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Transcriptional signatures associated with 
persisting CD19 CAR-T cells in children with 
leukemia
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Martin Pule8, Persis J. Amrolia    3,9, Sam Behjati    1,10,11,14  & 
Sara Ghorashian    2,12,14 

In the context of relapsed and refractory childhood pre-B cell acute 
lymphoblastic leukemia (R/R B-ALL), CD19-targeting chimeric antigen 
receptor (CAR)-T cells often induce durable remissions, which requires the 
persistence of CAR-T cells. In this study, we systematically analyzed CD19 
CAR-T cells of 10 children with R/R B-ALL enrolled in the CARPALL trial via 
high-throughput single-cell gene expression and T cell receptor sequencing 
of infusion products and serial blood and bone marrow samples up to 
5 years after infusion. We show that long-lived CAR-T cells developed a CD4/
CD8 double-negative phenotype with an exhausted-like memory state and 
distinct transcriptional signature. This persistence signature was dominant 
among circulating CAR-T cells in all children with a long-lived treatment 
response for which sequencing data were sufficient (4/4, 100%). The 
signature was also present across T cell subsets and clonotypes, indicating 
that persisting CAR-T cells converge transcriptionally. This persistence 
signature was also detected in two adult patients with chronic lymphocytic 
leukemia with decade-long remissions who received a different CD19 
CAR-T cell product. Examination of single T cell transcriptomes from a wide 
range of healthy and diseased tissues across children and adults indicated 
that the persistence signature may be specific to long-lived CAR-T cells. 
These findings raise the possibility that a universal transcriptional signature 
of clinically effective, persistent CD19 CAR-T cells exists.

B-lineage acute lymphoblastic leukemia (B-ALL) is the most common 
type of childhood cancer and mostly derives from immature B cells 
that carry the cell surface antigen CD19 (ref. 1). Most children with 
B-ALL can be cured through first-line treatment comprising combina-
tions of cytotoxic agents. However, relapsed ALL remains a leading 
cause of childhood death despite intensive cytotoxic chemotherapy 

often including allogeneic bone marrow transplantation. The advent 
of CD19 chimeric antigen receptor (CAR)-T cell therapy in recent years 
has transformed the treatment of intractable ALL2. Although a subset 
of children can be cured, up to 60% of children experience further, 
typically fatal, disease recurrence due to non-persistence of CAR-T cells 
or CD19− leukemic escape3,4.

Received: 22 December 2022

Accepted: 23 May 2023

Published online: 6 July 2023

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: sb31@sanger.ac.uk; s.ghorashian@ucl.ac.uk

http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-023-02415-3
http://orcid.org/0000-0002-2783-8482
http://orcid.org/0000-0003-4120-343X
http://orcid.org/0000-0003-0240-0684
http://orcid.org/0000-0003-0937-5290
http://orcid.org/0000-0002-6063-0659
http://orcid.org/0000-0002-6046-8428
http://orcid.org/0000-0003-0480-3911
http://orcid.org/0000-0002-6600-7665
http://orcid.org/0000-0002-1555-2946
http://crossmark.crossref.org/dialog/?doi=10.1038/s41591-023-02415-3&domain=pdf
mailto:sb31@sanger.ac.uk
mailto:s.ghorashian@ucl.ac.uk


Nature Medicine | Volume 29 | July 2023 | 1700–1709 1701

Article https://doi.org/10.1038/s41591-023-02415-3

Subclustering of CAR-T cells segregated cells transcriptionally into infu-
sion products at month 0 (M0), followed by early (M1–3), mid (M4–M6) 
and late (M7–M60) timepoints after infusion (Fig. 2a). Cycling cells 
congregated together from all timepoints, indicating that CAR-T cells 
remain proliferative several years after infusion. Using a marker-based 
annotation, CD8+ T cells were the predominant CAR-T cell at all time-
points in most cases, apart from late timepoints where CAR-T cells 
lacked expression of both CD4 and CD8A transcripts (Fig. 2b, Extended 
Data Fig. 3 and Supplementary Table 3). CD4 CAR-T cells made minor 
contributions at this point. Thus, late or persisting CAR-T populations 
were predominantly double-negative T cells.

Validation of double-negative CAR-T cell state
To confirm the early predominance of a CD8+ subset and the later 
emergence of a double-negative population, we implemented two 
orthogonal approaches. First, we analyzed peripheral blood (PB) and 
bone marrow (BM) samples from seven CARPALL patients collected at 
late timepoints by flow cytometry (7–72 months after infusion; Sup-
plementary Table 1). We identified CAR-T cells using CD3 expression 
and use of an anti-idiotype antibody specific for the CAR and assessed 
expression of CD4 and CD8 on CAR-T cells (Fig. 2c–f and Extended Data 
Fig. 4a). This analysis confirmed that most cells were double negative 
at these late timepoints with a smaller contribution from CD8 T cells. 
This contrasted with the lower proportion of double-negative T cells 
in the non-CAR-T cell compartment in these patients (Supplementary 
Table 4). Furthermore, CAR-T cells were also characterised by lack 
of expression of CD45RA and CCR7, suggesting an effector memory 
phenotype (Fig. 2g and Extended Data Fig. 4b).

In our second approach, we pursued a cell-marker-independent 
analysis to assign cell identity to CAR-T cells. We directly compared 
CAR-T cell transcriptomes to a multi-modal, single-cell atlas of the 
circulating human immune system8. This reference is based on 211,000 
human blood mononuclear cells interrogated by single-cell mRNA 
sequencing and by 228 anti-surface protein antibodies (CITE-seq). 
Consistent with our initial annotation and protein validation by flow 
cytometry, we observed that most late-persisting CAR-T cells were clas-
sified as double-negative cells, whereas CAR-T cells from earlier time-
points were mainly CD8+ T cells (Fig. 3a,b). The exceptions were patients 
P09 and P06 in whom an appreciable quantity of early CAR-T cells were 
double-negative γδ T cells with high expression of NKG7 and GNLY 
(Extended Data Fig. 5). This is consistent with a previous report that 
γδ T lymphocytes harbor similarities to CD8 T cells and natural killer 
(NK) cells9. Together, our initial observation with validation by two 
approaches demonstrates that most persisting CAR-T cells represented 
double-negative αβ T cells.

