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Effects of urban living environments on 
mental health in adults
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Jie Tang1, Xiaoxuan Liu5, Tristram Lett    2,3, Le Yu    6,7, Markus M. Nöthen    8, 
Jianfeng Feng    9, Chunshui Yu    1,10, Andre Marquand11,45, 
Gunter Schumann    2,3,45   &  the environMENTAL Consortium*

Urban-living individuals are exposed to many environmental factors that 
may combine and interact to influence mental health. While individual 
factors of an urban environment have been investigated in isolation, no 
attempt has been made to model how complex, real-life exposure to living 
in the city relates to brain and mental health, and how this is moderated by 
genetic factors. Using the data of 156,075 participants from the UK Biobank, 
we carried out sparse canonical correlation analyses to investigate the 
relationships between urban environments and psychiatric symptoms. We 
found an environmental profile of social deprivation, air pollution, street 
network and urban land-use density that was positively correlated with an 
affective symptom group (r = 0.22, Pperm < 0.001), mediated by brain volume 
differences consistent with reward processing, and moderated by genes 
enriched for stress response, including CRHR1, explaining 2.01% of the 
variance in brain volume differences. Protective factors such as greenness 
and generous destination accessibility were negatively correlated with an 
anxiety symptom group (r = 0.10, Pperm < 0.001), mediated by brain regions 
necessary for emotion regulation and moderated by EXD3, explaining 
1.65% of the variance. The third urban environmental profile was correlated 
with an emotional instability symptom group (r = 0.03, Pperm < 0.001). 
Our findings suggest that different environmental profiles of urban living 
may influence specific psychiatric symptom groups through distinct 
neurobiological pathways.

More than 50% of the world population lives in urban areas; by 2050, 
two-thirds will live in cities1. Thus, environments are going through 
drastic transformations: living in urban areas is characterized by 
higher-density residential and commercial buildings1, concomitant 
reduced access to green areas2, increased exposure to potentially licit 
and illicit substance use3 and more stressful social conditions4. At the 
same time, urban residents potentially benefit from better infrastruc-
ture and more work opportunities than residents residing in rural areas1.

The impact of the urban living environment on mental health is 
not well understood. Physical health is thought to be better in urban 

areas compared to rural areas5. However, there is evidence that adult 
individuals in urban environments are at higher risk of experiencing 
mental health conditions6, although results are contradicting7. While 
there has been a focus on the link between urbanicity and schizophre-
nia8, the most prevalent mental health conditions linked to urbanicity 
are symptoms of depression and anxiety6,9–11.

While previous studies investigated isolated environmental fac-
tors relevant to urban living, such as green spaces12 and socioeconomic 
deprivation13, these isolated factors have not been considered in the 
wider environmental context that characterizes a living environment. 
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psychiatric symptoms, we used sparse canonical correlation analyses 
(sCCA) to link these 53 independent urban living environment catego-
ries with 21 psychiatric symptoms (Methods). To enhance the stability of 
the sCCA, we resampled the data and retained only variables above 90% 
across the resample17 (Methods). To avoid overestimating the variance 
shared between urban living environment categories and psychiatric 
symptoms, we used a split-data analysis design with a training dataset 
of 90% of the data (n = 126,978), and a test dataset of 10% (n = 14,109) 
in the 141,087 participants of the UKB-non-NI dataset.

Affective symptom group. We found a significant relationship 
between an urban living environmental profile and a group consist-
ing of five psychiatric symptoms in the training dataset (r = 0.20, 
Pperm < 0.001, explained variance (EV) = 4.09%), which was replicated 
in the test dataset (r = 0.22, Pperm < 0.001, PFDR < 0.001, EV = 4.71%)  
(Fig. 2b,c). This psychiatric symptom group consisted of frequency 
of unenthusiasm, frequency of tiredness, loneliness, frequency of 
depressed mood and feeling fed-up (Fig. 2d), which we summarized 
as the affective symptom group. The affective symptom group was 
positively correlated with environmental factors that included an IMD 
score, air and sound pollution, measures of SN accessibility (street 
radial and centrality), traffic and density of urban infrastructures 
(factories, retail, offices and community). This group was negatively 
correlated with distance to urban facilities (services, factories, emer-
gency, education, food stores, community and healthcare) and green 
space proximity (percentage of domestic garden, natural environment 
and green space) (Fig. 2d and Supplementary Table 5).

Internal validations using bootstrapping and resampling (Meth-
ods) confirmed the associations between urban living environmental 
profiles and affective symptom group (Extended Data Fig. 4 and Supple-
mentary Table 6). To avoid overfitting, we repeated the sCCA regression 
using tenfold cross-validation, yielding highly similar accuracy (Supple-
mentary Table 7). No specific sex effect was detected (Supplementary 
Table 8). To rule out the influence of genetically unrelated participants 
in the same household, we repeated the sCCA regression and confirmed 
the results in the 122,516 participants from different households using 
the same split-data design (Methods and Extended Data Fig. 5).

Our results indicate that the affective symptom group was posi-
tively correlated with an environment profile dominated by high lev-
els of social deprivation and air pollution, and to a lesser extent SN, 
traffic and short distance to infrastructure facilities. Other factors of 
urbanicity, such as various forms of green space and social infrastruc-
ture, are protective.

Anxiety symptom group. We identified another psychiatric symptom 
group after projection deflation17,18 (Methods), which consists of anx-
ious feelings, seeing a psychiatrist, feeling tense, suffering from nerves, 
nervous feelings and worrying too long (Fig. 2e), grouped together 
as the anxiety symptom group. The anxiety symptom group was sig-
nificantly associated with the second urban environmental profile 
in the training (r = 0.11, Pperm < 0.001) and test (r = 0.10, Pperm < 0.001, 
PFDR < 0.001, EV = 1.03%) datasets (Fig. 2b and Extended Data Fig. 6). This 
symptom group was positively correlated with dense urban buildup, 
including density of leisure places, SN detour and shape, mean terrain, 
coast proximity, variation of NDVI and density of mixed urban infra-
structure (residential, transport, utility, animal center, storage land 
and agriculture), while being negatively correlated with mean NDVI, 
distance to waste and energy, and water proximity (Fig. 2e and Supple-
mentary Table 5). Thus, the second urban living environmental profile 
captured a different profile defined by generous land use and proximity 
to nature, features that are protective against symptoms of anxiety.

