6%. Time spent below 3.9 mmol L−1 remained low throughout the 
trial, with 1.2% at the first 24 h and 1.3% in the last 24 h. In addition, gly-
cemic variability was slightly decreased during the treatment period 
(coefficient of variation (CV) of 27.7% at the first 24 h and 22.6% at the 
last 24 h) (Extended Data Fig. 7b). No episodes of severe hypoglycemia 
(that is, requiring clinical intervention) or hyperglycemia with ketosis 
occurred during the trial.

Finally, physicians who participated in the trial were asked to 
complete satisfaction questionnaires on the AI system at end of 
each patient’s treatment intervention (Extended Data Fig. 7c). Most 

physicians stated that the AI interface is understandable (4.57/5.00), 
time-saving (4.50/5.00), effective (4.00/5.00) and safe (4.29/5.00) in 
routine clinical practice, with an overall satisfaction score of 4.14/5.00 
(Fig. 6d).

Discussion
In this study, we developed an RL-based AI system, called RL-DITR, for 
personalized and dynamic insulin dosing for patients with T2D. We 
performed development phase validation and clinical validations, 
including internal validation, comparing AI to physicians using quan-
titative and qualitative metrics, external validation with test–retest, 
prospective deployment with test–retest and a proof-of-concept 
feasibility study with clinical trial. Taken together, our findings 
demonstrate that our RL-DITR system has potential as a feasible 
approach for the optimized management of glycemic control in 
inpatients with T2D.

The management of blood glucose in diabetes remains challenging 
due to the complexity of human metabolism, which calls for the devel-
opment of more adaptive and dynamic algorithms for blood glucose 
regulation. Conventional insulin titration relies largely on physicians’ 
experience, following the clinical guidelines. To address the challenge 
of personalized insulin titration algorithm for glycemic control, our 
RL-based architecture is tailored to achieve precise treatment for 
individual patients, with clinical supervision. First, we constructed a 
patient model, as an intermediate step, to provide knowledge of the 
environment’s dynamics (glucose dynamics) for a policy model. Our 
proposed patient model-based RL model can make multi-step plan-
ning to improve prescription consistency. In addition, because the 
multi-step plan can be interpreted as the intent of the model from now 
to a span of time period into the future, it offers a more informative and 
intuitive signal for interpretation28. Additionally, our RL-based system 
delivers continuous and real-time insulin dosage recommendation 
for patients with T2D who are receiving subcutaneous insulin injec-
tion, combining optimal policies for clinical decision-making and the 
mimicking of experienced physicians29.

Another strength of our study is that we conducted a comprehen-
sive early clinical validation of the AI-based clinical decision-making 
system across various clinical scenarios. These validations, regarded 
as a standard of care and quality assurance review30, evaluate the AI 
system’s clinical performance and provide a basis for its effective inte-
gration from development to adoption into clinical practice. In clinical 
deployment, our AI framework offers potential benefits, including 
automated reading of a large number of inputs from the EHRs, inte-
gration of complex data and accessible insulin dosing interface. The 
user-friendly interface, designed to align with physicians’ workflow, 
gains increased willingness of adoption in routine clinical practice.
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Although some algorithms have been developed to assist physi-
cians in insulin titration, only a few have been validated in clinical tri-
als31,32. We conducted a proof-of-concept feasibility trial demonstrating 
the viability of the RL-DITR system in inpatients with T2D. Notably, the 
use of the RL-DITR system resulted in a considerable improvement in 
blood glucose control, meeting our pre-determined feasibility goal. 
The percentage of well-controlled blood glucose levels of TIR also 
demonstrated a substantial increase. Managing hypoglycemia risk is 
a key consideration for real-world deployment of the AI system. While 
achieving improved control of blood glucose levels, the system did 
not increase the risk of hypoglycemia. Additionally, physicians using 
the RL-DITR system have reported an increased level of satisfaction, 

including aspects such as efficiency in clinical practice and perceived 
effectiveness and safety in glycemic control. These results suggest 
that our RL-DITR system has the potential to offer feasible insulin 
dosing to inpatients with T2D. A large and multi-center randomized 
controlled trial would help to determine the efficacy and benefits of this 
clinical AI solution. Our RL-DITR system was designed as a closed-loop 
intelligent tool that could use real-time patient data to track blood 
glucose trajectories and modify treatment regimens accordingly. 
With our ‘digital twin’ system for patients with T2D, it can be used to 
provide an on-demand risk profile (patient model) of hyperglycemia 
and hypoglycemia of T2D and offer treatment suggestions to mitigate 
the risks (policy).
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Male 6 (37.5%)

Female 10 (62.5%)

Body mass index, kg m–2 24.5±2.9

Glycated hemoglobin level, % 8.8 ±1.1

Duration of diabetes, years 12.0±8.9

Insulin regimen, n (%)

Long-acting insulin only 2 (12.5%)

Biphasic or premixed insulin 8 (50.0%)

Basal-bolus therapy 6 (37.5%)

Total daily insulin dose, U 24 (21, 32)

Other medication, n (%)

0 3 (18.8%)

1 4 (25.0%)

≥2 9 (56.2%)

Continuous glucose monitoring

Fig. 6 | A proof-of-concept feasibility trial to evaluate the AI system on 
glycemic control in patients with T2D. a, The baseline clinical characteristics of 
patients with T2D included in the proof-of-concept feasibility trial (n = 16).  
b, The capillary blood glucose of a patient with T2D during the treatment period. 
(I) Illustration of the seven-point glucose profile during the first and last 24 h 
of the treatment period. Statistical significance was determined by two-sided 
paired t-test: pre-breakfast ***P < 0.001; post-breakfast, pre-lunch, post-lunch, 
post-dinner and pre-bedtime **P < 0.05; pre-dinner *P < 0.10. (II) Mean daily 
capillary blood glucose. (III) Mean preprandial capillary blood glucose.  
(IV) Mean postprandial capillary blood glucose during the treatment period. 

