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Modeling policy interventions for slowing 
the spread of artemisinin-resistant pfkelch 
R561H mutations in Rwanda

Robert J. Zupko    1 , Tran Dang Nguyen1, J. Claude S. Ngabonziza2,3, 
Michee Kabera4, Haojun Li1,5, Thu Nguyen-Anh Tran    1, Kien Trung Tran1, 
Aline Uwimana4,6 & Maciej F. Boni    1,7

Artemisinin combination therapies (ACTs) are highly effective at treating 
uncomplicated Plasmodium falciparum malaria, but the emergence of the 
new pfkelch13 R561H mutation in Rwanda, associated with delayed parasite 
clearance, suggests that interventions are needed to slow its spread. 
Using a Rwanda-specific spatial calibration of an individual-based malaria 
model, we evaluate 26 strategies aimed at minimizing treatment failures 
and delaying the spread of R561H after 3, 5 and 10 years. Lengthening 
ACT courses and deploying multiple first-line therapies (MFTs) reduced 
treatment failures after 5 years when compared to the current approach of 
a 3-d course of artemether–lumefantrine. The best among these options 
(an MFT policy) resulted in median treatment failure counts that were 49% 
lower and a median R561H allele frequency that was 0.15 lower than under 
baseline. New approaches to resistance management, such as triple ACTs 
or sequential courses of two different ACTs, were projected to have a larger 
impact than longer ACT courses or MFT; these were associated with median 
treatment failure counts in 5 years that were 81–92% lower than the current 
approach. A policy response to currently circulating artemisinin-resistant 
genotypes in Africa is urgently needed to prevent a population-wide rise in 
treatment failures.

The introduction of artemisinin combination therapies (ACTs) has been 
instrumental in reducing the burden of Plasmodium falciparum malaria, 
but the continued evolution of drug resistance by malaria parasites has 
the potential to undermine these advances. Since the first appearance 
of artemisinin resistance in Cambodia in the 2000s1,2, the spread of 
molecular markers associated with artemisinin resistance has largely 
been concentrated in Southeast Asia3,4. However, the de novo appear-
ance of confirmed markers for artemisinin resistance in Rwanda5–10 

and Uganda11,12 signals the need for interventions to be considered in 
the African context13 to minimize the expected health, mortality and 
economic costs should artemisinin resistance become widespread14.

The ACT artemether–lumefantrine (AL) was adopted by Rwanda 
as the first-line therapy for uncomplicated falciparum malaria in 2006 
as part of a comprehensive national strategic plan for malaria control15. 
Since adoption of AL, the P. falciparum kelch protein 13 (pfkelch13, 
PF3D7_1343700) R561H mutation has emerged and been validated as a 
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AL efficacy on commonly circulating genotypes in East and Central 
Africa24,25, our model estimates that in 2024, presuming no interven-
tions, 11.15% (IQR: 9.9–12.11%) of treated P. falciparum malaria cases will 
fail treatment with the present first-line therapy of AL, or about 154,000 
individuals for the calendar year (median monthly average of 12,800 
(IQR: 11,200–14,000)). This monthly average is forecast to increase 
to 39,400 (IQR: 36,200–42,400) per month by 2033 (Supplementary 
Table 2). Under the current status quo conditions, the 10% treatment 
failure threshold recommended by the WHO for a change in first-line 
therapy is likely to be met or exceeded between 2024 and 2026 (12.7% 
median estimate for 2026, IQR: 11.2–12.9%; Supplementary Table 2).

marker for partial artemisinin resistance in samples collected as part of 
clinical drug efficacy studies between 2012 and 2015 (ref. 3). In contrast 
to the wild-type clearance rate of 2.7 h, the 561H mutant is associated 
with a delayed clearance half-life of 7.2 h16. This is similar to the clear-
ance half-life of the 580Y mutation that emerged in Cambodia6,8,16. 
Following the original identification of 561H in the Gasabo district of 
Rwanda5, additional studies have found 561H in more districts, with 
recent allele frequency measurements ranging from 0.045 to 0.219 
(refs. 6,7,9,10). These findings indicate that drug-policy interventions 
are now needed to delay the spread of 561H within the local P. falcipa-
rum population and to reduce the impact of treatment failures due to 
artemisinin-resistant parasites.

As of March 2023, the World Health Organization (WHO) rec-
ommends the following six ACTs for the treatment of uncompli-
cated P. falciparum malaria: AL, artesunate–amodiaquine (ASAQ), 
artesunate–mefloquine (ASMQ), dihydroartemisinin–piperaquine 
(DHA–PPQ), artesunate–sulfadoxine-pyrimethamine (AS + SP) and 
artesunate–pyronaridine (AS–Pyr)17. Within sub-Saharan Africa, the 
predominant therapies deployed are AL and ASAQ18, while the non-ACT 
formulation of sulfadoxine-pyrimethamine + amodiaquine (SPAQ) is 
commonly used for seasonal malaria chemoprophylaxis19. As such, 
sub-Saharan Africa faces a constrained drug landscape that requires 
national drug-policy interventions to be balanced between delaying 
drug-resistance evolution by the parasite—which leads to increased 
drug failures over the long term—and ensuring that therapies currently 
given are highly efficacious.

Studies detecting the mutant 561H allele indicate both increasing 
allele frequency and geographic spread from 2014 to 2019; however, 
there may still be a window of opportunity to delay or prevent the fixa-
tion of 561H in Rwanda and avert high numbers of treatment failures. 
Accordingly, using a mathematical model of malaria transmission, we 
examined 26 possible drug-policy interventions (the majority of which 
use existing therapies) and their ability to slow down 561H evolution 
and reduce long-term treatment failures. These include the replace-
ment of the existing first-line therapy, introduction of multiple first-line 
therapies (MFTs) and lengthening the dosing schedule for AL from a 
3-d course of treatment to up to 5 d of AL treatment in accordance with 
previous clinical trials20–22. Additionally, a more logistically complicated 
strategy of drug rotation is evaluated along with sequential therapy 
approaches (for example, 3-d AL course followed by a 3-d DHA–PPQ 
course) and the deployment of triple ACTs. Table 1 summarizes our 
findings and policy implications.

Results
Status quo
To provide a common point of comparison for policy interventions, a 
baseline (or status quo) scenario was run (n = 100 replicates) in which 
no interventions were implemented. Our spatially calibrated model 
initially uses the 2017 Malaria Atlas Project (MAP) projections for 
Rwanda’s malaria prevalence (that is, the P. falciparum prevalence in 
ages 2–10 years (PfPR2–10)) through the end of 2020, after which preva-
lence is scaled down in agreement with current incidence estimates for 
Rwanda23. Following this transmission reduction to the 2021 malaria 
incidence, the model presumes that incidence will remain stable over 
time. The allele frequency of 561H is calibrated (Fig. 1) to its measured 
distribution and frequency in Rwanda from 2014 to 2019 (Extended 
Data Fig. 1 and Supplementary Table 1). Using this calibration, the 
simulation forecasts that at the end of 2023, the national 561H allele 
frequency will be 0.36 (interquartile range (IQR): 0.29–0.45) and will 
reach a frequency of 0.98 (IQR: 0.97–0.99) by 2033. This projects that 
561H will be effectively fixed as the dominant allele if current status 
quo conditions continue, a pattern typical for most but not all past 
patterns of antimalarial drug-resistance evolution.

The increase in 561H allele frequency is projected to be associated 
with an increase in treatment failures. Based on previously calibrated 

Table 1 | Policy summary

Background The identification of artemisinin-resistant P. falciparum 
parasites in Rwanda carrying the pfkelch13 R561H 
allele requires a change to antimalarial strategy 
that explicitly aims to (1) slow down the spread of 
artemisinin-resistant genotypes and (2) minimize 
drug-resistance-associated treatment failures over the 
next decade.