Persisting CAR-T cells exhibit a transcriptional signature
Next, we identified differentially expressed genes among CAR-T cells 
from each timepoint to extract markers of infusion, early, mid and late 
CAR-T cells. Infusion products were enriched for genes related to cell 
cycle, nucleosome assembly and glycolysis, plausibly due to in vitro 
activation during manufacture. Infusion products expressed high lev-
els of genes reflecting naive lymphocyte (that is, SELL, CCR7, IL7R and 
LRRN3) and early memory differentiation status, such as TCF7 and 
LEF1. The dominant gene expression pattern of post-infusion CARPALL 
CAR-T cells was defined on a continuum of granzyme gene expression 
(Fig. 3c). Across post-infusion timepoints, CAR-T cells were skewed 
toward either higher GZMH and GZMB expression or higher GZMK 
expression. CAR-T populations that were defined by higher expression 
of GZMK additionally expressed genes related to effector (LTB), memory 
(CD27 and IL7R) and activation (CD28) functions, whereas GZMH+GZMB+ 
cells expressed FGFBP2 and ZEB2. Unlike the other patients in this study, 
with one exception (P09), most CAR-T cells at late timepoints expressed 
GZMK. In non-CAR-T cells, the GZMH/B-GZMK pattern of expression was 
also observed; however, CAR-T cells expressed GZMK to much higher 

Previously, we generated a novel low-affinity CAR incorporating a 
CD19-specific single-chain variable fragment (scFv) called CAT, display-
ing a faster off-rate of interaction than the FMC63 CD19 binder used in 
prior clinical studies3. CAT CAR-T cells showed greater cytotoxicity and 
proliferative responses in vitro and maintained long-lived molecular 
remissions in children with relapsed or refractory ALL, as demonstrated 
in the CARPALL study3. The molecular features underpinning CAR-T cell 
persistence in our study remain unknown. We reasoned that single-cell 
transcriptomic assays may help elucidate these features. To date, other 
CAR-T cell products in patients have been studied at the resolution of 
single cells5,6. However, the persistence of CAR T-cells in these stud-
ies was generally limited to 3 months. An exception was long-lived 
CAR-T cells in two adult individuals with a different cancer—chronic 
lymphocytic leukemia (CLL)—in whom anti-CD19 CAR-T cells have 
persisted for almost a decade thus far7. It is unclear whether one can 
generalize from two adult patients treated for CLL to other hematologi-
cal malignancies and patient groups, in particular to childhood ALL, 
or to other CAR-T cell products.

We systematically studied molecular features and clonal dynam-
ics of CAR-T cells in children enrolled in the CARPALL study at serial 
timepoints, from production to persistence, up to 5 years after infusion.

Results
Overview of study cohort and experiment
We studied 15 consecutive patients with high-risk or relapsed CD19+ 
B-ALL treated with CD19 CAR-T cell therapy on the CARPALL study 
(NCT02443831) and in whom adequate CAR-T cells could be isolated 
for subsequent analyses from cryopreserved samples of blood or bone 
marrow. Outcomes of the first 14 patients infused were reported3; sub-
sequently, a further 18 patients have been treated. Thirteen of 15 (87%) 
patients studied achieved complete remission; six of these responding 
patients subsequently relapsed, whereas the other seven achieved 
long-lived remissions maintained by detectable CAR-T cells and con-
comitant B cell aplasia (Fig. 1a). We performed detailed phenotyp-
ing by flow cytometry in 11 patients, and, in ten children, sufficient 
CAR-T cells were obtained for further interrogation by single-cell mRNA 
and T cell receptor (TCR) sequencing (73 patient samples split into 
89 gene expression (GEX)/TCR and 64 flow samples; Supplementary  
Table 1 and Extended Data Fig. 1). Samples were taken from the 
CAR-T cell product as well as from patients at early (months 1–3), mid 
(months 4–6) and late (month 7 onwards) timepoints. Early timepoints 
were defined as 1–3 months, as all patients who achieved molecular 
complete remission with the absence of measurable residual disease 
did so within this window. The late timepoints were selected based on 
the timing of CD19− relapses, which were generally early events and 
would have occurred by month 7. The mid timepoints were the interval 
remaining between early and late. Two patients had samples from the 
product and at all timepoints (early, mid and late); four patients had all 
post-infusion timepoints represented; two patients had samples at two 
of three post-infusion timepoints; and two patients had only the early 
timepoint interrogated due to early relapse. We isolated CAR-T cells 
from peripheral blood or bone marrow by flow cytometry using CD3 
and CAR expression, before single-cell sequencing (Chromium 10x 
platform) (Fig. 1b).

Double-negative CAR-T cells delineate late timepoints
In total, we recovered 264,827 single cells that passed quality control, 
approximately 50,000 of which were CAR-T cells (Supplementary Table 2).  
We grouped all 264,827 cells using commonly deployed analytical 
methods and visualized resultant clusters using uniform manifold 
approximation and projection (UMAP) (Fig. 1c and Extended Data  
Fig. 2). Clustering segregated CAR-T cells from non-CAR-T cells, with 
contributions from all patients. Two clusters were completely patient 
specific; these clusters represented ALL cancer cells from two chil-
dren, patients P13 and P08, with CD19− relapses at the time of sampling. 