Emotional instability symptom group. We identified a third group 
of psychiatric symptoms that consisted of frequency of feeling 
highly strung, feeling miserable, mood swings, neuroticism score 

To develop targeted prevention and intervention programs ranging 
from urban planning to individual psychosocial programs, it is neither 
sufficient to regard urbanicity as one general risk factor nor to focus on 
single isolated environmental factors alone. The urban environment, 
as any other living environment, consists of simultaneous interacting 
factors, which may form profiles that together can reduce or increase 
the risk of psychiatric disorders.

The relationships between psychiatric disorders and brain struc-
ture with exposure to environmental profiles are currently unknown, 
either in urban or other settings. Furthermore, exposure to environ-
mental adversity does not result in a uniform response but shows 
individual differences14, of which genetic variations are one important 
source15. Activity of biological pathways, such as stress response, that 
are mediators of the effects of stressful environmental stimuli on brain 
and psychiatric disorders vary depending on genotypes16.

In this study, we aim to capture the complexity of the urban living 
environment by combining measures of physical environment with 
socioeconomic data. We identify urban living environmental profiles 
and relate them to psychiatric symptom groups. We aim to understand 
what combinations of environmental factors are most relevant for 
these psychiatric symptoms, and how within these combinations each 
single factor contributes to the risk or resilience of mental health symp-
toms. We also identify regional brain areas that mediate the effect of 
these different environmental profiles on psychiatric symptom groups. 
We investigate genetic variations derived from genome-wide analyses 
of these psychiatric symptom groups and test them for moderation of 
the regional brain volumes correlated to urban environmental profiles 
(Fig. 1 and Extended Data Fig. 1).

Results
Our analyses were carried out in a subset of 156,075 adult participants 
from the UK Biobank (UKB), aged 41–77 years (mean age: 59.11 years) and 
living predominantly in urban areas. This subset was assessed for 128 
urban living environmental variables linked to their home address (Sup-
plementary Tables 1–3) and 21 psychiatric symptoms (Supplementary 
Table 4). The urban living environmental areas included air and sound 
pollution, traffic, green space proximity, coastal proximity, water proxim-
ity, socioeconomic indices of multiple deprivation (IMD), building class, 
distance to destinations (for example, GP practice, post office), land use 
density (LD), terrain, normalized difference vegetation index (NDVI) (a 
measure of greenness), and street network (SN) accessibility (Supple-
mentary Tables 1–3). Participants from the UKB with complete urban liv-
ing environmental variables and psychiatric symptom data were divided 
into datasets without neuroimaging data (UKB-non-NI) (n = 141,087) and 
with neuroimaging data (UKB-NI) (n = 14,988). At the time of our analyses, 
brain neuroimaging was ascertained in 42,796 participants, of which 
14,988 had complete neuroimaging, urban-living environmental and 
psychiatric symptom assessments. Schematic summaries are shown in 
Fig. 1 and Extended Data Fig. 1. Demographic information on the specific 
statistical analysis is shown in Table 1. Distribution of demographic vari-
ables in each statistical subsets showed that potential attrition bias was 
evident for some variables (for example, sex), whereas most other vari-
ables (for example, age) were highly similar across the different subsets, 
suggesting that the magnitude of bias was small (Extended Data Fig. 2).

Correlation of urban living environmental profiles with 
psychiatric symptom groups
Fifty-three urban living environmental categories consisting of 128 
variables were included in the study (Fig. 2a and Extended Data Fig. 3).  
Among these, 34 categories had one independent environmental 
variable. In the remaining categories, redundancy between related 
environmental variables was avoided by collapsing the information 
into 19 latent environmental categories using tenfold cross-validation 
confirmatory factor analysis (CFA) (Methods and Extended Data Fig. 3). 
To investigate the relationship between urban living environment and 
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(Supplementary Table 4), risk-taking, irritability and sensitivity, hurt 
feelings, grief and stress (Fig. 2f), which we termed the emotional insta-
bility symptom group. The emotional instability symptom group was 
positively correlated with the density of education facilities, variation 

of terrain, building class (flats in high-rise buildings, terraced houses), 
SN link characteristics, density of accommodation, and medical and 
emergency facilities, while being negatively correlated with density of 
unused land, density of water, open space, amenities, park, allotment 

21 psychiatric
symptoms 

53 urban-living
environmental categories

Urban-living
environmental profiles

sCCA 

Psychiatric
symptom groups

139 regional
brain volumes

msCCA 
Genomics

Gene scores

Moderated mediation analysis 

GWAS of
environmental
psychiatric
symptom groups

128 urban-living
environmental variables

CFA

Distinct urban-living environmental profiles are correlated with psychiatric symptom groups

Genome-wide-significant associations of environmental psychiatric symptom groups

Brain volume di�erences are correlated with environmental psychiatric symptom groups

Genetics moderate the risk for environmental psychiatric symptom groups mediated by brain volume

Brain components Replication

Fig. 1 | Characterization of the study design. In 141,087 UKB-non-NI 
participants, we identified urban environmental profiles correlated to 
psychiatric symptom groups using sCCA with a train–test dataset split 
design. Next, we carried out GWAS analyses of the symptom groups in 76,508 
participants with complete genomic, urban environmental categories and 
psychiatric symptoms from the UKB-non-NI dataset. The UKB-NI dataset 
data (n = 14,988) was used for independent replication of the multivariate 
relationship between urban environmental profiles, genes and symptom groups, 

and for additional neuroimaging analyses. We analyzed the relationships 
between urban environmental profiles, regional brain volume and symptom 
groups using msCCA with a train–test dataset split design. Using a moderated 
mediation analysis, we then investigated the interaction effect between urban 
environmental profiles and genetics on psychiatric symptoms groups mediated 
by brain components in 8,705 participants with complete genomic, urban 
environmental categories, regional brain volume and symptoms of mental illness 
in the UKB-NI dataset.