Main findings and 
limitations

Using a stochastic individual-based P. falciparum 
transmission model calibrated to Rwanda’s malaria 
epidemiology and known distribution of 561H 
mutations between 2014 and 2019, we project that by 
January 2024 the 561H allele frequency in Rwanda will 
be between 0.29 and 0.45 (IQR). The population-level 
treatment failure rate is projected to surpass 10% 
sometime between 2024 and 2026. Lengthening the 
course of the currently recommended AL treatment 
from 3 to 5 d, or switching away from AL altogether, 
is projected over a 5-year span to slow down the 
spread of 561H and to reduce the treatment failure 
rate. The model projects that the most effective single 
policy switch is to an MFT approach with ASAQ used 
for 75% of treatments and DHA–PPQ used for 25% 
of treatments. Under this MFT strategy, the 5-year 
projected treatment failure rate is between 9% and 11%, 
whereas the status quo of using 3-d AL is projected to 
result in 16–20% treatment failure after 5 years.

The major uncertainty in these evaluations is that the 
future evolutionary path of piperaquine resistance 
in Africa is unknowable. If a piperaquine-resistant 
phenotype emerges in Africa that has similar 
characteristics to the Southeast Asian phenotype, 
DHA–PPQ use will likely need to be restricted. If 
low-grade piperaquine resistance is observed in 
Africa, DHA–PPQ usage can be expanded if paired with 
real-time molecular surveillance.

Certain next-generation approaches—such as the 
usage of triple artemisinin combination therapies or 
6-d sequential courses of approved ACTs—have the 
potential to keep treatment failures low for 5 years and 
in some cases 10 years. Both triple therapies evaluated 
here and all 6-d mixed regimens of two different ACTs 
were projected to keep the median treatment failure 
percentage below 4% after 5 years.

Policy implications These findings suggest that Rwanda’s National 
Malaria Control Program, and perhaps national 
malaria programs of neighboring countries, should 
consider near-term drug-policy changes specifically 
aimed at slowing the spread of artemisinin-resistant 
P. falciparum. MFT approaches appear to have the 
right balance of feasibility and efficacy in this regard. 
If DHA–PPQ is expected to have a prominent role in a 
new policy, it is imperative that DHA–PPQ deployment 
be paired with routine molecular surveillance for 
known piperaquine-resistance markers. National-level 
approval processes for triple artemisinin combination 
therapies should start early to ensure that they are 
available if the resistance situation worsens in the next 
several years. Safety and efficacy trials for sequential 
6-d courses of two different ACTs should be initiated 
to have an additional drug-resistance-management 
option available if the need arises.

http://www.nature.com/naturemedicine
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To evaluate the impact of potential drug-policy interventions, 
we examined 26 national-scale drug-resistance-response strategies 
(Table 2), with a presumed implementation date of 1 January 2024, and 
calculated the relevant metrics using 3-, 5-, and 10-year endpoints, with 
the objectives of (1) reducing the near- and long-term numbers of treat-
ment failures and (2) minimizing the increase in 561H allele frequency. 
The interventions can broadly be placed into the following five catego-
ries: (1) a change in first-line recommendation to a readily available and 
deployable therapy, (2) a change in strategy to deployment of MFT,  
(3) a change to a more intensive management approach, where multi-
ple approaches are used sequentially with different goals at different 
times (for example, lowering prevalence and delaying resistance),  
(4) sequential dosing of two ACTs and (5) a switch to high-efficacy  
triple ACTs, assuming triple ACTs are approved and immediately avail-
able for emergency use.

Currently approved interventions
Among alternate first-line therapies, extending the course of AL from 
3 to 4 or 5 d is the most immediately available option due to stocks 
of AL already being present and available. Continued use of a 3-d AL 
course for 5 years is projected to lead to a median 561H allele frequency 
of 0.82 (IQR: 0.73–0.86), whereas 4-d AL results in a 561H allele fre-
quency of 0.76 (IQR: 0.67–0.85, P = 0.0044; Wilcoxon rank-sum test) 
and 5-d AL results in a 561H allele frequency of 0.69 (IQR: 0.57–0.78, 
P < 10−4; Fig. 2). After 5 years, the national average monthly treatment 
failures are expected to be 23,500 (IQR: 20,900–26,500). These figures 
drop to 17,100 (IQR: 15,200–19,300, P < 10−4) under 4-d AL and 13,100  

(IQR: 10,500–14,700, P < 10−4) under 5-d AL. Treatment failure numbers 
are improved under a longer course of AL because of the combined 
effect of lower 561H frequency and higher treatment efficacy of the 
longer course. AL efficacy generally remained high in the model’s 
parameterization with the majority of AL efficacies, across all geno-
types in the simulation, above 85%.

Replacing AL with an alternative first-line therapy such as ASAQ 
or DHA–PPQ is the next most practical intervention to implement. A 
switch to ASAQ gives results similar to a 4-d or 5-d course of AL with 
a 5-year 561H allele frequency of 0.70 (IQR: 0.58–0.77, P < 10−4 com-
pared to 3-d AL) and a median of 14,100 (IQR: 12,500–14,700, P < 10−4) 
treatment failures per month. However, a switch to DHA–PPQ results 
in an acceleration of the fixation of 561H with the allele frequency 
reaching 0.90 (IQR: 0.87–0.93, P < 10−4) within 5 years and fixation 
within 10 years (Fig. 2). The projected number of treatment failures 
is also high with a monthly average of 60,800 (IQR: 57,100–64,000, 
P < 10−4) after 5 years and 83,300 (IQR: 82,900–83,400, P < 10−4) after 
10 years. When conducting sensitivity analysis for scenarios where 
DHA–PPQ efficacy remains relatively high, switching to DHA–PPQ 
is still projected to reach the 10% treatment failure threshold within 
5 years of deployment, although the long-term treatment failure 
rates are lower (Supplementary Table 3). The rapid fixation of the 
561H allele when switching to DHA–PPQ as the first-line therapy is due 
to the presence of artemisinin resistance coupled with the model’s 
projected rapid evolution of PPQ resistance leading to partner-drug 
failure, resulting in an environment favorable for rapid selection for 
artemisinin resistance.
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Fig. 1 | Calibration of simulated 561H allele frequency versus known 
frequency.  The 561H mutations are artificially introduced into the simulation 
(10 years before detection) in the Gasabo district and allowed to evolve and 
increase in frequency, as shown here through model completion in 2035. During 
model execution, the 561H alleles spread across the simulated landscape via 
human migration and are selected via local drug pressure. The simulated allele 

frequencies in five districts (median and IQR shown with blue line and shaded 
area, n = 100) are compared to known allele-frequency data5–7,9 (black dots). 
Gasabo is a district of Kigali City; Huye district is in southern Rwanda; Kirehe, 
Kayonza and Ngoma districts are in eastern Rwanda. The calibrated model is 
largely in agreement with known 561H spatial evolutionary patterns.
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In contrast to extending the duration of AL treatment or replacing 
the first-line therapy, the introduction of MFT will require additional 
logistical and operational effort, but this is likely to be offset by the 
effectiveness of MFT in slowing the spread of drug-resistant genotypes 
(due to the more complex evolutionary environment that parasites face 
under MFT26–28). Nine combinations of AL, ASAQ and DHA–PPQ with 
distribution ratios of 25/75, 50/50 and 75/25 were considered (Table 2) 
with drug choice at the time of treatment based upon a random draw 
in the simulation. Except for MFTs with a high (that is, 75%) proportion 
of DHA–PPQ treatments, MFT strategies outperformed the status quo 
with regard to 561H allele frequency (Fig. 3) and treatment failures  
(Fig. 4 and Supplementary Table 2). However, only an MFT consisting of 
75% ASAQ and 25% DHA–PPQ is projected to be under the 10% treatment 
failure threshold after 5 years at 9.9% (IQR: 8.7–10.6%, P < 10−4 compared 
to 3-d AL). Within 10 years, all MFT approaches are projected to exceed 
10% treatment failure, although combinations of 50% AL + 50% ASAQ 
and 25% AL + 75% ASAQ have comparably acceptable outcomes with 
15.5% (IQR: 14.8–16.0%, P < 10−4) and 14.5% (IQR: 14.0–14.8%, P < 10−4) 