http://www.nature.com/naturemedicine
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Fig. 1 | Study overview and workflow. a, Swimmer plot illustrating the 
responses of individual pediatric patients with B-ALL to CAT CAR T-cell therapy 
and timepoints of sample collection. Attainment of complete remission was 
associated with attainment of B cell aplasia in all cases. Patient 5 had an isolated 
unilateral ocular relapse of CD19+ leukemia, which was treated with enucleation 
and remains in ongoing minimal residual disease (MRD) negative remission 
with no other intervention. Heat map to the right demonstrates timepoint 
representation per patient. Filled black boxes indicate the presence of the 
timepoint. Product = infusion products (M0); early = M1–M3; mid = M4–M6;  

late = M7–M60. b, Schematic workflow of study design. Samples were 
collected from infusion products (PROD), peripheral blood (PB) and bone 
marrow (BM) between M0 and M60. Samples were used either for flow-based 
immunophenotyping or for single-cell GEX and TCR sequencing on the 
Chromium 10x platform. RT, reverse transcription; Seq, sequencing. c, UMAP 
of all cells in the dataset highlighting cell types captured (left) and expression 
of the CAT-scFv CAR construct (right). CAT-scFv, low-affinity CAR (CAT) 
incorporating a CD19-specific scFv.
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levels (Extended Data Fig. 6a). The most recurrent and strongest mark-
ers of late CAR-T cells generated a persisting CAR-T signature that was 
delineated by the expression of bona fide immune-related genes, such 
as TIGIT and GPR183, as well as genes with unknown or emerging roles 
in immune biology (Fig. 3d and Extended Data Fig. 6b,c). The latter 
genes include FXYD2, HMOX1, DENND2D and ISG20 (see Supplementary  
Table 5 for full gene signatures). The top marker of this population of 

cells was FXYD2, which encodes a modulator of the Na+/K+ ATPase chan-
nel. Of note, FXYD2 was one of the transcripts expressed in functionally 
cryptic CD34lowCD3− CD4+CD8− intrathymic T progenitors that have 
been described in the human thymus10. In aggregate, our data reveal 
that, within and across patients, thousands of CAR-T cells converge 
on a double-negative cellular phenotype that displays a common and 
distinct gene signature.
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Fig. 2 | Characterization of CARPALL CAR-T cells. a, UMAP of CAT CAR-T cells 
demonstrates transcriptional clustering based on timepoint. Product = infusion 
products (M0); early = M1–M3; mid = M4–M6; late = M7–M60. b, UMAPs show 
scaled average expression of lymphocyte markers. c, Immunophenotyping CAT 
CAR-T cells by multi-parameter flow cytometry. Representative example of P01 
showing cell identification using CD4 and CD8A at an early (M2) and a late (M72) 
timepoint. Cells were gated for CD3 and CAT CAR. d–f, Trajectory scatter plots 

quantify data from all patient samples for CD4, CD8 and double-negative CAR-T 
populations. g, Representative example of P01 showing immunophenotyping 
using CD45RA and CCR7 at an early (M2) and a late (M72) timepoint. Cells were 
gated for CD3 and CAT CAR. TCM, central memory; TEM, effector memory; 
TEMRA, terminally differentiated effector memory expressing CD45RA; TN, 
naive; TSCM, stem cell memory. Fluorochromes: BV, brilliant violet; Cy, cyanine 
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In recent years, the classical dogma of a dichotomy between 
memory and exhausted T cells has been challenged with the descrip-
tion of functionally active memory cells that bear an imprint of prior 

exhaustion11. One of the most highly expressed genes in the persistence 
signature was the exhaustion marker TIGIT. We, therefore, assessed the 
co-expression of exhaustion markers in our CAR-T cells. We found that 
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Fig. 3 | Cell typing and defining a persisting CAR-T cell transcriptional 
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late CAR-T cells expressed canonical co-inhibitory receptors, such as 
HAVCR2 and LAG3, but to a lesser extent PDCD1 (Fig. 4). We, therefore, 
interrogated the gene and matched protein expression (flow cytom-
etry) of these mediators related to exhausted and precursor exhausted 
T cells (Extended Data Fig. 7a). Precursor exhausted T cells have been 
isolated in human cancer, where their presence has been associated 
with response to immunotherapy. Like precursor exhausted T cells, 
late CAR-T cells bore expression of relevant effector genes, such as 
GZMK and PRF1, as well as transcription factors associated with T cell 
exhaustion, including TOX12–14, NFATC1 (ref. 15), BATF16 and PRDM1  
(ref. 17). Although exhibiting features of exhaustion, the late CAR-T cells 
did not appear terminally differentiated, as supported by low expres-
sion of B3GAT1 (CD57) and by expressing no more than two exhaustion 
markers by flow cytometry (Extended Data Fig. 7b). Unlike CAR-T cells 
within the products that we evaluated, late CAR-T cells did not express 
high levels of TCF7, which orchestrates a state of memory stemness 
in precursor exhausted T cells in other contexts18. However, instead, 
there was robust expression of JUN, an AP-1-associated transcription 
factor that can mediate the reversal of T cell exhaustion and main-
tenance of cells with stem cell memory properties19. Thus, although 
long-persisting CAR-T cells did not exactly phenocopy precursor 
exhausted T cell populations described previously, this cell type would 
best describe their effector memory, exhaustion-imprinted status 
determined both transcriptionally and by flow cytometry.

Polyclonal population structures of persisting CAR-T cells
Within each patient, we had observed that, irrespective of T cell subset, 
thousands of cells converged on the same transcriptional state at late 
timepoints, raising the question of whether expansions of specific 
clones underpinned this functional convergence. We, therefore, inter-
rogated TCR sequences of CAR-T cells and obtained readouts from 88 
of 89 samples with concomitant gene expression data (Extended Data  
Fig. 1 and Supplementary Table 1). We found that the vast majority of 
cells across timepoints harbored unique clonotypes not observed at 
other timepoints. This indicates that the underlying gene pool remained 

sufficiently diverse to preclude the capture and tracking of individual 
clones (Fig. 5a and Extended Data Fig. 8a,b). An important considera-
tion of this analysis is that the frequency of CAR-T cells diminishes over 
time, such that, by late timepoints, the frequency is as little as 0.05% of 
total CD3+ cells in circulating blood (Extended Data Fig. 8c). Neverthe-
less, if the population structure were monoclonal, we would capture 
the same clone on each blood draw. Of the few trackable clonotypes, 
the top 10 clonotypes at early timepoints remained among the relative 
majority at later timepoints but decreased in frequency over time. 
We observed an extensive variability in cell type composition among 
clonotypes, irrespective of whether they were unique or observed 
across timepoints. Clonotypes that were observed across timepoints 
were predominantly CD8+ T cells, whereas unique clonotypes tended 
to be double-negative T cells (Fig. 5b and Extended Data Fig. 8a,b). For 
two patients (P02 and P01), for whom we have infusion product TCR 
data, we were able to track 1.7% and 0.5% of clones across from infusion 
products to 2 years and 5 years, respectively. In aggregate, these clonal 
structures indicated that, at all timepoints, CAR-T cell populations 
were genetically diverse, consistent with insertion site analyses previ-
ously performed on CARPALL CAR-T cells20. In particular, there was no 
evidence of the dominance of one or more clones at late timepoints. 
Overall, these findings indicate that functional convergence of the 
persistence signature was not driven by clonal expansion.