Table 1 | Demographics of UKB participants used in the specific statistical analyses

Dataset Statistical analysis Required data Sample size Age range, 
years

Age statisticsa Sex (M/F)

Total sample – – 156,075 41–77 59.11 (8.09) 72,770/83,305

UKB-non-NI CFA and sCCA Urban living environment,  
mental health

141,087 41–77 59.25 (8.14) 65,505/75,582

UKB-non-NI GWAS Genomic, urban living 
environment, mental health

76,508 41–75 59.55 (8.02) 36,557/39,951

UKB-NI msCCA Urban living environment, 
neuroimaging, mental health

14,988 41–74 57.77 (7.49) 7,265/7,723

UKB-NI Modulated mediation Genomic, urban living 
environment, neuroimaging, 
mental health

8,705 41–74 58.06 (7.42) 4,278/4,427

aAge statistics are shown as the mean and s.d. UKB-non-NI and UKB-NI datasets: participants from the UKB with complete urban living environmental data and mental health data (n = 156,075) 
were divided into UKB-non-NI and UKB-NI datasets.
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Fig. 2 | Distinct urban environmental profiles are correlated with specific 
psychiatric symptom groups. a, Fifty-three urban environmental categories 
belonging to 13 areas (the dots on the right) and 21 psychiatric symptoms are 
included. UE, urban living environment. b, The sCCA model linking 53 urban 
environmental categories to 21 psychiatric symptoms identified three significant 
canonical correlates in the training datasets (red dot), including affective 
symptom (r = 0.20, Pperm < 0.001), anxiety symptom (r = 0.11, Pperm < 0.001) and 
emotional instability symptom (r = 0.05, Pperm < 0.001) groups. These results 
remained significant in the test datasets of affective (r = 0.22, Pperm < 0.001, 
PFDR < 0.001), anxiety (r = 0.10, Pperm < 0.001, PFDR < 0.001) and emotional 
instability (r = 0.03, Pperm < 0.001, PFDR < 0.001) (orange square) symptom 

groups. P values were estimated using one-sided Pperm with FDR correction for 
multiple comparisons (PFDR). c, A correlation map between the first urban living 
environmental profile and affective symptom group in the training (left) and 
test (right) datasets. d–f, In the first (d), second (e) and third (f) correlates, urban 
environmental categories contributing to this profile are shown in the first 
column. EV and fraction of EV of crossloadings of each urban environmental 
category on each of the three symptom groups are shown in the second and third 
columns. Symptoms of mental illness contributing to this group are shown on 
the right radar plots. The affective, anxiety and emotional instability symptom 
groups are shown in yellow, green and blue. OI, object of interest.
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and information stations, as well as distance to a food store (train-
ing dataset: r = 0.05, Pperm < 0.001; test dataset: r = 0.03, Pperm < 0.001, 
PFDR < 0.001; Fig. 2f, Extended Data Fig. 6 and Supplementary Table 5).

Replication and pleiotropy analyses. We independently replicated 
these correlations in the UKB dataset with neuroimaging (UBB-NI) 
(n = 14,988) by applying the same sCCA split design (90%/10%). The 
replication analysis yielded three statistically significant correlations 
between environmental profiles and psychiatric symptom groups in the 
training and test datasets, which were identical to those of the primary 
analyses. In the affective symptom group, the canonical correlation r 
value was 0.17 in the training dataset (n = 13,490; Pperm < 0.001) and 0.10 
in the test dataset (n = 1,498; Pperm < 0.001, PFDR < 0.001). In the anxiety 
symptom group, the canonical correlation r value was 0.11 in the train-
ing dataset (Pperm < 0.001) and 0.03 in the test dataset (Pperm < 0.001, 
PFDR < 0.001). In the emotional instability symptom group, the canonical 
correlation was 0.10 in the training dataset (Pperm < 0.001) and 0.02 in 
the test dataset (Pperm = 0.004, PFDR = 0.027).

Environmental factors may be pleiotropic, that is, risk factors for 
more than one psychiatric symptom group. We tested pleiotropy by 
measuring the contribution of each urban living environmental factor 
to the correlation across and within different psychiatric symptom 
groups using a non-sCCA regression19. The result of this analysis is 
expressed as the fraction of explained variance (FEV). The FEV of the 
affective symptom group by the factors of the first urban environmen-
tal profile was 68.43%; the second environmental profile was 29.34%; 
and the third environmental profile was 2.22% (Fig. 2d). The FEV of anxi-
ety symptoms by the second environmental profile was 64.24%; the first 
environmental profile was 25.62%; and the third environmental profile 
was 10.12% (Fig. 2e). In the case of the emotional instability symp-
tom group, we found substantial pleiotropy: the FEV of the emotional 
instability symptom group by the factors of the third environmental 
profile was 31.58%; the first environmental profile was 46.76%; and the 
second environmental profile was 21.65% (Fig. 2f). This high degree of 
pleiotropy can most probably be accounted for by how sCCA estimates 
successive components using the projection deflation approach17,18. 
The proportion of covariance explained by the third emotional insta-
bility symptom group was smaller than that explained by the affective 
and anxiety symptom groups, which may have produced a low r value 
between the third urban living environmental profile and emotional 
instability symptom group.

Genome-wide-significant associations with environmental 
psychiatric symptom groups
We performed genome-wide association study (GWAS) analyses of the 
canonical covariates of the affective, anxiety and emotional instability 
symptom groups in 76,508 participants with complete genetic, urban 
environment and psychiatric symptoms in the UKB-non-NI datasets 
(Table 1). Gene set enrichment analysis (GSEA) using ToppGene20 was 
performed to explore the biological mechanisms underlying genes 
associated with the psychiatric symptom groups. To reduce dimen-
sionality, we generated scores for individual genes where significant 
single-nucleotide polymorphisms (SNPs) were localized (Methods). 
The individual gene scores were calculated as the sum of the count of 
risk alleles multiplied by the corresponding β value from the GWAS 
across the index SNPs of each clump after adjusting for linkage dis-
equilibrium (Methods). These gene scores were then analyzed for 
moderation of the relationship of urban living environmental profile, 
regional brain volume and psychiatric symptom groups (Fig. 1 and 
Extended Data Fig. 1).