The preprandial blood glucose target was 5.6–7.8 mmol L−1; the postprandial 
capillary blood glucose target was <10.0 mmol L−1. (II–IV) Line, median; error 
bar, interquartile; n = 16 patients. c, Average percentage of continuous glucose 
monitoring data within glycemic ranges throughout the treatment period. The 
percentage of continuous glucose measurement <3.0 mmol L−1, 3.0–3.8 mmol L−1, 
3.9–10.0 mmol L−1, 10.1–13.9 mmol L−1 and >13.9 mmol L−1 is presented. d, Post-
intervention evaluation of the AI system during the treatment trial, assessed by 
physicians (n = 14) using questionnaires (see more in Extended Data Fig. 7c). The 
satisfaction agreement was scored from a scale of 1–5. Bar graphs indicate the 
mean ± s.e.m. IQR, interquartile range.
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Furthermore, the RL-DITR system was developed using EHRs of 
inpatients with T2D, but its generalizability to other populations, 
such as outpatients, needs further investigation. We conducted simu-
lated experiments using Gaussian noise to mimic low data quality 
and dropout33 to simulate missing data scenarios before deployment 
(Supplementary Fig. 1). Additionally, we obtained a retrospective vali-
dation set (n = 27) of patients with diabetes from outpatient settings 
and conducted an assessment of our model, demonstrating that our 
model was able to provide recommendations under these conditions 
(Supplementary Table 1). Therefore, although the RL-DITR workflow 
was implemented and tested for inpatients with T2D, there exists the 
possibility to extend its application to a wider range of healthcare set-
tings, such as outpatient management, given appropriate integration 
and continued development.

Although our RL-DITR system has achieved good performance 
in insulin dosage titration, some challenges remain. First, our data 
were collected from individuals of various ethnicities in China, pre-
dominantly Han Chinese (92%) as well as Hui, Uyghur, Mongol and so 
on. The generalization of the AI to other ethnicities needs to be further 
investigated. Second, the variety of diet during the hospitalized period 
was uniformly supplied in the EHRs to build our model. For patients out 
of hospital, dietary variation and physical activity should be taken into 
account and explored by our RL model. We have opened an interface 
to accumulate dietary information for late updated model.

In conclusion, we developed an RL-based clinical decision-making 
system for dynamic recommendation of dosing that demonstrated 
feasibility for glycemic control in patients with T2D. The RL-DITR sys-
tem is a model-based RL architecture that could enable multi-step 
planning for patients with long-term care. With the integration of RL 
structure and supervised knowledge, the RL-DITR system could learn 
the optimal policy based on non-optimized data while retaining the 
safe states by balancing exploitation and exploration. Furthermore, 
we performed a stepwise validation of the AI system from simulation to 
deployment and a proof-of-concept feasibility trial. These demonstrate 
the RL approaches as a potential tool to assist clinicians, especially 
junior physicians and non-endocrine specialists, with diabetes manage-
ment in hospitalized patients with T2D. Further studies are needed to 
investigate the AI’s generalizability to various scenarios, such as in the 
outpatient or primary care settings.
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Methods
Study design and participants
To train and validate a computational clinical decision support model, 
we constructed a large multi-center dataset using EHRs of hospitalized 
patients with T2D who received insulin therapy from January 2013 
to April 2021 in the Department of Endocrinology and Metabolism, 
Zhongshan Hospital and Qingpu Hospital, in Shanghai, China. After an 
exclusion of the patients who used insulin pumps or glucocorticoids 
or received insulin for fewer than 2 d during hospitalization, a total of 
12,981 patients with T2D with 119,941 treatment days were included 
to develop and validate the RL-DITR model. The inpatients included 
in our study were patients in the Department of Endocrinology who 
received insulin treatment for glycemic control, without acute illness 
or procedures/surgery. The demographics and clinical characteristics 
of patients are presented in Extended Data Table 1, demonstrating a 
typical T2D population.

We conducted stepwise studies to evaluate the performance of our 
RL-DITR model (version 1.0) from development to early clinical evalua-
tions: (1) retrospective study from the modeling development hospital 
(the internal cohort); (2) retrospective study from the hospital out of 
modeling development (the external cohort); and (3) a prospective 
test–retest review of AI plan/regimen after deployment (the prospec-
tive deployment study). In addition, we performed a proof-of-concept 
feasibility trial of the RL-DITR system in clinical practice with inpatients 
with T2D who were admitted for optimization of glycemic control at 
Zhongshan Hospital (ClinicalTrials.gov: NCT05409391) (details of 
proof-of-concept trial protocol provided in Supplementary Informa-
tion). The retrospective study obtained the following institutional 
review board (IRB) approval: Zhongshan Hospital, Shanghai, China 
(2019-014R); XuHui Central Hospital, Shanghai, China (2021-007) and 
Qingpu Branch of Zhongshan Hospital, Shanghai, China (2021-25). 
Patient informed consent was waived by the Ethics Committee. The 
prospective study and proof-of-concept feasibility trial were approved 
by the Ethics Committee of Zhongshan Hospital, Fudan University. Each 
participant provided written informed consent for the prospective 
study and the proof-of-concept feasibility trial.