treatment failure rates, respectively. The high percentage of treatment 
failures in MFTs incorporating DHA–PPQ at high levels (Fig. 4) is once 
again due to the loss of DHA–PPQ efficacy as PPQ-resistance evolu-
tion accelerates. After 5 years, the optimal MFT policy (75% ASAQ and 
25% DHA–PPQ) is projected to generate 11,900 (IQR: 10,300–12,800, 
P < 10−4) monthly treatment failures (Extended Data Fig. 2).

While DHA–PPQ deployment, compared to all other strategies, 
is associated with a higher frequency of 561H over the 5- and 10-year 
time frame—and an associated higher level of treatment failure—over 
a 3-year time frame DHA–PPQ is projected to be more efficacious, sug-
gesting that a more complex rotation strategy is worth considering. 
To evaluate this, we introduced the use of DHA–PPQ as the first-line 
therapy for 3 years, followed by a switch to an MFT using either 50% 
AL and 50% ASAQ or 50% 5-d AL and 50% ASAQ. These two strategies 
were comparable to or marginally better than pure MFT approaches. 
Only the strategy involving a switch to an MFT with 50% receiving a 5-d 
course of AL and 50% receiving ASAQ remained under the 10% threshold 
at the end of 5 years (9.5% (IQR: 8.8–10.1%, P < 10−4 compared to 3-d AL); 
Supplementary Table 2) with projected monthly treatment failures of 
11,800 (IQR: 11,000–12,600, P < 10−4). The procurement and distribu-
tion required to deploy a drug rotation coupled with MFT suggest 
that compliance and operations would have a considerable influence 
on the success of this approach. In general, MFT strategies promote 
the emergence of a large number of distinct genotypes, but selection 
pressure is weak on each genotype, limiting their ability to reach high 
allele frequency (Extended Data Fig. 3).

Next-generation interventions
We evaluated an intervention using two ACT courses sequentially for a 
single case of uncomplicated P. falciparum malaria. This approach has 
the advantage of an increased total dose of artemisinin (6 d), minimiza-
tion of safety risks by changing partner drugs and potential exploita-
tion of partner drugs selecting for opposite alleles. We explored this 
approach in the following two ways: following the protocol discussed 
in ref. 29 with six consecutive days of treatment from day 0 to day 5 
inclusive, and a modified protocol in which the second course is taken 
on days 7, 8 and 9 (labeled as ‘789’ in Extended Data Fig. 4). This modi-
fied protocol was chosen as one that may sustain better adherence in 
settings where village health workers assist patients in completing 
their malaria treatment courses, as it allows the second course to be 
taken on the same days of the week as the first course. At 5 years after 
introduction, all sequential courses have a median 561H frequency 
between 0.50 and 0.63, with ASAQ followed by AL having the lowest of 
0.50 (IQR: 0.38–0.59, P < 10−4 compared to 3-d AL). These are lower than 
the median 561H frequencies projected for all therapy switches, MFT 
approaches and rotations considered thus far. ASAQ followed by AL 
is also projected to have the lowest treatment failure rate 5 years after 
introduction at 1.8% (IQR: 1.5–2.0%, P < 10−4). All sequential courses are 
projected to have median treatment failure rates below 4% after 5 years 
and below 12% after 10 years. As in other scenarios, 10 years of DHA–PPQ 
use as part of a strategy of sequential ACT courses still results in strong 
selection pressure for PPQ resistance with long-term treatment failures 
increasing correspondingly (Supplementary Table 2).

While the previous 24 national-scale response strategies make use 
of currently available therapies, the results of past and ongoing clini-
cal trials of the triple ACTs artemether–lumefantrine–amodiaquine 
(ALAQ) and artesunate–mefloquine–piperaquine (ASMQ–PPQ)30 
suggest that they are likely to be highly efficacious and should be 
considered as an emergency intervention in response to rising treat-
ment failure rates. For these two scenarios, we presume that ALAQ 
or ASMQ–PPQ are deployed as first-line therapy, replacing AL. As 
expected based upon previous modeling studies31,32, in our analy-
sis, triple ACTs outperformed most other drug-policy interventions 
with ALAQ resulting in average monthly treatment failures of 2,100  
(IQR: 1,900–2,500, P < 10−4 compared to 3-d AL) and a 561H allele 

Table 2 | Summary of the primary drug therapy interventions 
examined using the simulation

Intervention Therapy

AL extension

AL (4-d course)

AL (5-d course)

AL (3-d course on days 0, 1 and 2) followed up with a 
second course on days 7, 8 and 9; labeled ‘AL789’

AL replacement
ASAQ

DHA–PPQ

MFTs

ASAQ (75%) + DHA–PPQ (25%)

ASAQ (50%) + DHA–PPQ (50%)

ASAQ (25%) + DHA–PPQ (75%)

AL (75%) + ASAQ (25%)

AL (50%) + ASAQ (50%)

AL (25%) + ASAQ (75%)

AL (75%) + DHA–PPQ (25%)

AL (50%) + DHA–PPQ (50%)

AL (25%) + DHA–PPQ (75%)

Sequential courses  
of 3-d ACT

AL on days 0, 1 and 2, followed by ASAQ on days 3, 4 
and 5; labeled ‘AL, then ASAQ345’

AL on days 0, 1 and 2, followed by DHA–PPQ on days 
3, 4 and 5

ASAQ on days 0, 1 and 2, followed by AL on days 3, 
4 and 5

DHA–PPQ on days 0, 1 and 2, followed by AL on days 
3, 4 and 5

AL on days 0, 1 and 2, followed by ASAQ on days 7, 8 
and 9; labeled ‘AL, then ASAQ789’

AL on days 0, 1 and 2, followed by DHA–PPQ on days 
7, 8 and 9

ASAQ on days 0, 1 and 2, followed by AL on days 7, 
8 and 9

DHA–PPQ on days 0, 1 and 2, followed by AL on days 
7, 8 and 9

Switch to DHA–PPQ, 
followed by switch 
to MFT

DHA–PPQ (3 years), then AL (50%) + ASAQ (50%)

DHA–PPQ (3 years), then 5-d course of AL 
(50%) + ASAQ (50%)

Triple ACT (TACT)
ALAQ

ASMQ–PPQ
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frequency of 0.43 (IQR: 0.34–0.57, P < 10−4) after 5 years, while ASMQ–
PPQ resulted in 1,900 (IQR: 1,200–2,600, P < 10−4) monthly treatment 
failures and a 561H allele frequency of 0.47 (IQR: 0.35–0.58, P < 10−4). 
Median treatment failure rates are projected to be 1.9% and 1.8%, respec-
tively, after 5 years. The usage of ASMQ–PPQ comes with an increased 
risk of PPQ failure leading to projected treatment failures of 18.8%  
(IQR: 15.6–21.0%, P < 10−4) at 10 years after deployment. In contrast, 
treatment failures are likely to still be low if ALAQ is deployed reaching 
only 2.1% (IQR: 1.8–2.3%, P < 10−4) 10 years after deployment (Fig. 2).