Evaluation of the persistence signature across T cells
As we had observed a transcriptional convergence of CAR-T cells across 
thousands of cells within and across patients, we speculated that the 
persistence signature may be pervasive across different CAR-T cell 
products. To date, one further single-cell transcriptomic study of per-
sistent CAR-T cells has been reported—of two adult patients with CLL 
treated with anti-CD19 CAR-T cells (CTL019 cells) that have persisted 
for one decade thus far7. We interrogated CAR-T cell data from these 
two patients by assigning a persistence signature score to each cell (the 
AddModuleScore function in Seurat21). Remarkably, the module was 
expressed in CTL019-persisting CD4 CAR-T cells in almost its entirety 
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(17/22 genes) (Fig. 6a). To compare our CARPALL CAR-T cell signal with 
CTL019 cells in an unbiased, quantitative manner, we used a method of 
cell-to-cell matching based on logistic regression22. We found that the 
strongest match of persisting CTL019 CD4+ CAR-T cells was to persist-
ing double-negative T cells in the CARPALL data (Fig. 6b). It should be 
noted that persisting CTL019 cells were primarily derived from patient 
1 (541/959, 56%), although, reassuringly, the persistence signature was 
also evident in a small number of cells from patient 2 (40/959, 4%). 
Overall, the similarity of persisting CARPALL and CTL019 CAR-T cells 
was not confined to gene sets but extended to the entire transcriptome.

We then questioned whether the persistence signature of 
CAR-T cells may have a physiological correlate. To this end, we scored 
T cells from a variety of healthy tissues, other CAR-T studies to date5,6,23 
and cancer cell single-cell atlases, including normal peripheral blood8, 
human fetal bone marrow24, human fetal thymus25 and as many as 16 
types of human cancers26–34, including tumors that are considered to 
be immunogenic and had long-term response to immune checkpoint 
inhibitors (for example, lung cancer and melanoma) (see Supplemen-
tary Table 6 for datasets analyzed). We were unable to detect T cells 
harboring the persistence signature at an appreciable frequency in 
any one tissue, barring occasional cells (Fig. 6c and Extended Data  
Fig. 9). The median frequency across tissues was −0.04 (−0.6 to 1.4). 
These observations indicate that the CAR-T cell persistence signature 
is rarely found in other biological contexts.

Discussion
A lack of CAR-T cell persistence leading to CD19+ relapse is the main 
cause of therapy failure after licensed CAR-T cell therapy for ALL35,36 and 
contributes to relapse in other B cell malignancies, such as myeloma37. 
Therefore, a key question of CAR-T cell biology is why some cells persist 
whereas others perish. With this knowledge, we might better under-
stand how to select patients, modify treatment phasing and optimize 
manufacturing protocols to support greater persistence and improve 
outcomes. To date, robust biomarkers of persistence have not been 
identified and can be validated only after directly demonstrating suc-
cessful long-term persistence in patients. A key requirement of this is to 
systematically examine the biological status of long-lived CAR-T cells. 
Currently, there is a paucity of these datasets, as persisting CAR-T cells 

have been probed in only a very limited number of patients to date7. 
As such, we generated a single-cell RNA sequencing (scRNA-seq) data-
set of cells from 10 patients with B-ALL treated with a CD19-targeting 
CAR-T cell product. Although our work represents, to our knowledge, 
the largest study of persisting single CAR-T cell transcriptomes, it still 
represents a modest cohort. Our key finding of a recurrent transcrip-
tional state representing persistence is unlikely to be affected by the 
size of the cohort. Within each individual, every long-lived CAR-T cell 
represents a biological replicate of the signal. Accordingly, our find-
ing has been reproduced multiple times within patients and has then 
been validated across individuals, including in the different clinical 
context of CLL. However, the size of our study precludes our ability to 
capture nuances of CAR-T cell transcription as well as any associations 
between CAR-T cell states and clinical subsets of patients, for which 
larger studies are required.

We found that late-persisting CAR-T cells mainly comprised a popu-
lation that did not express CD8-α or CD4 co-receptors transcriptionally 
or via surface expression. In healthy individuals, double-negative cells 
typically comprise a minor population of all T cells, and we observed 
similar proportions in non-CAR T-cells from the same patient. In gen-
eral, there was a steady reduction in CD8+ CAR-T cells over time, which 
matched a progressive increase in double-negative populations. This 
contrasts the long-lived CAR-T cells from adult CAR-treated patients 
with CLL, where double-negative CAR-T cell populations were noted at 
earlier timepoints and, on further investigation, were determined to 
be γδ T cells. Although γδ T cells were also observed in four patients in 
our cohort, they did not contribute to early CAR-T cell populations in 
the other patients. In our cohort, the predominance of double-negative 
CAR-T cells was particularly noted at later timepoints in all patients. 
We verified that, at the later timepoints, double-negative T cells were 
not contributed to by γδ CAR T cells or CAR NK cells. Late CAR-T cells 
in both cohorts showed evidence of an activated, proliferative and 
effector status with strong expression of GZMA and GZMK. Because 
the double-negative phenotype observed in late-persisting CAR-T cells 
is reminiscent of early thymocyte differentiation and the fact that we 
noted high expression levels of GPR183, an oxysterol receptor that 
provides survival and migratory signals to thymocytes and CD4+ T 
follicular helper cells38, we hypothesized a link between persisting 
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CAR-T cells and thymic cell development. Ultimately, we found that 
the transcriptional status of the late, double-negative CAR-T cells did 
not map to any thymocyte subset in T cell development but, rather, to 
mature T cells.