Development and validation of the model-based RL system
Time-series data pre-process and NLP. For time-series data repre-
sentation, every patient in the dataset was represented as a temporal 
sequence of feature vectors. Specifically, each day was broken into 
seven time periods, including pre-breakfast, post-breakfast, pre-lunch, 
post-lunch, pre-dinner, post-dinner and pre-bedtime. All records that 
occurred within the same period were grouped together and formed a 
feature set to feed into the RL model as input (detailed list of the input 
features provided in Supplementary Table 2). For structured data, 
we aligned and normalized them. For free-text notes, we applied a 
pre-trained language model, ClinicalBERT. Specifically, we first trained 
the ClinicalBERT on a large corpus of EHR data. ClinicalBERT is a masked 
medical domain language model that predicts randomly masked words 
in a sequence and, hence, can be transformed into downstream tasks. 
Then, the ClinicalBERT was fine-tuned for information extraction 
from free text.

We further automatically extracted temporal features from 
patient clinical records, including clinical observations (blood glu-
cose records), a sequence of decision rules to determine the course of 
actions (for example, treatment type and insulin dosage titration) and 
clinical assessment of patients. The numerical values were extracted 
from demographics, laboratory reports, blood glucose and medica-
tions and further translated with standard units according to the LOINC 
database. Then, each numerical value was normalized to a standard 
normal distribution. In terms of discrete values, all the diagnoses of a 
patient were mapped onto the International Classification of Diseases-9 
(ICD-9) and used as discrete features, encoded as binary presence 
features. We constructed a large multi-center dataset with a large 

corpus of 1.2 billion words of diverse diseases to train a ClinicalBERT 
pre-trained model. ClinicalBERT was fine-tuned on a multi-label dataset 
to extract 40 symptom labels from medical notes. Phenotype data were 
extracted from free-text notes of chief history of present illness and 
physical examination by ClinicalBERT. Validated on 1,000 annotated 
samples from the training set, the results showed that ClinicalBERT 
could accurately identify the symptom information with an average F1 
score of 94.5%. Each extracted symptom label was encoded as a binary 
presence feature.

Building the computational model. The process of patient trajectory 
and treatment decision-making could be formulated as a Markov deci-
sion process (MDP). An MDP34 is a tuple (S, A, P, G, γ), where S and A are 
sets containing the states and actions, respectively; P is a transition 
function; G is a reward function; and γ is a discount factor. Given a 
dataset D = {X}, a trajectory X = {(st,at, rt) ∶ t = 1,… , τ} shows each transi-
tion (st,at, rt, st+1) from the step t  to the step t + 1, where τ is the length 
of the trajectory; st  is a current state; at  is an action; rt  is an immediate 
reward from G (rt|st, at); and st+1 is the next state after taking action at  
from P (st+1|st, at). The goal of the MDP is to learn a policy model π(a|s) 
on the dataset D to give treatment recommendations such that the 
cumulative reward ∑T

t=0 γ
trt  representing clinical outcome is 

maximized.
To solve the MDP and obtain an effective and safe policy model π, 

we used a model-based RL approach, RL-DITR, which consisted of a 
patient model to track patients’ evolving states and a policy model to 
learn dynamic regimen strategy. The patient model was learned from 
historical trajectories, approximating the transition function P and the 
reward function G and providing support for policy model learning 
and planning. The policy model iteratively interacted with the patient 
model as an environment. At each step, the patient model generated 
state transition, status prediction and reward estimation based on 
observed patient trajectories. The policy model, taking the state as 
input, generated an action that was fed to the patient model. The 
patient model updated the states recurrently by an iterative process, 
enabling the policy model to plan for sequences of actions and find 
optimal solutions across generated trajectories.

Observation representation. To obtain states as input under the MDP 
setting, we first learn a representation function fR, which maps past 
observations (for example, historical records of glucose levels)  
into a state space. Given an observation trajectory with T  steps 
O1∶T = (o1,o2, … , oT), fR mapping O1∶T  to an initial hidden state s—that  
is, s = fR(O1∶T), where ot at step t  is a feature vector, including past infor-
mation of demographics, diagnosis, symptom, medication, glucose 
level and laboratory test. The hidden state would be used as input for 
patient model and policy model.

Patient model for trajectory tracking. For patient trajectory tracking, 
we trained a patient model. The patient model consists of a dynamics 
function fT  and a prediction function fP. The fT  was trained to map the 
current states st, action at  to the next state st+1 with a reward rt—that is, 
st+1, rt = fT (st,at) , where s1 is obtained from past observations and 
derived from the representation function s1 = fR (O1∶t′ )—and t′ is the 
number of past steps. The prediction function fP takes an input of state 
st and predicts patient status yt—that is, yt = fP (st). In this study, at each 
time t, yt  includes a blood glucose value and a label of glucose within 
target range. The action at  is a medication action of dosage decision of 
insulin, ranging from 1 to 40. The reward rt  is the patient status score 
calculated based on glucose value for each measurement, according 
to the Magni risk function35 (Extended Data Fig. 2b):

risk (b) =
⎧
⎨
⎩

−1, b < 70

1 −
Clip0,15.5(10∗(c0∗log(b)

c1−c2)
2
)

7.75
, else

,
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where b denotes the blood glucose level, and Clipϵ1 ,ϵ2 is a function that 
performs value clipping Clipϵ1 ,ϵ2 (x) = min{ϵ2,max{ϵ1, x}} , c0 = 1.509, 
c1 = 1.084 and c2 = 5.381. rt ranges from −1 to 1. When conducting correla-
tion analysis with daily outcome, Magni risk values were summed for 
each day.