Patient adherence to treatment regimens
The scenarios modeled here assume that all courses of treatment will be 
completed in full; in practice, 100% compliance is unlikely and adher-
ence rates may be complicated by under-dosing, over-dosing and for-
mulation design (that is, fixed-dose combination versus copackaged 
blister packs), resulting in real-world compliance rates between 65% 
and 90% for a 3-d course of treatment33,34. To evaluate the possible 
impacts that compliance with treatment regimens would have, addi-
tional scenarios were evaluated in which ASAQ, DHA–PPQ and 3-, 4- or 
5-d courses of AL were administered using low (25–70%), moderate 

(50–80%) and high (70–90%) compliance rates for complete courses 
(Supplementary Table 4). As expected, failure to comply with the pre-
scribed course of treatment results in an increase in treatment failures; 
however, extended courses of AL (4 or 5 d) and ASAQ, even under low 
compliance, still outperform perfect compliance with a 3-d course of AL 
(Supplementary Table 5). No differences were seen in policy evaluation 
or prioritization when evaluating scenarios with imperfect compliance.

Discussion
The projected national frequency of the 561H allele in Rwanda under 
a continuation of status quo treatment with a 3-d course of AL sug-
gests that treatment failures will increase over the next 5 years and that 
drug-policy interventions are required to mitigate this risk as much as 
possible. The current spread of the 561H allele to other districts6–10, 
from its initial identification5, together with confirmation of 561H at 
frequencies similar to those projected in our simulation, suggests that 
the 561H allele is likely present throughout Rwanda. As recommended 
by the WHO, the Rwandan National Malaria Control Program (NMCP) 
should consider several strategies for mitigating the spread of pfkelch13 
alleles associated with artemisinin resistance13.
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Fig. 2 | Projected 561H allele frequencies and treatment failure percentages 
under potential intervention scenarios. The right-hand axis shows 12-month-
smoothed malaria prevalence (PfPR2–10). All strategies are evaluated over 10 years 
with year 0 corresponding to the year the strategy was first implemented. Shaded 
bands show IQR. a, Comparison between the status quo treatment of 3 d of AL 
therapy (AL3, darker lines) and 5 d of AL therapy (AL5). b, Comparison between 
AL5 and switching to DHA–PPQ (lighter lines) as first-line therapy. Note here  
that under DHA–PPQ prevalence drops early (to <2%) and later rises to nearly 
3.5%. This occurs because piperaquine resistance evolves quickly and reaches  

>0.50 genotype frequencies after 3 years, resulting in high prevalence and  
high levels of treatment failure. c, Comparison between AL5 (darker colors)  
and an MFT policy using ASAQ (75% of treatments) and DHA–PPQ (25%).  
d, Comparison between AL5 (darker colors) and a rotation strategy where DHA–
PPQ is used for 3 years and then replaced with an MFT policy using AL5 (50%) and 
ASAQ (50%). e, Comparison between AL5 (darker colors) and the triple therapy 
ALAQ. f, Comparison between AL5 (darker colors) and sequential courses of AL 
on days 0, 1 and 2 and DHA–PPQ on days 7, 8 and 9.
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Our findings suggest that over a 5-year time frame extending the 
use of AL from 3 to 5 d may hold treatment failure rates at or near the 
10% threshold and switching to an MFT strategy is also worth consid-
ering with the optimal MFT approach—a 75% ASAQ and 25% DHA–PPQ 
deployment—projected to hold treatment failure rates to 9.9% after 
5 years. Extending the course of treatment with AL has minimal logisti-
cal considerations beyond ensuring sufficient quality of doses being 
distributed and appears to be beneficial compared to the status quo 
scenario. Although there are concerns regarding the cardiotoxicity of 
antimalarial drugs35,36, the incidence of adverse cardiac events recorded 
during clinical trials has been low37,38. Switching to one of several MFT 

options where future treatment failure rates can be kept close to 10% 
will ensure there are no concerns with extended artemisinin dosing, 
and the success of these MFT deployments will depend on operational 
capability around the supply and distribution of ACTs. Based on the 
structure of the distribution network for antimalarials in Rwanda and 
the current availability of different ACTs, an MFT deployment is more 
likely to be feasible than a custom rotation approach, although it lacks 
the logistical ease of a single recommended first-line therapy.

The major uncertainty in these strategy comparisons is that 
the future course of PPQ resistance in Africa cannot be predicted 
through any modeling approaches, in vitro studies or clinical trials.  
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Fig. 3 | Projected 561H allele frequency after 5 years. Box plots (n = 100 model 
replicates per policy, median line with IQR) and violin plots (full data range) 
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and all outliers (outside 1.5× IQR) are plotted individually as diamonds. The first 
section includes the status quo and changes to the first-line therapies, followed 
by the second section containing MFT approaches, then custom drug rotation 
strategies and finally triple artemisinin combination therapies.
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The DHA–PPQ-resistant lineage that emerged in Southeast Asia 
led to 58% treatment failure under 3 d of DHA–PPQ treatment39, 
and a number of the key mutations associated with these pheno-
types are now known40. However, there is no guarantee that the 
same PPQ-resistance mutations will emerge in Africa. Any DHA–
PPQ-centered strategy in Africa should be paired with routine 
rapid-turnaround molecular surveillance for known markers of PPQ 
resistance. Similarly, for lumefantrine and amodiaquine, projected 
scenarios of resistance evolution come with uncertainty, but the 
effects of currently circulating parasite mutations on the efficacies 
of AL and ASAQ can be estimated.

Certain new therapeutic approaches to resistance management 
will need specific national approval or WHO prequalification. Triple 
ACTs and sequential ACT courses have the advantage of higher total 
parasite killing than a 3-d ACT and thus an associated lower treatment 
failure rate. All sequential and triple ACT approaches are projected 
to keep treatment failure rates below 4% over a 5-year period, with no 
noticeable advantage seen for sequential approaches despite their 
higher total dose of artemisinin. A major limitation of our modeling 
approach is that each therapy’s pharmacodynamics and pharmacoki-
netics are simplified to daily killing and drug elimination rates; a more 
detailed analysis will be required to understand whether we should 
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Fig. 4 | Comparison of projected treatment failures after 5 years. Box plots 
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(outside 1.5 × IQR) are plotted individually as diamonds. The first section includes 
the status quo and changes to the first-line therapies, followed by the second 
section containing MFT approaches, then custom drug rotation strategies and 
finally triple artemisinin combination therapies.
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expect true differences in failure rates for these therapies. However, 
for both triple ACTs and sequential ACT courses, the combination 
of three drugs used over a short period lowers the probability of 
multidrug resistance emerging during a treatment course and slows 
down the spread of artemisinin resistance over the long term. Triple 
ACTs will likely enter the WHO approval process in the next year, 
while approval for sequential courses may have to be sought on a 
case-by-case basis.

To further contextualize this study within the limitations inher-
ent in modeling studies, due to the introduction of AL in 2006, other 
genomic mutations, such as those associated with reduced lumefan-
trine susceptibility, are present in Rwanda. The introduction of muta-
tions in the model year 2014 represents a ‘model fitting compromise’ 
made necessary due to the stochastic nature of the rare mutation 
emergence process24,41 from 2006 to 2014 that has not been systemati-
cally captured in any known data collections. Furthermore, while the 
data and model calibration indicate that 561H initially appeared in the 
Gasabo district, the design of the simulation renders it incapable of 
fitting the highly stochastic process that would have driven the initial 
appearance and spread of 561H. Additionally, although it is possible 
that the dominant strain of P. falciparum circulating in Rwanda may be 
fitness neutral42, the model takes a more traditional assumption and 
includes a fitness penalty for the 561H mutation.