Late-persisting CAR-T cells did not conform to quiescent early 
memory T cell populations but expressed genes associated with effec-
tor function and an activated state. These cells also maintained their 
proliferative capacity. In keeping with recent reports of precursor 
exhausted T cells bearing the hallmark of activation, late CAR-T cell 
populations expressed markers and transcription factors associated 
with exhaustion, including TOX12–14 and BATF39, among others. With 
reference to this highly activated status, one might speculate that these 
are circulating effector cells differentiated from rarer memory precur-
sor populations after exposure to antigen. As these patients had no evi-
dence of circulating B cells or existing CD19-expressing hematogones 
in the bone marrow, it is plausible that these cells were activated as the 
result of an emerging CD19-expressing hematogone population. How-
ever, the existence of minute central or stem cell memory CAR-T cells 
at this time-point may count against this hypothesis.

Late-persisting CAR-T cells, although activated and imprinted with 
markers of exhaustion, did not express FOXO3 or B3GAT1, which are 
associated with terminal differentiation in the context of exhaustion. 
Instead, they expressed markers associated with memory-like charac-
teristics, including Jun, BCL2 and IL7R. Thus, they more closely matched 
precursor exhausted T cell populations as have been described in 
chronic viral infections11,39,40, cancer-infiltrating T cells41,42 and early 
post-infusion of CD19 CAR-T cells. Unlike previous reports of precursor 
exhausted T cell populations, however, they did not express high levels 
of TCF7 (refs. 39,40) or FOXO1 (refs. 43,44), confounding the suggested 
centrality of such transcription factors in driving long-lived CAR-T cell 
persistence and overcoming terminal exhaustion. In a previous report, 
c-Jun overexpression was sufficient to restore antigen responsiveness, 
memory function and long-term proliferative capacity in CAR-T cells 
exhausted due to tonic CAR signaling. The high expression of JUN 
in most late-persisting CAR-T cells in this study points to a plausible 
mechanism for long-lived persistence in these cells. Overall, our data 
instead support that, although previously exhausted CAR-T cells may 
indeed give rise to long-persisting populations, the predominance of 
transcription factors driving memory status is likely specific to the 
characteristics of the CAR, disease and model. Despite some similari-
ties to precursor exhausted T cells, the persistence module was rarely 
expressed by T cells in a range of pathophysiological contexts. Within 
the signature, there were a number of genes with little-known roles 
in T cells, including FXYD2, DENND2D and HMOX1. Overall, further 
work is needed to elucidate their function in T cells and how they may 
contribute to persistence.

A key finding of this study was a transcriptional signature of 
persistence that was reproducible across thousands of cells in every 
patient with long-lived CAR-T cells and durable anti-B-ALL responses. 
This signature was not identified when interrogating non-CAR-T cells 
from the same patients, T cell populations in normal development, 
T cells from a range of cancer datasets or other CAR-T cell studies. The 
persistence signature and underlying cell state were detected in an 
independent dataset of long-lived CAR-T cells from adults with CLL who 
had received a different CD19 CAR-T cell product. Of note, persisting 
CAR-T cells from the independent dataset were cytotoxic CD4 T cells 
with oligoclonal population structures, in contrast to double-negative 
CAR-T cells that were polyclonal, as reported in this study. These differ-
ences could arise from the different techniques used for TCR analyses 
(integration site analysis versus single-cell TCR analysis), the number of 
patients evaluated or the fundamental differences in the CAR product. 
Although we noted these differences among CAR-T cells at different 
timepoints, the late CAR-T cell signature that we defined here was repro-
ducible across both studies, indicating that it may represent a surrogate 
marker of longevity. Although this falls short of an easily measured 

biomarker of persistence with which to test CAR-T cell products, this 
understanding brings us a step closer to identifying such assays. That 
the transcriptional status noted was so pervasive in long-persisting 
CAR-T cells lends weight to the possibility that the signature may not 
only be a surrogate marker of longevity but, notably, may also provide 
a basis to investigate underlying cell-intrinsic or cell-extrinsic factors 
that drive CAR-T cell persistence. Given the data presented here, the 
longevity of CAR-T cells is likely not based on clonal selection and 
expansion. Rather, it is possible that the ongoing interplay with the 
environment shapes the resultant phenotype of long-lived CAR-T cells 
and supports functional diversity. With this knowledge, we will be 
primed in our ability to engineer this key characteristic into CAR-T cell 
therapies for hematological malignancies of the future.
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Methods
Sample acquisition, ethics and patient consent
Data from this study were generated from patients enrolled in 
the CARPALL study (NCT02443831). CARPALL was a multi-center, 
non-randomized, open-label, phase 1, single-stage clinical study 
designed to evaluate the safety, efficacy and response of CD19 
CAR-T cells in children and young adults (≤24 years of age) with 
high-risk relapsed CD19+ malignancies. Patient data were collected at 
Great Ormond Street Hospital (GOSH) and the University College Lon-
don (UCL)-GOSH Institute of Child Health (ICH), and laboratory data 
were generated in the study central laboratories at GOSH, UCL-GOSH 
ICH as well as the Sanger Institute. Patient recruitment occurred from 
2016 to 2019. Data collection, sequencing and analysis were from 
2016 to 2023. The study protocol and outcomes are available here: 
http://www.ctc.ucl.ac.uk/TrialDetails.aspx?Trial=116&term=carpall. 
Key clinical factors for this cohort are described in Supplementary 
Table 7. All patients who took part in this study were diagnosed with 
B-ALL. Written informed consent was obtained from all patients or 
their parents/guardians before study entry. Patients did not receive 
compensation for participation in the study. Patient sex was reported 
by patients or parents and confirmed upon (external) examination. 
Study results do not apply to any one sex or gender. Sex or gender were 
not considered in the study design, as all children and young aduts with 
high-risk B-ALL, independent of sex/gender, were considered. The sex 
of patients was noted, and this is described in the table of patient char-
acteristics (Supplementary Table 7). This trial was approved by the UK 
Medicines and Healthcare Products Regulatory Agency (clinical trial 
authorization no. 20363/0361/001). Ethical approval was obtained 
from the London–West London Gene Therapy Advisory Committee 
(GTAC) Research Ethics Committee (REC ref. no. 16/LO/0283). Note 
that the CARPALL study initially used monospecific low-affinity CD19 
CAR-T cells for therapy of B-ALL; however, a study amendment allow-
ing investigation of dual CD19 and CD22 CAR targeting is currently 
displayed on the ClinicalTrials.gov website. Historic versions of this 
trial before November 2020 can be viewed using the following link: 
https://clinicaltrials.gov/ct2/history/NCT02443831 (compare any 
version before November 2020). The analyses included here were not 
pre-specified in the clinical trial protocol.