We trained the dynamics function fT  and the prediction function 
fP  with joint learning. For the dynamics function fT , we applied a con-

sistency loss. Given an observation trajectory O1:T, we obtained a hidden 
state by the representation function fR and the dynamics function fT  
with k  steps, denoted as sT,k. We proposed a consistency loss LT, where 
LT = ∑i,j ‖sTi ,ki − sTj ,kj ‖2, where Ti + ki = Tj + kj, i ≠ j, LT is an MSE loss. The 
prediction function fP was learned using SL LP( y, ̂y), where the loss 
LP = LP,GLU + LP,TIR based on ground truth y and predicted ̂y  includes an 
MSE loss LP,GLU for learning glucose level prediction and a cross-entropy 
loss LP,TIR for a binary classification of WTR for each point. The total 
loss L = μLT + LP was used for joint learning—here, μ is a weight. Both of 
the dynamics function fT and the prediction function fP shared the 
representation encoder fR when training and inference. fR was opti-
mized together through backpropagation with the loss to capture 
meaningful patient representations and dynamics. To evaluate our 
hidden state embedding, we mapped the patients’ health states to 
low-dimensional projection using principal component analysis (PCA) 
(Extended Data Fig. 2a). Each node indicates the states of a patient. The 
state distribution demonstrated a good cluster hierarchy that individu-
als in the same cluster are associated with their observable properties 
(diabetes outcome, such as glucose level).

Policy model for insulin dosing. Based on a learned patient model, 
we could simulate the execution of the policy interacting with the 
patient model, allowing us to train a policy model π  to recommend 
insulin dosage. The π maps the current state st to the action at—that is, 
at ∼ π (⋅|st). We combined the SL and RL to learn the policy model, with 
the expert supervision of safe actions to take into account. Specifically, 
we applied policy gradient optimization for training the policy model 
π to maximize the returned rewards while incorporating constrained 
supervision by expert experience.

For the SL part, we used the action made by the clinicians as super-
vision for policy update. An SL loss LSL(at, ̂at) was set to minimize the 
difference between the action ̂at  recommended by the policy model 
π(st) and the action at  made by the clinician. For the RL part, we opti-
mized the policy model π based on the patient model (fT, fP) as an inter-
active environment, where a given trajectory was updated recurrently 
by an iterative process. For instance, at step t, given an action ̂at recom-
mended by the policy model π, the patient model maps from the cur-
rent state st, action ̂at  to the next state st+1 with a reward ̂rt. The policy 
model π received the updated state st+1 and proposed a new action ̂at+1. 
The policy model π was trained by both historical and obtained trajec-
tories. Thus, the RL loss includes LRL1 = −∑T

t=1 Rt logπ(at|st)  and 
LRL2 = −∑T

t=1
̂Rt logπ( ̂at|st) , where Rt = ∑T−t

i=0 γ
irt+i  is the accumulated 

discount reward; γ is the discount ratio; ̂Rt  is a value derived from the 
patient model; and π(a|st) represents the probability of taking action a.  
Therefore, a joint loss of SL and RL was optimized simultaneously: 
L = LRL1 (at,Rt) + ε1LRL2 ( ̂at, ̂Rt) + ε2LSL(at, ̂at), where ε1 and ε2 are weights 
to tradeoff between LRL and LSL. Of them, LRL1 and LRL2 enable the model 
to optimize its policy based on the clinical outcomes, such as glycemic 
values WTR, whereas the incorporation of LSL ensures that the gener-
ated actions align with clinically feasible ranges. The additional RL loss 
function LRL2  is designed to enhance the model’s performance and 
adaptability by learning from an extensive set of trajectories generated 
from the patient model. For stably training, following previous work36, 
a learnable value function V (s), an expected return starting from s, was 
used instead of R.

With the dynamics function fT, the policy model can generate a 
K-step plan consisting of a sequence of K actions to perform in the next 
few steps in turn—for example, K = 7 for the daily treatment of the next 

day. Specifically, given a hidden state st, for i ∈ [0,K − 1],  we sample 
at+i ∼ π(⋅|st+i) by the policy model. The next hidden state st+i+1 is then 
derived given the previous hidden state st+i  and the generated  
action at+i— that is, st+i+1, rt+i = fT (st+i,at+i) by the patient model. This 
recurrent process runs iteratively until the condition of K  steps is 
reached. The plan value of the trajectory of K  steps is defined as  
v = ∑K−1

i=0 γ
irt+i + γKV (st+K)  (ref. 37), and the treatment plan of actions  

was derived by maxi v (st,ai,t,ai,t+1,… ,ai,t+K−1). We applied a beam search 
for policy search38. The top B highest-value trajectories were stored at 
each timestep, where B was the beam size.

Training process. The training process involved two stages to optimize 
the models of our AI system (Extended Data Fig. 1b). During the first 
stage, we trained a patient model, including a dynamics function fT  
and a prediction function fP. These functions were jointly optimized 
through the loss for state transitions and the loss for status prediction. 
Next, we learned a policy model π  by using a combined approach of 
both SL and RL with the trained patient model. The policy model was 
trained through a joint optimization process, minimizing both a policy 
gradient loss on trajectories and a supervised loss that constrains the 
difference between the recommended action from the policy model 
and the action taken by the clinician.

We used a transformer-based network with three layers as the 
representation function used to represent the observations of 
time-series data, as it has been shown to enable capturing the long 
dependence in the temporal information of patients39. The last hidden 
vector of the output hidden vectors was used for the initial state. We 
also applied a transformer network with three layers for dynamics 
function. The hidden dimension was set to 256, and the number of 
multi-attention heads was set to 8. We used three-layer multi-layer 
perceptrons (MLPs) for prediction function, policy function and value 
function. The hidden dimension was set to 256. The discount factor γ 
was set to 0.9. Training of models by back-propagation of errors was 
performed in batches of 32 trajectories with padding to length of 128 
for 100 epochs with a learning rate of 10−3. Training was performed 
using the Adam optimizer with a weight decay of 10−4. The weights μ 
and ε were set to 0.1 and 1.0, respectively. The beam size B was set to 
10. Dropout with p = 0.4 was applied during training to improve and 
generalize network learning. The models were implemented  
using PyTorch.