Affective symptom group. For the affective symptom group, we 
found 3,436 significant associations with SNPs after Bonferroni cor-
rection P < 0.05, located in 22 protein-coding genes (Fig. 3a and Sup-
plementary Table 9). The strongest association with the affective 

symptom group were observed for SNPs localized in a human super-
gene candidate on chromosome 17q21.3 (Fig. 3b) that encodes several 
genes previously implicated in psychiatric disorders21. The lead SNP 
was rs62062288, located in intron 6 of the MAPT gene of chromo-
some 17q21.3 (P = 6.09 × 10−15) (Fig. 3a), a gene that encodes Tau pro-
tein in neurons and is involved in affective symptoms22. In the same 
region of chromosome 17q21.3, we found strong association of the 
affective symptom group with CRHR1, a critical regulatory gene for 
neuroendocrinological and behavioral stress responses23. The remain-
ing top associated genes were also encoded in this region, includ-
ing ARL17B, KANSL1 and WNT3. Additional associations were found 
on chromosome 18q21.2 at the DCC and TCF4 gene locus (Fig. 3b),  
chromosome 14q24.1 (DCAF5, EXD2 and GALNT16) (Fig. 3b), and 
chromosome 3q22.3 (STAG1, PPP2R3A, MSL2 and PCCB). In the GSEA 
of the 22 genes associated with the affective symptom group, we 
found over-representation in the molecular function of CRH/CRF 
receptor activity (Bonferroni-corrected Q = 5.23 × 10−4), most signifi-
cantly in the biological function of cellular response to CRH stimulus 
(Bonferroni-corrected Q = 0.02) and in the cellular component of the 
axonal growth cone (Bonferroni-corrected Q = 0.002) (Fig. 3c and 
Supplementary Table 12). All genes were highly expressed in different 
brain regions in Human Protein Atlas (Fig. 3d). Applying the 22 gene 
scores, we found statistically different associations between urban liv-
ing environmental profile and affective symptom group. For example, 
participants with lower CRHR1 gene scores showed smaller correlation 
of the urban living environmental profile with the affective symptom 
group compared to those with higher CRHR1 gene scores (z = -3.03, 
P = 0.003) (Fig. 3e).

Anxiety symptom group. We found significant associations of the 
anxiety symptom group with 29 SNPs covering 9 genes after Bonfer-
roni correction P < 0.05 (Fig. 3f and Supplementary Table 10). The drop 
in genome-wide-significant hits compared to the affective symptom 
group GWAS is probably caused by decreased covariance of the anxi-
ety symptom group, after deflation of the correlates of the affective 
symptom group. The lead SNP in the GWAS of the anxiety symptom 
group was rs77641763, which is located in intron 15 of the EXD3 gene of 
chromosome 9 (P = 9.53 × 10−11) (Fig. 3f,g). The rs77641763 was associ-
ated with suicidal thoughts and behaviors24. The other top significant 
genes include CNNM2, GBF1, NOLC1, NT5C2 and TRIM (Fig. 3h). The 
nine genes associated with the anxiety symptom group were enriched 
for small nucleolar ribonucleoprotein complex binding involved in 
serotonin metabolic processes (Supplementary Table 12). Participants 
with lower EXD3 gene scores showed smaller correlation of the urban 
environmental profile with the anxiety symptom group compared 
to those with higher EXD3 gene scores (z = −2.61, P = 0.009) (Fig. 3h).

Emotional instability symptom group. We found significant associa-
tions of the emotional instability symptom group with ten SNPs after 
Bonferroni correction P < 0.05 (Fig. 3i and Supplementary Table 11).  
The lead SNP was rs77786116, which is located in the IFT74 gene of chro-
mosome 9 (P = 4.16 × 10−10) (Fig. 3i). ITF74 is a critical factor in neuronal 
migration, which is highly expressed in the brain (Fig. 3j) and associated 
with paranoid schizophrenia25. The other top significant genes include 
LDHC, SLC9A7P1 and TMPO (Fig. 3k). Together, they were enriched 
for cerebellar development processes (Supplementary Table 12).  
Participants with lower IFT4 gene scores showed smaller correlation 
of urban environmental profiles with the emotional instability symp-
tom group compared to those with higher IFT4 gene scores (z = −2.03, 
P = 0.04) (Fig. 3k).

Replication. We independently replicated the SNPs significantly asso-
ciated with the psychiatric symptom groups derived from the discovery 
GWAS (UKB-non-NI dataset) in 8,705 participants of the independent 
UKB-NI dataset. The significance threshold was Bonferroni-corrected 
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P < 0.05. Of the 3,475 significant SNPs, we replicated 2,034 SNPs asso-
ciated with the affective symptom group; 18 SNPs were associated 
with the anxiety symptom group and 3 SNPs were associated with 
the emotional instability symptom group. We then calculated the 
corresponding gene scores as before and validated the associations 
between gene scores and psychiatric symptom groups in the UKB-NI 
dataset (Supplementary Table 13). Of the 22 gene scores associated with 
the affective symptom group in the discovery dataset, we replicated 
14 genes in the replication analysis of the UKB-NI dataset, including 
ARHGAP27, ARL17B, C5orf17 (LINC02899), CRHR1, DCAF5, DCC, EXD2, 
GALNT16, KANSL1, MAPT, NRXN1, NSF, PLEKHM1 and TCF4 (Fig. 3e). 
Of the 11 gene scores in the anxiety symptom group, we replicated 
six genes, including CNNM2, EXD3, GBF1, NT5C2, NOLC1 and TRIM  
(Fig. 3h). Of the six gene scores associated with the emotional instabil-
ity symptom group, we replicated three genes including IFT74, LDHC 
and TMPO (Fig. 3k).

Brain volume differences underlying environmental profiles 
and psychiatric symptom groups
To investigate differences in brain volume underlying the urban living 
environment and psychiatric symptoms, we carried out a multiple 
sparse canonical correlation analysis (msCCA) on the urban living envi-
ronment profiles, regional brain volume and psychiatric symptom 
groups. This analysis was conducted in an independent UKB-NI dataset 
(n = 14,988), split into training (90%) and test datasets (10%). We found 
13 regional brain volumes significantly associated with the first urban 
environmental profile (training r = −0.050, Pperm < 0.001; test r = −0.042) 
and the affective symptom group (training r = −0.069, Pperm < 0.001; test 
r = −0.046). Brain volume associations were found in the left amygdala 
and right ventral striatum, right frontal pole, right occipital fusiform 
gyrus, as well as bilateral superior frontal cortex, cerebellar lobules 
VIIIa and VIIb, and right posterior cerebellum Crus I and II (Fig. 4a and 
Supplementary Table 14). The first urban environmental profile was 
negatively correlated with brain volume in these areas and positively 
correlated with the affective symptom group.