Flow cytometry
CAR-T cells were isolated from either fresh peripheral blood or cryopre-
served aliquots of the infusion product (IP), peripheral blood mono-
nuclear cells (PBMCs) or bone marrow mononuclear cells (BMMCs). 
For fresh peripheral blood, PBMCs were isolated via density gradient 
centrifugation with Lymphopure (BioLegend). For cryopreserved 
samples, aliquots were rapidly thawed and washed in complete RPMI 
(10% FCS and 1% L-glutamine, Gibco). Flow cytometry was performed 
with a BD LSR II and cell sorting with a FACSAria III (BD Biosciences). 
Data analysis was performed using FlowJo version 10 (Tree Star) or 
FACS DIVA 8.0.1. Expression of CAR was detected by a CAR anti-idiotype 
antibody (bespoke product, Evitria, 1/200) and goat anti-rat IgG PE 
antibody (Poly4054, BioLegend, 1/400). The following reagents were 
used for phenotypic analysis of CAR-T cells: PD-1 BV421 (EH12.2H7, 
BioLegend, 1/20), CD45RA BV510 (HI100, BD Biosciences, 1/100), Lag3 
BV605 (11C3C65, BioLegend, 1/20), TCRgd BV650 (B1, BD Biosciences, 
1/20), CD127 BV711 (HIL-7R-M21, BD Biosciences, 1/20), CD4 BV784 
(SK3, BioLegend, 1/100), CD25 VioBright FITC (4E3, Miltenyi Biotec, 
1/100), Tim3 PECF594 (7D3, BD Biosciences, 1/20), CD8 PerCP-Cy5.5 
(SK1, BioLegend, 1/40), CCR7 PE/Cy7 (G043H7, BioLegend, 1/40), CD95 
APC (581, BioLegend, 1/10), CD3 AF700 (SK7, BioLegend, 1/40), CD27 
APC/Cy7 (M-T271, BioLegend, 1/20), TIGIT BV605 (741182, BD Bio-
sciences, 1/40), GPR183 PE/Dazzle594 (SA313E4, BioLegend, 1/40) and 
GZMK APC (GM26E7, BioLegend, 1/40). DAPI and Fixable Viability Dye 
eFluor 455UV (eBioscience) were used to discriminate viable cells. For 
intracellular markers, cells were fixed (Fixation Buffer, BioLegend) and 

permeabilized (Intracellular Staining Permeabilization Wash Buffer 
10×, BioLegend) before staining. Human BD Fc Block (BD Biosciences) 
was used as a blocking reagent. Fluorescence minus one (FMO) controls 
were used to determine expression thresholds where required. The 
full list of antibodies can be found in Supplementary Table 8. The flow 
cytometry gating strategy for immunophenotyping can be found in 
Extended Data Fig. 10.

CAR-T cell isolation and scRNA-seq using the 10x Chromium 
platform
Patient cells were harvested as described above for flow cytometry. 
Cryopreserved samples for 10x were rapidly thawed and washed with 
complete RPMI containing 50 U ml−1 of benzonase (Merck Life Science 
Limited). Cells were then stained with CAR anti-idiotype, followed by 
goat anti-rat IgG PE antibody and antibodies to CD3 APC (UCHT1, Bio-
Legend, 1/20) and CD45 FITC (2D1, BioLegend, 1/20). DAPI was used to 
distinguish viable cells. CAR-T cells were isolated as CD45+CD3+CAR+ 
events in a live singlet leukocyte forward-scatter (FSC)/side-scatter 
(SSC) gate using a BD FACSAria III flow sorter. The flow cytometry 
gating strategy for CAR sorting can be found in Extended Data Fig. 10. 
CAR and non-CAR populations were sorted simultaneously and then 
immediately used downstream for the 10x workflow. Flow-sorted cells 
(CAR and non-CAR) were loaded according to the standard protocol of 
the Chromium Single Cell 5′ Kit (v2 chemistry). A TCR single-cell library 
was subsequently prepared from the same cells with the Chromium 
Single Cell V(D)J Enrichment Kit. The 5′ gene expression library and the 
TCR single-cell library were pooled with a molar ratio 10:1 for sequenc-
ing on Illumina NovaSeq S4 with 28 × 90 bp, aiming for an average of 
300,000 reads per cell for the 5′ gene expression library and 30,000 
reads per cell for the TCR single-cell library.

Raw sequencing data processing, data filtering and 
normalization
The raw scRNA-seq data were demultiplexed and mapped to reference 
genome GRCh38, with the CAT-scFv sequence inserted, using Cell 
Ranger (10x Genomics, version 5.0.0). To filter lower-quality cells, we 
removed any cell with fewer than 300 genes, fewer than 1,000 unique 
molecular identifiers (UMIs) or where more than 10% of the read counts 
were derived from the mitochondrial genome. We excluded nuclear 
mitochondrial genes, heat shock proteins and ribosomal genes from 
our analysis.

Feature counts for each cell were divided by the total counts for 
that cell and multiplied by 10,000, followed by natural-log transforma-
tion using log1p. Counts data were then scaled such that each feature 
will be centered to have a mean of 0 and an s.d. of 1 for each gene. Prin-
cipal component analysis was performed using the top 2,000 highly 
variable genes, and data were grouped into clusters using a community 
detection finding algorithm taking the first 75 principal components 
as inputs. Using these principal components, we calculated a UMAP for 
data visualization and calculated clusters using the k-nearest neighbors 
approach with resolution parameter set to 1. This was performed using 
the Seurat package in R (R version 4.0.3 and Seurat version 4.0.6).