Policy evaluation and simulation study. We applied policy evaluation 
to assess the value of a given learned policy using patient trajectories 
generated from the clinicians’ policy—given the behavior policy π0  
(the clinicians), from which actual patient trajectories were generated, 
and target policy π1 (AI model). The importance sampling for policy 
evaluation was performed, which enables the evaluation of a target 
policy using data collected from a distinct policy34. Given (st,at, rt)   
at time t , the importance sampling ratio at each step is defined  
ρt = π1 (at|st) /π0(at|st); the weight of the trajectory is w =∏T

t=1ρt ; and 
the estimated value is VIS = ∑N

i=1
wi
N
∑Ti
t=1γ

t−1ri,t. To enhance the numerical 
stability of the calculations, we employed WIS along with effective 
sample size40,41, which normalizes the trajectories, thereby reducing 
variance27. The weights are calculated as wi = ρi,Ti /∑

N
j=1ρj,Tj , and the 

estimated value is VWIS = ∑N
i=1wi∑

Ti
t=1γ

t−1ri,t.
To explore the model’s performance under various data condi-

tions, we designed a simulation study. Given specific data conditions, 
such as no more than k blood glucose measurements per day, we ran-
domly discard blood glucose values within the trajectories to ensure 
that the remaining trajectories satisfy this criterion.

Traditional insulin dosing method. The traditional clinical methods 
of insulin dosage titration were used as the standard clinical methods 
for comparison, consisting of guidelines42 and consensus formulas43,44 
for premixed insulin regimen, basal regimen and basal-bolus regimen.
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The insulin dosage titration rules of biphasic/premixed insulin 
regimen were as follows: pre-breakfast insulin dosage was adjusted 
based on the pre-supper glucose value; and pre-supper insulin dosage 
was adjusted based on the pre-breakfast glucose value. The detailed 
adjustment was according to the following formula:

f (x) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

−2, x < 80

0, 80 ≤ x ≤ 109

2, 110 ≤ x ≤ 139

4, 140 ≤ x ≤ 179

6, x ≥ 180

where x represents the corresponding blood glucose (mg dl−1), and f(x) 
represents the insulin adjusted dosage.

The insulin dosage titration rules of basal-only (usually long-acting 
insulin) regimen was as follows: pre-breakfast/bedtime basal insulin 
dosage was adjusted based on pre-breakfast/fasting glucose value. The 
detailed adjustment was according to the following formula:

f (x) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

−2, x < 80

0, 80 ≤ x ≤ 109

2, 110 ≤ x ≤ 139

4, 140 ≤ x ≤ 179

6, x ≥ 180

where x represents the pre-breakfast/fasting glucose (mg dl−1), and f(x) 
represents the basal insulin adjusted dosage.

The insulin dosage titration rules of basal-bolus regimen were as 
follows. If the fasting or mean blood glucose during the day was >140 
mg dl−1 in the absence of hypoglycemia, basal (usually long-acting 
insulin) dosage was increased by 20% every day. If the patient developed 
hypoglycemia (<70 mg dl−1 mg/dl), basal insulin dosage was decreased 
by 20%. Also, bolus insulin dosage (usually short/rapid-acting insulin) 
was adjusted based on post-meal glucose value, according to the fol-
lowing formula:

f (x) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

4, 141 ≤ x ≤ 180

6, 181 ≤ x ≤ 220

8, 221 ≤ x ≤ 260

10, 261 ≤ x ≤ 300

12, 301 ≤ x ≤ 350

14, 351 ≤ x ≤ 400

16, x > 400

where x represents the corresponding post-meal glucose (mg dl−1), and 
f(x) represents the supplemental bolus insulin dosage.

Study design for performance comparison of AI versus 
physicians
The performance of AI-generated insulin regimens was evaluated in 
three independent phases: (1) retrospective study from the modeling 
development hospital (the internal cohort); (2) retrospective study 
from the hospital out of modeling development (the external cohort); 
and (3) a prospective test–retest review of AI plan/regimen after deploy-
ment (the prospective deployment study).

Retrospective study phase of the internal cohort. Forty eligible 
patients with T2D treated with insulin injection were randomly selected 
from the retrospective EHRs of one of the modeling development hospi-
tals (Qingpu Hospital) from May 2021 to December 2021. Two treatment 
days were randomly selected for each patient, resulting in 80 cases with 
226 insulin points (Extended Data Fig. 4a). Three physician groups with 

different levels of clinical experience provided their dose recommenda-
tions, and the AI also generated insulin dose recommendations in silico 
for further evaluation. An expert consensus panel of three endocrinology 
specialists conducted blinded review and provided their own recom-
mended insulin dosage. This was used as a reference insulin dosage for 
each insulin point to assess the accuracy of AI-generated dosage versus 
the three physician groups. The estimated acceptability, effectiveness 
and safety of the AI plan and the three physician groups’ plans were sepa-
rately evaluated by the expert panel. The physician groups included junior 
(n = 5), intermediate (n = 5) and senior (n = 5) physicians with 1–3 years, 
4–7 years and 8–20 years of clinical experience, respectively. Three endo-
crinology specialists who constituted the expert consensus panel were 
invited from the academic hospital, Zhongshan Hospital, and all were 
board certified and had at least 15 years of clinical experience.

Retrospective study phase of the external cohort. The retrospec-
tive dataset was collected from a non-teaching hospital (XuHui Hospi-
tal), which included 45 eligible consecutive patients with T2D from April 
2021 to August 2021 (Extended Data Fig. 4b). The dataset contained 796 
insulin points from 338 cases, and AI-generated dosage was compared 
to previously delivered insulin dosage by treating physicians (human 
plan) for accuracy evaluation. Next, we randomly selected 40 cases 
from the dataset to evaluate the acceptability, effectiveness and safety 
of the AI plan and the previous human plan. The evaluations were 
blinded head-to-head comparisons of AI versus human plans by the 
expert consensus with three independent experts. The same review 
was repeated after a minimum of 2 weeks to ensure reproducibility.