Pyronaridine–artesunate deployment was not considered in our 
simulations as pyronaridine-resistant falciparum phenotypes have 
not yet been described. Assuming similar rates of emergence and 
similar drops in ACT efficacy due to future pyronaridine resistance, 
pyronaridine–artesunate would likely make a positive contribution 
as an addition to any of the MFT strategies shown in Table 2. The rela-
tive rankings of the different strategies are expected to stay the same; 
however, this would need to be confirmed with a new set of simulations. 
It is unknown how early we should expect to see pyronaridine-resistant 
parasites and whether there will be cross-resistance with other partner 
drugs. As with any other deployment of a new antimalarial, regular 
monitoring of pyronaridine–artesunate efficacy and planned in vitro 
resistance studies will be crucial to the early identification of resistant 
phenotypes.

Another major limitation for our model calibration—and any 
malaria modeling exercise evaluating the last 5 years of epidemiologi-
cal changes—is that the effects of the COVID-19 pandemic on malaria 
control are not easily quantified. A mixed-methods study of three 
high-endemic districts in Rwanda (Gasabo, Kayonza and Rwamagana) 
suggests that while the distribution of malaria testing shifted, the over-
all decline in uncomplicated malaria cases continued through 2020 
(ref. 43). The most recent annual case estimates for the fiscal period 
of July 2021–June 2022 place P. falciparum case numbers at around 
1 million annually, with 1.16 million reported for calendar year 2021 to 
the WHO44. With these recent gains, resistance management strategies 
should seek to keep absolute treatment failure counts below 10,000 
monthly for the medium term.

Rwanda’s NMCP’s current activities to expand indoor residual 
spraying activities (from 2–8 districts last decade to 12–15 districts this 
decade) and to introduce synergistic insecticide-impregnated nets 
(piloted in 2019–2020 with distribution planned for 2023 (ref. 45)) are 
likely to reduce biting rates and number of cases in the coming years. A 
recent pilot study in a rural part of the Gasabo district with high malaria 
risk showed that larviciding activity had a moderate effect on reduc-
ing incidence; the NMCP also expects to expand larviciding as part of 
a new set of malaria control activities. These interventions may prove 
beneficial in the fight against drug resistance as they may eliminate 
pockets of transmission, including drug-resistant alleles, and are likely 
to slow the overall geographic spread of all genotypes. These activities 
and their effects are not included in the present modeling analysis.

For the majority of national drug-policy intervention scenarios 
considered here that are based upon existing therapies or protocols, 

treatment failures are projected to exceed 10% within 5 years and 
may reach as high as 40% if, under a worst-case scenario, DHA–
PPQ-resistant phenotypes similar to the known Southeast Asian lin-
eages were to emerge or be imported into Africa (Supplementary  
Tables 6 and 7). As such, emphasis should be placed on the develop-
ment of next-generation strategies along with continued evaluation 
of pyronaridine–artesunate, triple ACTs and sequential ACT courses. 
According to model projections, the most successful among these 
choices in slowing down the spread of 561H and reducing treatment 
failures is likely to be the adoption of triple ACTs following the com-
pletion of clinical trials and regulatory approval. Early introduction 
of triple ACTs, before crossing the WHO first-line therapy treatment 
failure threshold of 10%, would need to be accompanied by appropriate 
public health communication and an assessment of acceptability in 
affected communities46. Model projections also show that sequential 
ACT courses may have comparable treatment failure benefits to triple 
ACTs, but the prolonged course may result in lower patient adherence.

Without additional interventions targeting drug resistance or 
general malaria transmission, drug resistance can spread rapidly once it 
is established, and this could leave NMCPs with limited forewarning to 
respond to a rise in malaria cases and treatment failures. The identifica-
tion of 561H in Uganda12 suggests that the spread of the 561H mutant is 
currently underway and that this spread is likely to co-occur with that of 
other markers for artemisinin resistance within sub-Saharan Africa11,12,47. 
Urgency and speed in setting a new antimalarial policy—a policy that 
is specifically aimed at containing the spread of artemisinin-resistant 
pfkelch13 mutants—are most likely to determine the success of our 
response to artemisinin resistance in Africa.
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Methods
Model description
A previously validated spatial, stochastic, individual-based model 
was used as the basis for the study48,49, and new model calibration 
and validation was performed to match the malaria prevalence of 
the 30 administrative districts of Rwanda. The MAP mean PfPR2–10 
projections for 2017 (ref. 50) were used as the basis to calibrate local 
transmission parameters on a 5-by-5 km (25 km2) scale in Rwanda 
(Extended Data Fig. 1), followed by a switch to the malaria incidence 
in 2021 using aggregate data reported by the Ministry of Health23. The 
seasonal variation in malaria transmission was coupled to seasonal 
rainfall (Extended Data Fig. 5a,b), consistent with the general coupling 
of seasonal transmission and increased rainfall. Treatment seeking 
and treatment coverage data were obtained from the 2019–2020 
Demographic and Health Survey51, with treatment coverage ranging 
from 53.3% to 71.8% across provinces. Under the baseline model, or 
status quo conditions, all treated individuals in the model receive a 3-d 
course of AL and fully comply with the course of treatment. No private 
market drugs are incorporated, consistent with survey results51. During 
model execution, individuals move around the simulated landscape 
in a manner consistent with previous travel studies for sub-Saharan 
Africa52,53 and carry any P. falciparum clones to these destinations. The 
carried clones may then enter into circulation within a new region if 
the traveling individual is bitten by a mosquito, which then proceeds 
to infect another individual.

With these prevalence and treatment calibrations, the model pro-
duces a symptomatic malaria incidence ranging from 9.92 per 1,000 
(Burera district) to 465.62 per 1,000 (Gisagara district) in 2020 under 
the MAP PfPR2–10 projections, and 5.49 per 1,000 (Burera district) to 
410.26 per 1,000 (Nyamasheke district) in 2022 following the switch 
to the incidence-based prevalence calibration. This results in an inci-
dence of 139.13 per 1,000 for symptomatic cases and an incidence of  
87.76 per 1,000 for treated cases at the national level in 2022, consistent 
with reporting that the incidence rate has been declining from a high 
of 403 per 1,000 in 2016 (ref. 23; Extended Data Fig. 5c,d). All policy 
interventions were introduced on 1 January 2024, of the simulation 
using version 4.1.4 of the simulation.

After calibration of prevalence, incidence and treatment coverage, 
the simulation’s genotype frequency and trajectory were matched to 
known observations of 561H allele frequencies. At the time of calibra-
tion, nine data points of the pfkelch 561H mutation were available 
at the district level—four close to the capital Kigali5,6,9, two from the 
eastern district of Kayonza5,6 and one each from the districts of Huye7, 
Kirehe and Ngoma10. To calibrate to these values, the simulation was 
seeded with a single mutation of 561H genotypes in Gasabo district 
(Kigali province) to generate a slowly growing exponential curve with 
district frequencies that are consistent with measured values (Fig. 1). 
This results in a mean national frequency ranging from 0.01 in 2014 to 
0.12 in 2020. In the event that the seeded 561H genotypes went extinct 
before 2014, the replicate was discarded from analysis.