Cluster annotation and multi-modal reference mapping
CAR-T cells were defined as cells sorted for CD3 and the CAR by flow 
cytometry and belonging to clusters expressing the ‘CAT-scFv’ gene. 
CAR-T cells were clustered separately and labeled with their timepoint 
bins: product (M0), early (M1−M3), mid (M4−M6) and late (M7−M60). 
Clusters were subsequently annotated using lymphoid markers (that is, 
CD8A, CD8B and CD4) and established markers of T cell states curated 
from literature (Extended Data Fig. 3 and Supplementary Table 2). To 
supplement cell type annotation, the PBMC multi-modal reference was 
downloaded and processed using the instructions from the vignette. 
CAR-T cells were projected into the multi-modal reference using the 
FindTransferAnchors() and MapQuery() functions available in Seurat.

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/ct2/show/NCT02443831
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Differential gene expression and immunophenotyping of 
CAR-T cells
CAR-T cells were clustered separately at a global (across patients) 
level and per patient. Seurat’s FindAllMarkers() function was used 
to identify differentially expressed genes from cells across patients 
(global clustering) and within a patient using previously annotated 
cell types and timepoint bins (product, early, mid or late) as the label 
(that is, late: CD8 TEM). These analyses were performed using the 
two-sided Wilcoxon rank-sum test with Bonferroni multiple testing 
correction. Only genes with an average log2 fold change above 0.5 
were considered. For the per-patient analysis, markers were tallied 
and ordered from most to least recurrent across labels (timepoint bin: 
cell type). With the exception of the product, where only two samples 
were available, markers were considered recurrent if present in more 
than two patients. Gene signatures were derived from the intersection 
of the top 20 recurrent (across patients) marker genes and the global 
markers. For immunophenotyping analysis presented in Fig. 4, gene 
modules were curated from literature. The average scaled expression 
and percentage of cells expressing the gene were determined using the 
input derived from the data slot of the DotPlot() function in Seurat and 
replotted as shaded bar plots.

TCR analysis
Chromium 10x V(D)J single-cell sequencing data were mapped and 
quantified using the software package cellranger vdj (version 5.0.0) 
using the GRCh38 reference (vdj_GRCh38_alts_ensembl-5.0.0). The con-
sensus annotation files were generated per sample and used for down-
stream analyses. Clonotypes were defined per experimental sample 
based on unique TCR VJ sequences and complementarity-determining 
region (CDR3) motifs. Basic TCR statistics, such as the number of clones 
and the distribution of lengths and counts, were computed using Immu-
narch (version 0.7.0). For clonal tracking analyses, entries with a single 
or more than two alpha or beta chain(s) were considered one clone. 
Clonal population circles were created using the ggraph and igraph 
packages in R (version 2.0.5 and version 1.2.6, respectively). Unique clo-
notypes were defined as cells with shared TCR alpha and beta sequences 
that were not observed across timepoints but were uniquely observed 
at only one timepoint within the patient. Conversely, non-unique clo-
notypes are cells with shared TCR alpha and beta sequences that are 
present across at least two timepoints within a patient. The popula-
tion circle plots were created by defining a ‘root’ and specifying the 
clonotype names and sizes as ‘branches’ on the same level of the tree.

Cell-to-cell matching: logistic regression
To determine the probability that the transcriptome of each CARPALL 
CAT CAR-T cell was similar to CTL019 (tisagenlecleucel) CAR-T cells 
from two adult patients with CLL7, logistic regression was used in R, as 
previously described22,26,45,46. CTL019 raw counts data were processed 
as described above, using the same parameters as the CARPALL dataset. 
CTL019 cells were re-annotated using marker-based approaches, as 
described above. We trained logistic regression models with CTL019 
cells using our cell type annotation.

Gene module scoring
Published datasets from CAR-T cells, cancer and normal development 
were downloaded, and T cells were identified using CD3D and CD3E 
expression. T cell partitioned datasets were randomly downsampled to 
10,000 cells, if exceeding this threshold. T cell clusters were processed 
and re-clustered, as described above. Module scores were calculated 
using the AddModuleScore() function available in Seurat using Seurat 
clusters as labels (Louvain algorithm). The average expression level 
of each cell type (or cluster) was calculated on a single-cell level and 
then subtracted by the aggregated expression of control feature sets. 
Gene modules were defined based on differential gene expression of 
CAT CAR-T cells.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw sequencing data produced in this study have been deposited 
at the European Genome-phenome Archive (accession number 
EGAD00001010018). These data are available under restricted access. 
Sequencing data requests will be reviewed by the Independent Data 
Monitoring Committee and the Trial Management Group of the CARPALL 
study and will be subject to patient confidentiality. After approval, a data 
access agreement with University College London (UCL) will be required. 
All requests for raw materials will be reviewed by UCL Business (UCLB) 
to verify whether the request is subject to any intellectual property or 
confidentiality obligations. All requests will be processed within 8 weeks. 
Processed data have been uploaded to Zenodo47. Publicly available data-
sets analyzed in this study are described in Supplementary Table 6. The 
GRCh38 reference genome was downloaded from the 10x Genomics web-
site: https://support.10xgenomics.com/single-cell-gene-expression/
software/release-notes/build. Source data are provided with this paper.

Code availability
We have included the source code used to generate the figures and 
tables presented in this analysis. Code used in this study can be found 
here: https://github.com/natedandy/CAT_CART_paper_2023. Logistic 
regression was performed using code found here: https://github.com/
constantAmateur/scKidneyTumors.
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Extended Data Fig. 1 | Sample breakdown. Bar charts show the number of 
experimental samples derived from each patient sample. Each patient sample, 
defined as an individual, timepoint and sample source (that is P01 M01 PB) can 
be used for gene expression (GEX) and T-cell receptor (TCR) sequencing and/or 
flow-based immunophenotyping. For those samples with GEX/TCR sequencing, 