Prospective deployment study phase. AI was deployed (integrated) 
in Zhongshan Hospital beginning in November 2021 for real-time 
patient information read to output insulin dosage regimen in the doc-
tor’s advice interface (Extended Data Fig. 5a). In May 2022, 40 consecu-
tive AI-generated plans were tested for acceptance, effectiveness and 
safety by endocrinology physicians at the bedside (Extended Data 
Fig. 5b). After determining clinical adoption and ensuring adherence 
to standard clinical quality controls, the AI insulin regimen was used 
for patient treatment. The same review was retested by the physicians 
after an interval (>2 weeks) of day-to-day work with human–machine 
interaction. Three board-certified endocrinology physicians with 
clinical experience ranging from 5 years to 15 years participated in the 
test–retest review.

Case inclusion and exclusion criteria. The inclusion and exclusion 
criteria for patients were consistent across the three phases. Inclusion 
criteria were patients with T2D treated with subcutaneous insulin injec-
tion for at least two consecutive days. Patients with acute complications 
of diabetes, such as ketoacidosis or hyperglycemic hyperosmolar state, 
or patients who were treated with glucocorticoids, were excluded.

Definitions of the performance metrics. 
 1. Quantitative evaluation. We used the metrics of MAE and 

agreement percentage to quantitatively evaluate the accuracy 
performance of insulin regimens. MAE represents the errors 
between predicted values and consensus values. The agree-
ment was calculated by the difference of predicted value and 
consensus values and grouped as the following categories:  
(1) identical agreement: the adjustment direction given by the 
AI or human physician is consistent with the reference regimen, 
and the adjusted dosage was identical; and (2) clinical agree-
ment: the adjustment direction given by the AI or human physi-
cian is consistent with the reference regimen, and the difference 
of dose was within 20%.

 2. Acceptability. In the retrospective simulation study phases, 
questionnaires 2 and 3 (item 3) and questionnaire 4 (item 4) 
were used to ask the reviewers whether the insulin regimen was 
‘acceptable’ or ‘unacceptable’ in clinical settings according to 
their judgment (Supplementary Information).
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 3. Effectiveness and safety. To evaluate the AI’s effectiveness, 
we used questionnaires 2 and 3 (item 4) and questionnaire 4 
(item 5), which asked the reviewers if the recommended insulin 
regimen was perceived to bring glucose within the target range 
according to their judgment. The effectiveness was scaled on 
a five-point Likert scale ranging from 1 (very poor control of 
glycemia) to 5 (very good control of glycemia). For safety evalu-
ation, we used questionnaires 2 and 3 (item 5) and question-
naire 4 (item 6), which asked the reviewers if the recommended 
insulin regimen was perceived to lead to an increased risk of 
hypoglycemia according to their judgment. The safety was then 
scaled on a five-point Likert scale ranging from 1 (very high risk) 
to 5 (very low risk) (Supplementary Information).

 4. Superior plan. In the head-to-head comparison of the AI and hu-
man plans in the retrospective simulation study of the external 
cohort, the one (AI or human) selected as most clinically ap-
propriate by the expert consensus review was considered as the 
superior plan (Supplementary Information).

 5. Adoption. In the prospective deployment phase, the AI plans 
were reviewed by the endocrinology physicians at the bed-
side; the clinical adoption was determined; and the deemed AI 
insulin regimen was used for patient treatment following all 
standard clinical quality controls.

Proof-of-concept feasibility trial
Trial design and participants. We conducted a proof-of-concept 
trial (ClinicalTrials.gov: NCT05409391) to evaluate the feasibility and 
safety of AI in inpatients with T2D from 28 June to 6 October 2022. 
This trial was a patient-blinded and single-arm intervention, which 
was performed in the ward of the Department of Endocrinology and 
Metabolism, Zhongshan Hospital, in China. The RL-DITR system was 
embedded in the insulin dosing interface of the health information 
system (HIS), allowing real-time reading of patient clinical information 
and insulin dosage regimen recommendation (Extended Data Fig. 5a). 
The healthcare provider could review the AI-generated insulin regimen 
and either ‘adopt’ or ‘reject’ it. An example of the AI recommendation 
report for the healthcare provider is presented in Extended Data Fig. 
5a. Patients with T2D receiving subcutaneous insulin treatment were 
recruited and screened for the inclusion and exclusion criteria. Inclu-
sion criteria were adults aged 18–75 years and HbA1c of 7.0–11.0%. 
The following patients were excluded: patients with body mass index 
≥45 kg m−2; patients with ketoacidosis or hyperglycemic hyperosmo-
lar state; patients with severe edema or peripheral vessel disorders; 
patients with surgery scheduled during hospitalization; or women who 
were pregnant or breast-feeding (details of the clinical trial protocol 
provided in Supplementary Information; CONSORT-AI checklist pro-
vided in Supplementary Table 3).

Trial intervention and glucose monitoring. The pre-intervention 
initial insulin regimen served as reference for daily insulin regimen. 
Eligible patients received insulin dosage titration according to the AI 
model after the first cycle of insulin regimen, which was confirmed 
twice daily by the physician in charge. The treating physician could 
reject the recommendation if deemed necessary. Each patient was 
studied for up to 5 d or until discharge from hospital. Throughout the 
trial, anti-hyperglycemic drugs remained unchanged; standard meals at 
usual mealtime were provided; and no physical activity was scheduled.