We also found 11 regional brain volumes significantly associated 
with the second urban environmental profile (training r = −0.015, 
Pperm = 0.02; test r = −0.012) and the anxiety symptom group (train-
ing r = −0.057, Pperm < 0.001; test r = −0.045). Brain volumes included 
the left inferior frontal gyrus, left supplementary motor area and the 
right amygdala, the bilateral cerebellar lobules VIIIa and VIIIb, bilateral 
posterior cerebellum Crus I, right cerebellar lobule V and left cerebellar 
lobule VI (Fig. 4b and Supplementary Table 14).

Finally, 13 regional brain volumes, including the bilateral frontal 
pole, amygdala, precentral gyrus, insular and left lateral occipital 

cortex, were associated with the third urban environmental profile 
(training r = −0.017, Pperm = 0.02; test r = −0.013) and the emotional insta-
bility symptom group (training r = −0.053, Pperm < 0.001; test r = −0.040) 
(Fig. 4c and Supplementary Table 14).

Moderated mediation of environmental profiles, brain 
volume and psychiatric symptom groups by genomics
To test whether the relationships between urban living environment 
profiles with psychiatric symptom groups were mediated by brain 
volume and moderated by genetic differences, we independently 
performed moderated mediation analysis for each replicated gene 
score (moderating variable), three urban living environmental profiles 
(independent variable), three brain volume components (mediated 
variable) and three psychiatric symptom groups (dependent variable) 
in 8,705 adult participants with complete data. Twenty-three moder-
ated mediation analyses were tested (14 gene scores of the affective 
symptom group, six gene scores of the anxiety symptom group and 
three gene scores of the emotional instability symptom group). Of 
the 23 replicated gene scores, the CRHR1 (explained mediation effect 
(EME) = 2.01%), MAPT (EME = 1.72%), TCF4 (EME = 1.71%) and DCC 
(EME = 1.51%) gene scores moderate the mediation pathway between the 
urban environmental profile, brain components and affective symptom 
group (Fig. 4d and Supplementary Table 15). Specifically, participants 
with higher CRHR1 genetic risk living in areas with greater urban envi-
ronmental exposure had lower brain volume and demonstrated more 
severe affective symptoms (β = 0.02, s.e. = 0.009, 95% lower confidence 
interval (CI) = 0.006, 95% upper CI = 0.04; Supplementary Table 15). 
The EXD3 gene score (EME = 1.65%) moderated the mediation pathway 
of the anxiety symptom group and the IFT74 gene score (EME = 1.52%) 
moderated the mediation pathway of the emotional instability symp-
tom group (Fig. 4d and Supplementary Table 15).

Discussion
In this study, we describe how urban living affects the brain and mental 
health by identifying specific environmental profiles that are corre-
lated with distinct groups of affective, anxiety and emotional insta-
bility symptoms, mediated by reductions in regional brain volume 
and moderated by genes involved in pertinent biological pathways 
(Fig. 5). Whereas previous studies that investigated the relationships 
between environment, biology and mental health mostly focused on 
microenvironmental psychosocial factors, we report the discovery 
of macroenvironmental physical and socioeconomic environment 
profiles that are linked to psychiatric symptoms. We also developed a 
unified model capable of integrating multimodal environmental, bio-
logical and behavioral components. The model enabled the discovery of 

Fig. 3 | Genome-wide significant associations of environmental psychiatric 
symptom groups. a, The GWAS of the affective symptom group identified 
3,436 significantly associated SNPs after Bonferroni correction P < 0.05. The 
lead SNP rs62062288 is located in intron 6 of the MAPT gene on chromosome 
17q21.3 (two-sided P = 6.09 × 10−15). b, Locus zoom plots of 17q21.3 (left), 18q21.2 
(middle) and 14q24.1 (right) in the GWAS analysis of the affective symptom 
group. The purple dots show the lead SNPs of each genomic region. c, GSEA of the 
affective symptom group-associated 22 genes revealed over-representation in 
molecular function (dark yellow) of CRH/CRF receptor activity (Q = 5.23 × 10−4), 
biological function (yellow) of cellular response to CRH stimulus (Q = 0.02) and 
cellular components (light yellow) in the axonal growth cone (Q = 0.002) after 
Bonferroni correction P < 0.05. d, CRHR1, MAPT, DCC and TCF4 gene normalized 
expression values in 12 brain regions (Human Protein Atlas). e, Left, Correlation r 
value between 22 gene scores and the affective symptom group in the replication 
UKB-NI dataset. The replicated 14 genes with two-sided P < 0.05 are marked with 
an asterisk. Right, Participants with lower CRHR1 scores (upper left), MAPT scores 
(upper right), DCC scores (lower left) and TCF4 scores (lower right) showed 
statistically smaller correlations of the first urban environmental profile with 
the affective symptom group compared to those with higher ones (two-sided 

P < 0.05). f, The GWAS of the anxiety symptom group identified 29 significantly 
associated SNPs after Bonferroni correction P < 0.05. The lead SNP rs77641763 is 
located in intron 15 of the EXD3 gene of chromosome 9 (two-sided P = 9.53 × 10−11). 
g, EXD3 gene normalized expression values in 12 brain regions. h, Top, Of the nine 
genes scores, six gene scores with two-sided P < 0.05 (marked with an asterisk) 
repeatedly correlated with the anxiety symptom group. Bottom, Participants 
with lower EXD3 scores showed a statistically smaller correlation of the second 
urban environmental profile with the anxiety symptom group compared to 
higher ones (two-sided P < 0.05). i, The GWAS of the emotional instability 
symptom group identified ten significantly associated SNPs after Bonferroni 
correction P < 0.05. The lead SNP rs77786116 is located in chromosome 9 of the 
IFT74 gene (two-sided P = 4.16 × 10−10). j, IFT74 gene normalized expression value 
in 12 brain regions. k, Top, Replicated correlations between three gene scores 
with two-sided P < 0.05 (marked with an asterisk) and emotional instability 
symptom group from six genes. Bottom, Participants with lower IFT74 scores 
showed a statistically smaller correlation of the third urban environmental 
profile with the emotional instability symptom group compared to those with 
higher scores (two-sided P < 0.05). TPM, transcripts per million.
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complex living environments that affect distinct psychiatric symptom 
groups and uncovered the underlying biological mechanisms.