Because the mutation rate to 561H alleles is not known, these artifi-
cially introduced 561H genotypes are the only means by which 561H can 
be introduced into the simulation. The spatial spread of 561H is driven 
by human movement and migration within the simulation, which is 
based on the gravity model described in ref. 53 for sub-Saharan Africa 
and presumes that major cities (that is, Kigali) will have an oversized 
effect on human movement dynamics. To account for the ability of ACT 
partner-drug resistance to accelerate the fixation of artemisinin resist-
ance24, mutations affecting other alleles (for example, pfcrt, pfmdr1, 
etc.) are enabled in the simulation on 1 January 2014, following the 
completion of model burn-in using a previously calibrated mutation 
rate24. This produces a slight model delay in pfcrt and pfmdr1 mutations 
that are associated with the use of lumefantrine given the adoption of 
AL by Rwanda in 2006, likely resulting in a slight model bias toward low 
frequencies of alleles associated with lower lumefantrine susceptibility.

Model calibration and validation. The following three metrics were 
used for model calibration and validation: the population-weighted, 
district-level, annual mean PfPR2–10 as projected by MAP50 versus the 
simulated PfPR2–10 before 2021; the district-level clinical cases projected 
by the simulation and the projected 561H frequency. To calibrate the 
PfPR2–10, the local transmission intensity, or β, was determined using 
a constrained parameter space search. This was performed by first 
binning the population in each 25 km2 cell using Jenks natural breaks 
optimization followed by scanning the domain of possible β values 
using a fixed population (that is, the bin size) along with the relevant 
population and climatic variables. Upon determining the possible β 
values, they were assigned to cells in the model by matching the popu-
lation in each cell to the appropriate bin and assigning the calculated 
transmission intensity. Once this process was complete, the model 
was run and assessed against a target deviation of MAP PfPR2–10 values 
to within ±10% (Extended Data Fig. 5c), although for low-prevalence 
districts, matching the MAP projections was a challenge when accom-
panied by a low population due to the increase in stochasticity present 
in the model. We found the overall PfPR2–10 calibration to be acceptable, 
with low-prevalence districts having a simulated PfPR2–10 that skewed 
slightly higher than the reference, whereas the higher prevalence 
districts skewed slightly lower.

The next model validation metric is a comparison of the 
district-level projections for clinical cases versus the true incidence 
for 2017 (ref. 54). Starting with the total clinical cases per 1,000, it is 
clear that the spatial distribution of model-generated clinical cases is 
distributed in a manner that is consistent with 2017 true incidence50, 
although the counts of both all clinical cases (Extended Data Fig. 6) 
and treated cases (Extended Data Fig. 7) are lower in the model than 
in the reported figures23. However, these lower model projections are 
consistent with the overall decline in malaria cases in Rwanda55 and also 
support the simulation transition from using a calibration based on 
MAP projections to one based on incidence projections during model 
execution at the start of 2021. Overall, the good agreement between the 
projected PfPR2–10 and reference values supports model calibration as 
being within acceptable bounds.

The final point of model calibration and validation is the 561H 
frequency. Presently, 561H frequency data are only available for Huye, 
Kayonza, Kirehe and Ngoma districts, along with the province of Kigali, 
consisting of Gasabo, Kicukiro and Nyarugenge districts (Supple-
mentary Table 1). As a result, the model was calibrated to use a single 
introduction event on 30 September 2004, in which 6% of infected 
individuals in any of the cells of Gasabo district had their parasites 
switched from R561 to 561H. This date and quantity of mutations were 
selected on the basis of a parameter space search, which is the only 
introduction of 561H in the simulation. Although this introduction 
results in a generally consistent spread of the mutation, outliers are 
still possible (Extended Data Fig. 8). To ensure that replicates used for 
analysis are in good agreement with observed data, only replicates in 
which the 561H frequency in Gasabo is greater than 0.01 in September 
2014 of the simulation are retained. The model’s spread of mutations 
is consistent with measured allele frequencies between 2014 and 2019 
(refs. 5–7,9), supporting the model as having a 561H introduction that 
is properly calibrated. As a note of caution, although this calibration 
suggests a mechanism through which 561H may have spread in Rwanda, 
the model was not designed, configured or calibrated to explore the 
nature of the introduction event or original mutation event.

Model scenarios. As a common point of comparison, a baseline sce-
nario was run in which the calibrated model was simulated for a 10-year 
window past the proposed point of intervention (that is, 1 January 2024 
to 1 January 2034). This baseline scenario also controls for any devia-
tions in the model versus real-world data for Rwanda by allowing all 
policy interventions to be compared to the same projected outcome 
and presumes that the calibrated malaria incidence remains stable over 
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time. A total of 26 drug-policy intervention scenarios were evaluated 
within the simulation (Table 2), and all interventions were introduced at 
the same time with no delay between the introduction and the change 
in therapies received by individuals. The 5-year endpoints are presented 
in the main text, with 3- and 10-year endpoints referred to as needed; 
comprehensive results for all endpoints can be found in Supplementary 
Tables 2 and 5.

The policy scenarios run may be summarized as follows. Five evalu-
ated interventions involved a change in first-line therapy to a 4-d course 
of AL, 5-d course of AL, ASAQ and DHA–PPQ. Nine of the interventions 
involved MFT approaches with drug distribution proportions ranging 
from 25/75 to 50/50 to 75/25 (Table 2), with selection of the drug given 
to the individual based upon a random draw upon first treatment. 
Functionally this can be imagined working the same as a provider 
randomly assigning a therapy to a patient via coin flip, randomization 
schedule or other means. Other MFT implementations with different 
approaches to drug distributions are possible28 but were not evaluated 
here. Two interventions considered drug rotation with short-term 
DHA–PPQ use first (for 3 years) followed by replacement of DHA–PPQ 
with one of two MFT strategies using AL and ASAQ. Four interventions 
replicated the therapeutic arms of the sequential ACT therapy regimen 
proposed in ref. 29 with AL followed by either ASAQ or DHA–PPQ, or AL 
preceded by ASAQ or DHA–PPQ. However, the model scenario deviates 
from the protocol proposed in ref. 29 by applying sequential therapy 
to all treatment-seeking individuals as opposed to just children aged 
6–120 months. The second of the sequential therapies was given either 
on treatment days 3, 4 and 5 or on treatment days 7, 8 and 9; results for 
both timings of treatment courses are presented. Finally, two interven-
tions considered the replacement of AL with one of two triple therapies 
(ALAQ and ASMQ–PPQ), which are yet to be approved30,46.

Sensitivity analysis. Five forms of sensitivity analysis were performed 
using the same base calibration previously described, with the relevant 
parameters adjusted as needed. These studies included assessing the 
sensitivity to individual movement, the fitness cost associated with 
drug-resistance mutations and the impact of individual compliance 
with drug treatments. All studies used at least 100 replicates per per-
mutation in assessing the results.

First, the model sensitivity to individual movement was assessed 
by adjusting the movement to be 0.3, 0.5, 2 or 3 times more than the 
calibrated movement. Under these conditions, it was found that a 
movement rate less than the calibrated value resulted in projected 
561H frequencies that were higher than observed in Gasabo while 
lower in other districts (Supplementary Figs. 1 and 2). However, higher 
movement rates (that is, 2× and 3×) have a lower variance and plausi-
bly reproduced the observed 561H frequencies for Gasabo, Kayzona, 
Kicukiro and Nyarugenge districts, although the projected frequencies 
were substantially higher for Huye (Supplementary Figs. 3 and 4). These 
results show that the calibrated individual movement rate is consist-
ent with the observed geographical frequency of 561H, although it is 
possible that the true individual movement rate may be slightly faster.