Capillary glucose concentration was measured at seven timepoints 
of fasting, after breakfast, before and after lunch, before and after din-
ner and before bedtime a day by a glucometer (Glupad, Sinomedisite) 
to estimate glucose control and to guide insulin regimen. The goal was 
to achieve preprandial capillary blood glucose of 5.6–7.8 mmol L−1 and 
postprandial capillary glucose of less than 10.0 mmol L−1 (ref. 5). CGM 
(Abbott FreeStyle Libre) was also used for each patient to estimate the 

percentage of continuous glucose measurements within/above/below 
range (3.9–10.0 mmol L−1). The CGM data were analyzed by physicians, 
and the treatment was not influenced by data gained by CGM. CGM 
alarms were not activated during the feasibility clinical trial.

Outcomes. The primary outcome was difference in glycemic con-
trol as measured by mean daily blood glucose concentration (total, 
preprandial and post-prandial capillary blood glucose). The second-
ary endpoints included glucose concentration in the target range 
(TIR) of 3.9–10.0 mmol L−1, glucose concentration above range (10.1–
13.9 mmol L−1 or >13.9 mmol L−1) or below range (3.0–3.8 mmol L−1 or 
<3.0 mmolL−1) and glycemic variability. Glycemic variability was deter-
mined by the CV of glucose values. Safety was assessed as the number 
of hypoglycemic events. Serious adverse events included severe hypo-
glycemia, defined as a capillary glucose level of less than 2.2 mmol L−1 
or an episode that required the assistance of another person, and 
hyperglycemia (>20 mmol L−1) with ketonemia or hyperosmolar coma, 
along with other serious adverse events.

Statistical analysis. The sample size calculation was based on the 
primary outcome. According to the literature44 and data from previous 
diabetic inpatients at Zhongshan Hospital, the mean daily capillary 
blood glucose was estimated to be 11 mmol L−1 at baseline and reduced 
by the standard difference of 2.5 mmol L−1 after insulin optimization 
by clinicians44–46. With a power of 90% and one-sided α = 0.025, 13 
participants were required. Considering a 20% loss to follow-up, 16 
participants were estimated to be required. PASS software version 11.0 
was used to calculate the sample size. Clinical studies were analyzed 
using SAS 9.3 software, and a two-sided P value of less than 0.05 was 
considered statistically significant. The matched t-test was used to 
compare the performance of RL-DITR and physicians. The change 
from baseline measurements to the end of the trial was analyzed by 
two-sided paired t-test and a Wilcoxon signed-rank test for continuous 
measurements. The seven-point blood glucose profiles were analyzed 
using a generalized linear mixed model. The model used a Noisy-OR 
approach to aggregate WTR predicted probabilities of points for daily 
WTR prediction.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
IRB approval was obtained from institutions for EHR data collection. 
Individual-level patient records can be accessible with IRB consent 
and are not publicly available. De-identified data can be requested by 
contacting the corresponding authors. All data access requests will be 
reviewed and (if successful) granted by the Data Access Committee. 
Data can be shared only for non-commercial academic purposes and 
will require a formal material transfer agreement. Generally, all such 
requests for access to EHR data will be responded to within 1 month. 
For the reproduction of our code and model, we have also deposited 
a minimum dataset at Zenodo (https://zenodo.org/record/8198049), 
which is publicly available for scientific research and non- 
commercial use.
Individual-level data of the clinical trial (ClinicalTrials.gov: 
NCT05409391) reported in this study are not publicly shared. Data 
can be available to bona fide researchers for non-commercial academic 
purposes and necessitate a data user agreement. Requests should 
be submitted by emailing the corresponding authors (Y.C. or G.W.) 
at chen.ying4@zs-hospital.sh.cn or guangyu.wang24@gmail.com. 
All requests will be reviewed by the study’s steering committee to 
determine whether the data requested are subject to patient privacy 
obligations. Requests will be processed within a 2-week timeframe. All 
data shared will be de-identified.
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Code availability
The deep learning models were developed and deployed in Python 
(version 3.8) using PyTorch (1.9.0). The following standard model 
libraries were used: scikit-learn (1.0.1), pandas (l.3.4), numpy (l.20.3), 
matplotlib (3.5.0), pytorch-lightning (1.8.3) and transformers (4.28.0). 
Custom codes were specific to our development environment and used 
primarily for data input/output and parallelization across computers 
and graphics processors. The codes are available for scientific research 
and non-commercial use on GitHub at https://github.com/rlditr23/
RL-DITR. The pre-trained model ClinicalBERT is publicly available 
(https://huggingface.co/medicalai/ClinicalBERT).
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Extended Data Fig. 1 | The development of the AI system. a, The sequential 
decision process with patient model and policy model in AI system. Given a 
trajectory, for the initial step, the representation function fR receives as input the 
past observations O1:t from the trajectory. The model is subsequently unrolled 
recurrently for K steps. At each step κ∈[1,K], the policy model π receives the 
hidden state st+k−1 and generates an action at+k−1. The dynamics function fT of 
patient model subsequently receives as input the hidden state st+k−1 from the 
previous step and the action at+k−1 and produces the hidden state of the next step 
st+k, and the prediction function of patient model predicts diabetes status yt+k−1. 
The hidden states and actions recurrently update. b, The AI system training 
pipeline. Left, the patient model learning for patient tracking. Given a hidden 