Our characterization of multimodal urban environmental profiles 
that simultaneously enable a qualitative and quantitative assessment 
of each factor of the profile extends from the isolated assessment of 
individual environmental factors, as has previously been the norm26. 
Environmental profiles explain a greater degree of variance (4.71%) 
than comparable studies measuring individual environmental factors, 

such as nighttime light (2.56%), built-up percentage (1.21%) and NDVI 
(1.00%)11 alone. They enable the assessment of each individual environ-
mental factor in a context that is relevant for mental health. Further-
more, we describe how the effect of urban environmental profiles on 
psychiatric symptom groups are mediated by regional brain volume 
and moderated by genetic factors.

By providing evidence for brain-related correlates of environmen-
tal adversity, neurobehavioral interventions could be developed to 
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convey adaptive coping skills for environmental adversity, for example, 
through neurofeedback-guided virtual reality sessions. The identifica-
tion of genetic moderators suggests differential susceptibility27 and 
identifies biological targets for intervention that might underlie the 
observed relationships between the urban living environment, brain 
and psychiatric symptoms.

The first urban environmental profile identified is dominated by 
high degrees of deprivation and air pollution, and to a lesser extent 
traffic, short distance to infrastructural facilities and lack of green 
space. This environmental profile evokes the image of a poor, dense 
inner-city neighborhood. It is correlated with increased affective 
symptoms. While there is mixed evidence linking neighborhood 
socioeconomic conditions with affective disorders13, our findings are 
consistent with a recent meta-analysis reporting the association of 
poorer socioeconomic conditions with higher odds of depression28. 
The correlation between the first urban environmental profile and the 
affective symptom group is mediated by volume reductions in brain 
regions that underlie different functions of reward processing. The 
ventral striatum is the central area of reward and drug reinforcement29. 
The ability to correctly evaluate different aspects of reward depends 
on reinforcement learning and emotional recognition involving the 
cerebellar Crus I and II30 and the amygdala31, which in turn is influenced 
by object recognition information from the fusiform gyrus32. Activity 
of the superior frontal gyrus responds to social punishment33. The 

frontal pole and superior frontal cortex switch executive control to 
new sources of reward34. While these findings point toward reward 
processing as a plausible mediator of a stressful environment on affec-
tive symptoms, they are hypothesis-generating only and require further 
testing. We identified genetic moderators that influence distinct brain 
and reward mechanisms underlying the affective symptoms identi-
fied. CRHR1, a critical regulator of the hypothalamic and behavioral 
extrahypothalamic stress response, which is expressed widely in the 
human brain, including in the regions forming affective brain cor-
relates35. The environmental effect is moderated by genes regulating 
brain structure, including the predominantly cortical MAPT, involved 
in neurodegeneration36, the predominantly cerebellar TCF4, inducing 
neural differentiation37, and the mainly subcortical DCC, an adhesion 
molecule that guides axon growth38. We also identified moderating 
genes associated with the affective symptom group involved in relevant 
neural mechanisms, including G-protein signaling (ARL17B)39 and epi-
genetic regulation (KANSL1)40, both with high cerebellar expression. 
These genes are located in two genomic loci of chromosome 17q21.3 
and 18q21.2. The chromosome 17q21.3 genomic locus is the site of a 
human supergene candidate of tightly linked functional genetic ele-
ments spanning approximately 900 kb that are inherited as a unit41. 
Haplotypes of this cluster are associated with brain morphology and 
cognitive and depressive behavior, neuroticism and risk-taking behav-
ior42. The chromosome 18q21.2 region at the transcription factor 4 gene 
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Fig. 4 | Brain volume differences underlying environmental profiles and 
psychiatric symptom groups. a–c, Left, Top urban environmental categories 
contributing to the first (a), second (b) and third (c) urban living environmental 
profile in the msCCA regression in the UKB-NI dataset. Right, Regional brain 
volume maps associated with the three urban living environmental profiles  
and affective (a), anxiety (b) and emotional instability (c) symptom groups.  
d, Top, Schematic diagram of moderated mediation analysis between genomics, 
urban environmental profile, brain components and psychiatric symptom 
groups. Bottom, Each dot shows an indirect effect in the moderated mediation 

analysis between urban environmental profiles, gene scores, brain components 
and psychiatric symptom groups. We found that the CRHR1 (EME = 2.01%), 
MAPT (EME = 1.72%), TCF4 (EME = 1.71%) and DCC (EME = 1.51%) genes moderate 
the mediation pathway from the first urban environmental profile to brain 
components of the affective symptom group. The EXD3 gene moderates the 
mediation pathway from the second urban environmental profile to brain 
components of the anxiety symptom group (EME = 1.65%). The IFT74 gene 
moderates the mediation pathway from the third urban environmental profile to 
brain components of emotional instability symptom group (EME = 1.52%).

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | June 2023 | 1456–1467 1464

Article https://doi.org/10.1038/s41591-023-02365-w

TCF4 and netrin 1 receptor gene DCC is associated with eight psychiatric 
disorders43, including depression and neuroticism44,45. The product of 
DCC guides axonal growth during neurodevelopment and serves as a 
master regulator of midline crossing and white matter projections46. 
The molecular contribution of these genes to the brain correlates 
identified requires further investigation.

The second environmental profile captures a different urban living 
profile that is dominated by green spaces and long distances to waste 
and energy facilities as well as presence of lakes, rivers and the sea, all of 
which are inversely correlated (protective) with symptoms of anxiety. 
The anxiety symptom cluster is also positively correlated with greater 
density of streets and leisure places as well as urban regions with mixed 
residential, commercial and industrial use. These correlations point 
to an important role of green spaces and a more generous land use as 
protective factors associated with symptoms of anxiety, extending 
previous findings linking urban green spaces to mental health11. The 
relationship between the second urban environmental profile and 
anxiety symptoms is mediated by volume reductions in the inferior 
frontal regions, amygdala and cerebellar regions, including Crus I and 
lobule VIII. As the amygdala and inferior frontal cortex are part of the 
prefrontal limbic system, it is possible that the anxiety brain correlate 
is involved in emotional regulation. The amygdala has a primary role in 
fear and anxiety responses on activation47. The inferior frontal cortex 
provides evaluation of stimulus meaning to the ventromedial prefron-
tal cortex, which inhibits amygdala activity48. The cerebellar Crus I and 

lobule VIII are implicated in anxiety vulnerability49, possibly through 
its role in associative learning, modulated by amygdala input50. Anxi-
ety brain correlates are moderated by variations in the exonuclease 
EXD3 gene, which is involved in nucleic acid binding with the highest 
expression in frontal cortical areas. EXD3 is associated with anxiety, 
phobia and dissociative disorders51.