they are flow-sorted by CD3 and CAR prior to sequencing, with the exception of 
P02 M02 PB which was sorted for CAR-T cells, T cells and other leukocytes, thus 
they only contribute 1 experimental sample each. For two samples (P02 M06 BM 
and P01 M06 BM), no cells were recovered from the CAR T channel. M=month,  
PB = peripheral blood, BM = bone marrow.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | Global cluster annotation. Uniform Manifold Approximation Projections (UMAPs) show all cells in the dataset coloured by (a) patient of 
origin, (b) sample source, and (c) timepoint.
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Extended Data Fig. 3 | Cluster markers and cell type trajectories. (a) Heatmap shows the average scaled expression of marker genes used for cell type annotation. 
(b–f ) Stacked bar plots show dynamic cell type proportions over time for all patients. Top 5 abundant cell types in the dataset are shown.
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Extended Data Fig. 4 | General flow-based immunophenotyping. (a) 
Immunophenotyping non-CAR and CAR-T cells by multi-parameter flow 
cytometry. All cells were initially gated for CD3 and the CAR. Red boxes and 
arrows highlight subsequent gating strategies for representative examples 
illustrating double-negative CAR-T cells are αβ T cells and CD8A/CD8B negative, 
in contrast to non-CAR-T cells. Fluorochromes: PerCP-Cy5.5 = Peridinin 

chlorophyll protein-Cyanine5.5, FITC = Fluorescein isothiocyanate, Brilliant 
Violet (BV) 650, BV510, BV786. (b) Trajectory scatter plots quantify flow plots 
signals across patient samples for CD45RA and CCR7. Cells were gated for CD3 
and the CAR. TN = Naïve, TSCM = Stem Cell Memory, TCM = Central Memory, 
TEM = Effector Memory, TEMRA = Terminally Differentiated Effector Memory 
expressing CD45RA.

http://www.nature.com/naturemedicine
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Extended Data Fig. 5 | Gamma-Delta and NK Immunophenotyping CAR-T cells 
by multi-parameter flow cytometry. All cells were initially gated for CD3, CAR, 
CD4 and CD8A. (a) Flow plots for representative samples (P06 and P09) with high 
populations of double-negative TCRγδ cells. (b) Trajectory scatter plots quantify 

flow plots signals across patient samples for TCRγδ. Cells were previously gated 
for CD3, CAR, CD4 and CD8. (c) Flow plots show gating for CD16 and CD56. Prior 
gating includes CD3, CAR, CD4, CD8. Fluorochromes: APC = Allophycocyanin,  
Cy = Cyanin.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Expression of key genes in the persisting CAR T-cell 
signature. Boxplots show the percent of T cell expression for (a) GZMK, (b) TIGIT, 
and (c) GPR183 for flow-based immunophenotyping (left) and single-cell RNA 
sequencing (scRNA-seq) data. CAR-T cell scRNA-seq, data is derived from 60188 
cells from 43 independent samples. For non-CAR T-cell scRNAseq, data is derived 
from 98003 cells from 43 independent samples. Flow data is derived from 15 

independent samples. Box plots show the first quartile (the lower end of the 
box) and the third quartile (the upper other end of the box), as well as the median 
values (centre line) per dataset. The ‘whiskers’ extend from the ends of the box 
to a maximum and minimum of 1.5 times the interquartile range beyond the box. 
Outliers are shown as dots.

http://www.nature.com/naturemedicine
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Exhaustion panel expression and flow-based 
immunophenotyping. (a) Trajectory scatter plots show the percent of 
T cells expression for LAG3, PDCD1, and TIM3 across time for flow-based 
immunophenotyping (left) and single-cell RNA sequencing (scRNA-seq) data. 
Ribbons refer to the 95% confidence level interval for predictions using a ‘loess’ 

model to fit the line. (b) Trajectory scatter plots show the percent of T cells 
expression for the combination of LAG3, PDCD1, and TIM3 across time for flow-
based immunophenotyping. Ribbons refer to the 95% confidence level interval 
for predictions using a ‘loess’ model to fit the line.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02415-3

Extended Data Fig. 8 | See next page for caption.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02415-3

Extended Data Fig. 8 | Clonal structure of CAR-T cells. (a) Clonal trajectory 
illustrates the changes in clonal architecture of CAR-T cells over time across a 
second representative patients with more than 3 timepoints sequenced. Packed 
circle plots show the size of each clonotype. Filled-in black circles represent 
clonotypes that are not unique, as they are observed across timepoints. 
Conversely, pink donut circles represent clonotypes that are unique to that 
timepoint (and not observed across time). Blue/purple/grey coloured circles 

represent the dominant clonotype at that timepoint that correspond with 
the clonal trajectories below. (b) Cell type composition stacked bar plots 
demonstrate the shift in cell type abundances between early timepoints 
and late timepoints between unique and non-unique clonotypes (right). 
(c) Trajectory scatter plots quantify data from all patient samples for CAR 
expression across time.
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Extended Data Fig. 9 | Evaluation of the persisting CAR-T cell signature 
across T-cells: expanded view. Boxplots show the per cell distribution of the 
late score as defined by the late, persisting CAR-T signature. Scores are shown for 
representative datasets encompassing (a) the CARPALL CAR-T cells, (b) CARPALL 
Non-CAR-T cells, CTL019 CAR-T cells, (c) Tumour-infiltrating T cells, and  
(d) T cells from normal datasets. The red dashed line represents the median of the 
late double-negative (DN TEM) cells from the CARPALL study. Across datasets, 
the x-axis ticks refer to Seurat-based clusters per dataset, with the exception of 
the CARPALL CAR-T cell dataset where the x-axis refers to annotated cell types. 

Box plots show the first quartile (the lower end of the box) and the third  
quartile (the upper other end of the box), as well as the median values  
(centre line) per dataset. The ‘whiskers’ extend from the ends of the box to a 
maximum and minimum of 1.5 times the interquartile range beyond the box. 
Outliers are shown as dots. BRCA = Breast Cancer, CRC=Colorectal Cancer,  
PBMC = Peripheral Blood Mononuclear Cells. Publicly available datasets  
analysed in this study and the number of cells and samples used in this figure  
are described in Supplementary Table 6.
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Extended Data Fig. 10 | Flow cytometry gating strategy for CD3+ CAR+ T cells sorting. SSC = side scatter, FSC = forward scatter. Fluorochromes: FITC = Fluorescein 
isothiocyanate, PE = R-phycoerythrin, APC = Allophycocyanin.
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