state st and an actual action at, the patient generates the predicted status ̂yt  to 
estimate the current status yt, and produces the next state st+1. The estimated 
reward ̂rt  compared to the actual reward rt was calculated from ̂yt. The patient 
model is joint optimized by the objective of consistency loss of state transition LT  
and supervised loss of status prediction Lp. Right, the policy update for dynamic 
regimen with combined supervised learning and reinforcement learning. The 
policy model π receives the hidden state st  and then generates an action ̂at. 
Subsequently, the patient model receives as input the hidden state st  from the 
previous step and the action at, then produces the hidden state of the next step 
st+1 and returns a reward ̂rt. The policy model π is joint optimized by the objective 
of combined reinforcement learning LRL1, LRL2 and supervised learning LSL.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | The performance evaluation of the AI system for 
patient trajectory prediction using WTR for overall glucose variability.  
a, Visualization of the patient hidden states. Projection of patients’ hidden state 
embeddings onto PC 1 and PC 2, derived from principal component analysis 
(PCA). Each node indicates a patient state. The state distribution showed 
association with diabetic outcome, colored by glucose level distribution. The 
samples are 1000 patients from internal test dataset. PC: principal component.  
b, Illustration of reward function. It is a measurement of overall glucose 

variability that focus on the relationship between glucose variability and risks for 
hypo- and hyperglycemia. c and d, Performance of the AI model on assessment 
of WTR shown as AUC curves. c, internal test set and d, external test set. ROC 
curves showing the pre-prandial time, the postprandial and overall performance. 
e-f, Correlation analysis of the ratio of glycemia within target range (WTR) vs 
the estimated cumulative reward of the clinicians’ treatment actions. e, internal 
test set, and f, external test set. The shaded area represents the 95% confidence 
interval.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02552-9

Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Performance of the AI for daily treatment dosage 
prediction and off-policy evaluation. a-f, Each column represents the 
performance of AI grouped by insulin types, including (a and b) short/rapid 
acting, (c and d) biphasic or premixed, and (e and f) long acting. Each predicted 
data is based on is generated within K steps based on the last time step of previous 
day (K = 7 for one day ahead of time). The bars represent the mean with 95% 
confidence intervals of MAE on the internal test set (n = 20,961 treatment days) 

and the external test set (n = 16,077 treatment days). MAE, mean absolute error; 
R2, coefficient of determination; PCC, Pearson’s correlation coefficient. a, c and 
e: the internal test set; b, d and f: external test set. g, Off-policy evaluation of 
RL-based model versus other SL-based and clinician methods in the internal test 
set in the AI development phase, measured by weighted importance sampling 
(WIS) score with standard deviation. ne indicates the effective sample size with 
the WIS score.

http://www.nature.com/naturemedicine
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Performance evaluation of the AI system in the 
retrospective phase study of internal and external cohorts. a, Study design of 
internal cohort: 40 eligible T2D patients were included in the study. 80 treatment 
cases from 40 patients (2 per person) were randomly selected to compare 
the performance of quantitative metrics between the AI system and human 
physicians. 1 case for 40 patients was further selected for qualitative clinical 
evaluations (effectiveness, safety, and overall acceptability). b, Study design of 
external cohort: 45 T2D patients were collected, and a total of 796 insulin points 
were included in the external validation analysis. An assessment with quantitative 
metrics was conducted to compare the performance between treating physicians 
and AI by expert panel. 40 cases randomly selected from the total 338 cases were 

used for further qualitative evaluation (effectiveness, safety, and  
overall acceptability). After 2 weeks, a retest review was conducted.  
c, Demographics and baseline measurements of the patients in the internal 
(n = 40) and external (n = 45) cohorts. BMI, body mass index; A1c, glycated 
hemoglobin. Numerical variables were reported as mean±SD. d. Quantitative 
comparisons of insulin dosage given by human physicians and AI stratified 
by insulin catalogs in the external cohort. e, Superior plan (AI versus human 
physicians) was selected by the expert panel (n = 3) with test-retest review in the 
external cohort (n = 40 regimens). Orange dashed line, average performance 
of AI; blue dashed line, average performance of treating physicians. Bar graphs 
indicate the mean±SEM.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02552-9

Extended Data Fig. 5 | Performance evaluation of AI system in the prospective deployment study. a, The user interface of AI deployment. b, Demographics and 
baseline measurements of patients in the deployment phase study (n = 20). BMI, body mass index; A1c, glycated hemoglobin. Numerical variables were reported as 
mean±SD.
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Extended Data Fig. 6 | Flow diagram of the proof-of-concept feasibility trial.
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Extended Data Fig. 7 | Performance evaluation of the AI system in 
the proof-of-concept feasibility trial. a, Patient example during the 
proof-of-concept feasibility trial using the seven-point capillary blood glucose 
measurement. b, Glucose control based on the sensor glucose measurements 
at the first 24 hours and the last 24 hours of the trial. GMI, glucose management 
indicator; CV, coefficient of variation. c, Post-intervention evaluation by 

physicians who used the AI during the feasibility trial. The post-intervention 
evaluation questionnaire included 13 items questions: 8 items for pertaining to 
the physician’s experience with the AI use and recommendation and 5 items for 
assessing the physician’s view regarding integration of the AI into daily routine 
practice.
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Nature Medicine

Article https://doi.org/10.1038/s41591-023-02552-9

Extended Data Table 1 | Baseline characteristics of patients with T2D in the developmental dataset and internal and external 
test sets for treatment regimen in the AI development phase
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Extended Data Table 2 | Performance comparison of patient model versus other methods for glucose prediction in internal 
and external test sets in the AI development phase

Each column represents the evaluation metrics. RMSE, root mean square error. Parentheses indicate 95% CIs. Significance levels are denoted as * for P < 0.05, where P values were computed 
using one-sided permutation tests with 1,000 resamples.
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Extended Data Table 3 | Performance comparison of our RL-based model versus other SL-based methods and traditional 
regimens for insulin titration regimens in internal and external test sets in the AI development phase

Each column represents the evaluation metrics. RMSE, root mean square error. Parentheses indicate 95% CIs. Significance levels are denoted as * for P < 0.05, where P values were computed 
using one-sided permutation tests with 1,000 resamples.
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