Next, the model sensitivity to fitness cost was assessed by adjust-
ing all fitness costs to be 10, 25 or 50 times greater than previously 
calibrated values. Given that there is evidence that there is a 561H 
mutant strain of P. falciparum circulating in Rwanda that does not incur 
a fitness penalty42, lower values for the fitness cost were not assessed. 
Under the 10× scenario, it was found that the initial mutation event 
needed to be increased to 20% of the infected individuals in the Gasabo 
district, but the 561H frequency was similar to the observed data and 
the projection was similar to the model calibration (Supplementary 
Fig. 5). This suggested that the calibrated fitness penalty used in the 
model, based upon previous modeling exercises24, is reasonable and 
the model projections would still remain valid when the actual fitness 
cost incurred by the 561H mutant is up to 10× the calibrated value. 
However, when increasing the fitness penalty to 25×, it is necessary to 

increase the initial mutation event to be 50% of the infected individuals 
in the Gasabo district (this is unrealistic) and the allele frequency tra-
jectories only weakly tracked the observed data points (Extended Data 
Fig. 9 and Supplementary Fig. 6). Under the 50× scenario, the initial 
mutation event was increased to 75% of the infected individuals in the 
Gasabo district and the projected frequencies suggest that 561H would 
only exist in Rwanda at a low frequency, or would soon face extinction 
(Supplementary Fig. 7). It is highly unlikely that higher fitness costs of 
25× or 50× are plausible.

The model sensitivity to individual drug treatment compliance was 
assessed by administering ASAQ, DHA–PPQ and 3-, 4- or 5-d courses 
of AL to individuals using low (25–70%), moderate (50–80%) and high 
(70–90%) compliance rates for complete courses (Supplementary 
Table 4). Each scenario takes effect on 1 January 2024, and presumes 
that the individual will always complete the first day of treatment, and 
compliance rates then proceed to drop after that point. As expected, 
across all treatment options, failure to comply with the prescribed 
course of treatment results in higher treatment failures when compared 
to the full compliance outcomes. Under the 3-, 4- and 5-d AL treatment 
options, along with ASAQ, the number of treatment failures increases 
with the rate of noncompliance.

Because PPQ resistance may evolve differently in Rwanda than 
what was observed in Southeast Asia, the model’s sensitivity to PPQ 
resistance was evaluated by first evaluating the sensitivity to the gene 
duplication rate for plasmepsin 2/3 genes. Using the calibrated value 
based upon the emergence of PPQ resistance in Southeast Asia as 
the baseline25, the probability of gene duplication was adjusted to 
be 0.25, 0.5, 1.25 and 1.5 times the calibrated value. These represent 
optimistic scenarios in which African strains of P. falciparum are less 
likely to develop PPQ resistance (0.25× and 0.5× scenarios) and pes-
simistic scenarios in which African strains are more likely to develop 
PPQ resistance (1.25× and 1.5× scenarios). For all four scenarios, the 
annual percentage of treatment failures exceeds the 10% treatment 
failure threshold within 5 years after switching from AL to DHA–PPQ 
(Supplementary Table 3). Ten years after the introduction of DHA–
PPQ, the annual percentage of treatment failures was approximately 
55% with 561H fixed for all scenarios, indicating that PPQ efficacy is a 
critical value to monitor.

Finally, the sensitivity of the model to changes in PPQ efficacy on 
PPQ-resistant parasites was evaluated by altering the configured EC50 
value (concentration at which killing is 50% of maximum). The details 
of the pharmacokinetic/pharmacodynamic model are described in 
ref. 48, and the model uses calibrated values of 0.58 for PPQ-sensitive 
and 1.4 for PPQ-resistant parasites, where 1.0 is set as the standard 
therapeutic dose given in the simulation. The simulation was then run 
with values ranging from 1.0 to 1.6 for the EC50 of PPQ. As expected, an 
EC50 value less than the configured value of 1.4 had fewer treatment 
failures at 5 years while 1.5 and 1.6 produced more treatment failures 
(Supplementary Table 3). This pattern was similar for the 561H fre-
quency, although the difference was only statistically significant for 
EC50 ≤ 1.2 with P < 10−4. For all scenarios, the model projects that the 
10% treatment failure threshold would still be reached within 5 years 
of DHA–PPQ introduction and 561H would be fixed within 10 years.

Statistical analysis. Differences between groups of simulation results 
(that is, comparing 100 simulations each from two scenarios) are tested 
with nonparametric Wilcoxon rank-sum tests, and all P values lower 
than 10−4 are shown as 10−4.

Model calibration data
Spatial data. A 5-by-5 km (25 km2) cell is the primary spatial unit in the 
simulation, the same size as the resolution of the MAP PfPR2–10 projec-
tions used as part of the model calibration50. This cellular resolution 
results in a modeled space of 979 cells covering 24,475 km2 or about 
93% of the total area of Rwanda (Extended Data Fig. 1a). Cells that are 
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predominately water are not simulated, and some discrepancy in area 
is due to clipping along national borders. During model initialization, 
spatial data in the form of national districts, population, access to 
treatment and the beta (that is, transmission parameter) for each cell 
are loaded. Administrative and geographic boundaries from the World 
Bank56,57, the Rwanda National Institute of Statistics58 and the World 
Database on Protected Areas59 were used in the preparation of model 
inputs (Fig. 1 and Extended Data Figs. 1, 6 and 7).

Demographics, mortality and treatment seeking. The estimated 
population of Rwanda was 12,663,116 in 2020 with a crude birth 
rate of 28.8 per 1,000 (ref. 60), and the population skews younger 
with about 54.3% being under the age of 20 years61 (Supplementary  
Table 1). Deaths due to malaria continue to have a substantial impact 
on the mortality rates within Rwanda62, and the mortality rate applied 
to the population was adjusted to remove the deaths that were attrib-
uted to malaria using the UN population projections63 (Supplemen-
tary Tables 2 and 3). In the event an individual reaches the age of 
100 years, they are removed from the simulation. When individuals 
are infected with the parasite, upon exhibiting clinical symptoms, 
they seek treatment based upon the surveyed treatment-seeking 
behavior for the province that contains the cell they are currently in 
with no distinction between under-5 and over-5 treatment-seeking 
rates51 (Supplementary Table 4).

Seasonal transmission. To account for the seasonal variation in trans-
mission intensity, a seasonality calibration was conducted, and the 
results were applied to all cells during model execution. This seasonal-
ity calibration is based upon the correlation between rainfall and the 
Anopheles mosquito prevalence and presumes that transmission will 
begin to increase as favorable conditions increase. Thus, the trans-
mission intensity is adjusted up, or down, by applying the seasonal 
adjustment value (Extended Data Fig. 5b). This adjustment was calcu-
lated by first calculating the 10-year daily average rainfall for Rwanda, 
using data from ERA5 global climate and weather projections64. The 
rainfall data were then clipped to the borders of Rwanda using Google 
Earth Engine for January 2009 to December 2019, inclusive, and then 
smoothed and shifted by 10 d using a MATLAB script. The 10-d offset 
was selected on the basis of the Anopheles gambiae lifecycle. Finally, 
a lower bound of 0.4 was used to ensure that some malaria transmis-
sion is always present at a rate consistent with seasonal patterns. The 
calculated adjustment is then imported during model initialization 
and applied during execution.

Drug efficacy. As part of the model calibration and validation, the drug 
efficacies were used as previously calculated25 following verification 
given the Rwandan population distribution. Within the current simula-
tion, a population of 50,000 individuals, with a population distribution 
consistent with that of Rwanda, was infected with P. falciparum infec-
tions. Following transition of the infection from the liver stage to the 
blood stage (that is, clinical symptoms), the relevant therapy was given 
to the individual and the efficacy was assessed using the parasite den-
sity at 28 d after the first treatment. Individuals with a parasite density 
less than 10 ml−1 of blood were counted as cleared (failed otherwise). 
Drug efficacies of longer courses—for example, 5-d AL or two sequential 
consecutive courses of ACT—are calculated via a one-compartment 
pharmacokinetic model and traditional Hill-function pharmacody-
namic model, using a 1-d time step48.