While statistically significant, the third urban living environmental 
profile, after repeated orthogonalization, explains a decreased amount 
of variance compared to the previous two profiles, which is common 
in CCA19. Therefore, we do not offer a strong interpretation of the third 
urban living environmental profile. Its environmental profile shows 
positive correlations of density of land use and urban infrastructure 
with a group of emotional instability symptoms, which were mediated 
by the frontal pole, amygdala, precentral gyrus, insular cortex and 
cerebellum, and moderated by ITF74, a neuronal migration factor 
associated with schizophrenia25.

We found some degree of pleiotropy within psychiatric symptom 
groups. Urban environmental factors with the greatest degree of plei-
otropy explain the smallest amount of variance in all three psychiatric 
symptom groups. Correspondingly, the stronger a symptom group 
can be predicted by environmental variables, the less pleiotropic the 
predictor will be. This specificity might be due to strong environmen-
tal predictors being associated with defined biological mechanisms 
that affect specific behavioral symptoms. Such behavioral symptoms 
might be observed in different psychiatric disorders, resulting in urban 
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Fig. 5 | Schematic summary of main findings. a, Distinct urban-living 
environmental profiles are correlated with three psychiatric symptom groups. 
b, GWAS associations and relevent replication analyses reveal that three 
environmental psychiatric symtom groups are invloved distinct biological 

pathways. c, msCCA analyses revealed that three environmental psychiatric 
symtom groups were invloved distinct neurobilogical substrate. d, Different 
environmental profiles of urban-living may influence specific psychiatric 
symptom groups through distinct neurocognitive pathways.
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environmental factors conveying their influence in a pervasive and 
transdiagnostic way. One example in our results is the relation of IMD 
score (known to increase psychosocial stress52) with CRHR1-signaling 
and the affective symptom group. The IMD score was highly predic-
tive of the affective symptom group, with a low degree of pleiotropy 
within this symptom group, and was not predictive of the anxiety 
symptom group.

A limitation of our work is potential attrition bias in the different 
statistical subsets of the UKB cohort53. While our linear mediation 
model suggests a causal effect of urbanicity on behavior that is medi-
ated by the brain, alternative explanations are available. These include 
selective migration of individuals at high risk of developing psychiatric 
disorders into socioeconomically deprived urban areas, which may be 
partly genetically driven54, or unmeasured familial factors that account 
for the association between urbanicity and mental health55.

Our data do not characterize the individual biological pathways 
that mediate defined environmental adversity. To carry out the causal 
and mechanistic investigations necessary to identify biomarkers 
for risk and resilience, a deeply phenotyped, longitudinal dataset is 
required. Our findings generate hypotheses that may be tested in well 
characterized samples of a much smaller size. Also, the generalizability 
of our results across ethnicities and beyond industrialized high-income 
countries requires further investigation.

By providing evidence for comprehensive urban environmental 
profiles that affect distinct groups of psychiatric symptoms and are 
mediated by different brain mechanisms, our results characterize 
biological mechanisms underlying complex, real-life environmental 
adversity. The quantification of the contribution of each environ-
mental factor to brain and psychiatric symptoms and their interplay 
in an urban-living environment could potentially aid in targeting and 
prioritizing future public health interventions.
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Methods
UKB cohort
The UKB is a population-based cohort including 502,616 participants 
recruited in the United Kingdom between 2006 and 201056. Participants 
who were registered with the National Health Service and living within a 
40-km radius of one of the 22 assessment centers in England, Wales and 
Scotland were invited to enter the cohort. Among the 502,616 partici-
pants, participants of this study were exclusively adults and aged from 
40 to 77; mean age at baseline was 59.46 years (s.d. = 8.12), 54.41% were 
men and 81.51% were of White ethnicity. The average Townsend Depri-
vation Index, a measure of regional socioeconomic status, was −1.29 
with an s.d. of 3.09, thus showing slightly less deprivation than the UK 
average (scaled at 0); 11.49–56.51% participants had ever suffered from 
different psychiatric symptoms at baseline (Supplementary Table 4).  
The main goals of the UKB are to explore the etiology of common 
complex diseases by investigating their association with the underly-
ing genetic and lifestyle determinants, which may contribute to the 
advancement of modern medicine and treatments that improve human 
health. Baseline assessments included genomics, physical and social 
exposure, sociodemographics, and lifestyle, occupational, psycho-
social and environmental measures. Written informed consent was 
obtained from all UKB participants.

Ethics approval
This study was covered by the ethical approval from the UKB granted 
by the National Information Governance Board for Health and Social 
Care and the NHS North West Multicenter Research Ethics Commit-
tee. All participants provided informed consent through electronic 
signature at baseline assessment. The data collected at baseline were 
used in this study. The demographic information of each statistical 
analysis is shown in Table 1.

Data collection
Urban living environment data. IMD, traffic, air and sound pollution, 
green space proximity, coastal proximity, water proximity as well 
as urban morphometric measures were used to measure the urban 
living social and physical environment around participants avail-
able in the category ‘local environment’ in the UKB (data field 113). 
A total of 53 categories including 128 urban living environment vari-
ables were included in the urban living environment data (Extended 
Data Fig. 3). The detailed variables and categories used are shown 
in Supplementary Tables 1–3. To exclude variables with extremely 
skewed data distribution, we used the function nearZeroVar from the 
caret R package57; no variables were excluded. In the 128 variables, 
we calculated the median absolute deviation (MAD) and removed 
values larger than 4 MAD in each environment variable. For further 
analyses, we used 216,341 participants with complete 128 urban living 
environmental variables.