The lowest efficacy in the simulation is that of DHA–PPQ on the 
561H genotype, which also carries PPQ resistance (43.3% efficacy); this 
is also the reason that PPQ resistance spreads so quickly in the model 
simulations. The efficacy of 3-d AL on wild-type P. falciparum is 95.5%, 
while the efficacy of 5-d AL is 97.5%. The complete drug efficacies are 
included in Supplementary Tables 5 and 6 and were within ±2.5% of the 
original efficacies calibrated in ref. 25.

Ethics and inclusion in global research. This study included research-
ers from the Rwanda Biomedical Research Center (who were colocated 
and in close collaboration with Rwanda’s NMCP). Under the leadership 
of A. Uwimana and C. Ngabonziza, they planned the major study-design 
aspects for this paper and assisted the mathematical modeling team 
in identifying drug-resistance-management strategies that could be 
feasibly implemented in Rwanda. Research roles and responsibilities 
were discussed throughout 2022, including during in-person meetings 
in August and October 2022. Capacity co-enhancement collaborations 
have already begun by planning (1) a local modeling instance to be run 
in RBC Kigali with M. Kabera as the primary analyst and (2) a series of 
tutorials for Penn State scientists to understand the operational aspects 
of drug delivery and distribution in Rwanda.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Intermediate data files produced by the simulation can be found 
on GitHub at https://github.com/bonilab/malariaibm-spatial- 
Rwanda-561H/tree/main/Data. The configuration files used for the 
study described in this paper can be found at https://github.com/
bonilab/malariaibm-spatial-Rwanda-561H/tree/main/Studies. 
The prevalence data for 2017, released by the MAP (version 2019), 
has been archived under https://github.com/bonilab/malariaibm- 
spatial-Rwanda-561H/tree/main/Data/GIS/MAP. The spatial distribu-
tion of population is derived from the WorldPop 2015 spatial distribu-
tion of population in Rwanda and can be found at https://hub.worldpop.
org/doi/10.5258/SOTON/WP00674.

Code availability
The archived version of the simulation code base, complied binaries for 
Linux and scripts used for analysis and production of figures presented 
in this paper can be found on GitHub at https://github.com/bonilab/
malariaibm-spatial-Rwanda-561H.
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Extended Data Fig. 1 | Plasmodium falciparum prevalence and allele 
frequency of R561H in Rwanda. (Top) Estimates of P. falciparum prevalence in 
2-to-10 year-olds (PfPR2-10) from Malaria Atlas Project50 where each cell is 5 km 
× 5 km (25 km2). Highest PfPR2-10 levels above 10% are seen in the south-central 

part of the country. (Bottom) Map showing five districts in Rwanda where 561H 
alleles have been detected, as part of therapeutic efficacy studies (TES) or cross-
sectional molecular surveys. Red crosses show sites of TESs, population is per 
100 m grid cell.
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Extended Data Fig. 2 | Projected monthly treatment failure counts in 2028 
under various treatment strategies. Box plots (n = 100 model replicates per 
policy, median line with interquartile range (IQR)) and violin plots of treatment 

failure count for the same strategies as shown in Figs. 3 and 4 of main text. 
Whiskers show 1.5 times IQR while all outliers (outside 1.5× IQR) are plotted 
individually as diamonds.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Individual genotype plots. Six heat maps showing the 
evolution of distinct genotypes for individual model runs. Each heat map shows 
genotype frequency, from 2018 to 2039, for all genotypes that rose above a 0.001 
frequency at any point during this period. Frequencies below 0.001 are shown 
in white, whereas genotype frequencies above 0.001 are shown according to 
the colorbar on the right. The seven-letter genotype codes refer to, from left to 
right: the K76T locus, the N86Y locus, the Y184F locus, a second copy of N86Y, 
a second copy of Y184F, the R561H locus, and the presence (‘2’) or absence (‘1’) 
of a combination of piperaquine-resistant alleles. The top two heat maps show 
two different model runs for the status quo – differing only in that the model’s 

behavior is stochastic – where 3-day artemether-lumefantrine is maintained 
as first-line therapy. The outcomes of these runs differ, with different double-
resistant (to AL) genotypes emerging and spreading. The four major AL-resistant 
genotypes that spread in these model runs are labeled with their efficacies in the 
heatmap (under a 3-day course of AL). These four double-resistant genotypes 
are labeled with asterisks in the four heatmaps at bottom, showing that some of 
the management strategies evaluated in this modeling exercise are successful 
at delaying the onset of AL double-resistance. For the four strategies shown at 
bottom, a typical model run was chosen to display. Note that under MFT, more 
genotypes emerge but selection pressure is weaker on each individual genotype.
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Extended Data Fig. 4 | Projected 561H frequency and population-level 
treatment failure percentage in 2028 under sequential courses of ACT 
and triple ACTs. Box plots (n = 100 model replicates per policy, median line 
with interquartile range (IQR)) and violin plots of 561H frequency and percent 

treatment failure at a population level. Whiskers show 1.5 times IQR while all 
other outliers (outside 1.5 × IQR) are plotted individually as diamonds. The allele 
frequency is taken in December 2028 and treatment failure percentages and 
counts are averages over all twelve months of 2028.
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Extended Data Fig. 5 | Calibration of incidence and seasonality. (a) Mean 
daily rainfall over the period 2009–2019 reported from ERA5 global climate and 
weather projections64. (b) Model’s relative transmission parameter (β) based on 
54-day smoothing and normalization of rainfall data, note the lower bound of 0.4 
during the low transmission season ensures some transmission is always present. 

(c) Comparison of simulated PfPR2-10 to reference PfPR2-10 from the Malaria Atlas 
Project50, with large gray circles showing the 12-month mean PfPR2-10 and smaller 
dark gray circles showing peak and trough PfPR2-10 during a single year. (d) 
Relationship between model PfPR2-10 and model’s malaria case counts (total and 
reported). Reported cases are total cases multiplied by the drug coverage.
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Extended Data Fig. 6 | Treatment seeking by province and model incidence by district. Map shows model incidence of P. falciparum cases in 2020, by district. Inset 
shows treatment coverage, from DHS data51, by province.
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Extended Data Fig. 7 | Treatment seeking by province and treated clinical cases by district. Map shows model incidence of treated P. falciparum cases in 2020, by 
district. Inset shows treatment coverage, from DHS data51, by province.
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Extended Data Fig. 8 | Individual trajectories of R561H evolution. Each panel shows model’s frequency of 561H allele (n = 100 replicates) in a particular district or 
province of Rwanda: Gasabo province (Top Left), Kayonza district (Top Right), Ngoma district (Bottom Right), Kirehe district (Bottom Left).
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Extended Data Fig. 9 | National 561H allele frequency under different 
assumptions on fitness cost of resistance. Model trajectories show median, 
national 561H allele frequency (shaded area is 95% range) under previously 
accepted fitness cost assumptions24,32,48,49 which result in a 17% within-host fitness 
cost per year. Sensitivity analysis increasing the daily fitness cost 10-fold (Top 

Right), 25-fold (Bottom Left), and 50-fold (Bottom Right) show that the fitness 
cost used in our simulations is consistent with allele frequency measurements 
(black dots) taken between 2014 and 2019. A 10-fold larger fitness cost is also 
compatible with the data post-2014, but it is unknown which of these values is 
compatible with the unseen emergence pattern from prior to 2014.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02551-w

Extended Data Table 1 | Effects of treatment compliance on treatment failure counts and percentages in 5 years
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