IMD. IMD scores were used to classify the relative deprivation 
(a measure of poverty) in British local councils published by 
UK government (https://www.gov.uk/government/collections/
english-indices-of-deprivation). IMD scores were calculated separately 
in England (EIMD), Scotland (SIMD) and Wales (WIMD) because multi-
ple different components of deprivation are weighted with different 
strengths and compiled into a single score of deprivation. The EIMD 
score consists of seven domain indices, including: income deprivation 
(income subdomain, income deprivation affecting children index and 
older people index); employment deprivation; health deprivation and 
disability; education score; barriers to housing and services (wider and 
geographical barriers subdomain); living environment deprivation 
(indoors and outdoors subdomain); and crime score. The SIMD score 
consisted of seven domain indices, including: crime (only from 2006), 
current income, education, skills and training, employment, geographi-
cal access, health and housing. The WIMD score is composed of eight 

domain indices for income, employment, health, education, access 
to services, community safety, physical environment and housing.

Traffic. Traffic consists of seven items: (1) close to major road; (2) 
inverse distance to the nearest major road; (3) inverse distance to the 
nearest road; (4) sum of road length of major roads within 100 m; (5) 
total traffic load on major roads; (6) traffic intensity on the nearest 
major road; (7) traffic intensity on the nearest road.

Air pollution. Residential air pollution consists of six items: (1) nitrogen 
dioxide air pollution from 2005 to 2010; (2) nitrogen oxide air pollution 
in 2010; (3) particulate matter 10 μm air pollution in 2007 and 2010; (4) 
particulate matter 2.5 μm air pollution in 2010; (5) particulate matter 
2.5 μm air pollution absorbance in 2010; and (6) particulate matter 
2.5–10 μm air pollution in 2010.

Sound pollution. Residential sound pollution consists of five items: 
(1) average 16-h sound level of noise pollution; (2) average 24-h sound 
level of noise pollution; (3) average daytime sound level of noise pol-
lution; (4) average evening sound level of noise pollution; (5) average 
nighttime sound level of noise pollution.

Green space proximity. The green space proximity category contains 
environmental indicators relating to green space exposure attributed 
to participants based on 300-m home location buffers, including three 
items: (1) natural environment percentage estimate compared to the 
‘built environment’; (2) green space percentage estimates; (3) domestic 
garden percentage estimates.

Coastal proximity. The coastal proximity category contains environ-
mental indicators of distance from home location to the coast, which 
was attributed to participants based on 300-m home location buffers.

Water proximity. The water proximity category contains environ-
mental indicators of domestic water percentage estimates, which 
was attributed to participants based on 300-m home location buffers.

UKB Urban Morphometric Platform measures. The UKB Urban Mor-
phometric Platform (UKBUMP) is a high-resolution spatial database 
of urban morphological metrics within residential street catchments 
of the geocoded home address of UKB participants58. UKBUMP aims 
to provide a national platform for evidence-based healthy city plan-
ning and public health interventions. The platform will facilitate the 
construction of models that will explicitly decipher health impacts, 
from genetic to micro-built environment scales. Specifically, spatial 
and network modeling were performed on multiple UK-wide datasets, 
including the AddressBase Premium data of the Ordnance Survey GB,  
remotely sensing data, digital terrain topographical models and other 
datasets based on the anonymized geocoded home address of UKB 
participants. A total of six metrics including 104 urban living environ-
ment variables from the UKBUMP dataset were used. The six metrics 
used in this study include: (1) building class (n = 1): building class was 
extracted for the area of interest and building footprints were sub-
sequently linked with the geocoded residences of UKB participants 
through a spatial query, so that each UKB participant’s dwelling fell 
within one of the six building age code categories and 19 building type 
code categories. The age and type codes were combined together to 
form the building class code of each dwelling, which we used here; (2) 
destination accessibility (n = 33): health-specific destination accessibil-
ity was derived as a part of the morphometric analysis of the built envi-
ronment, which was measured in the form of network distance from 
a respondent’s dwelling to the nearest 33 different destinations (such 
as GP practice, dentist, library, hospital, post office); (3) NDVI (n = 2): 
greenness was measured by an objective measure, namely the NDVI. 
The NDVI is a unitless index calculated from the reflectance measures in 
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color infrared remote sensing satellite data, comparing the amount of 
energy absorbed by the chlorophyll in the red portion and the amount 
scattered by the internal structure of the leaves in the near-infrared 
region. The index ranges from −1 to +1, with higher values reflective of 
healthy green vegetation and vice versa. Greenness was calculated in 
terms of mean, minimum, maximum and s.d. in the NDVI values within 
the defined 500 m and 1,000 m around the address of residence of each 
UKB participant. We used the mean and s.d. of NDVI based on 500-m 
home location buffers; (4) LD (n = 46): LD was measured for different 
land use classes within 500, 1,000, 1,500, 2,000-m SN catchments of 
each UKB respondent’s dwelling and within the lower super output 
areas in which they resided. We used the 46 LD categories based on 
500-m home location buffers; (5) SN (n = 20): the physical accessibility 
of SN was modeled through spatial design network analysis (sDNA). 
sDNA is a sophisticated technique of urban network analysis that has 
evolved from conventional network analyses and uses SN links as the 
fundamental unit of computation59. The Ordnance Survey MasterMap 
Integrated Transport Network was subjected to automated cleaning 
in the sDNA Prepare Tool; subsequent modeling produced a suite of 
18 different indices of SN accessibility (Supplementary Table 3). These 
measure the link, centrality, radial, detour and shape characteristics 
of urban morphology captured at the micro (neighborhood), meso 
(city) and macro (regional) level encompassing 19 different catch-
ment radii (400–50,000 m). In this study, we only used the measures 
with a catchment radius of 400 m (Supplementary Table 3). These are 
generated in sDNA for all links in the urban road network covering 
the entire UKB cohort; the metrics for a street link containing a UKB 
respondent’s dwelling were added to the respondent’s built environ-
ment profile. The detailed description of these SN morphometric 
measures is shown in Supplementary Table 3; and (6) terrain (slope) 
(n = 2): slope analysis was conducted in Spatial Analyst, ArcGIS v.10.2 
using a digital terrain model. Terrain was calculated in terms of mean, 
minimum, maximum and s.d. in the terrain slope values within the 
defined 500 m and 1,000 m] around the address of residence of each 
each UKB participant. We used the mean and s.d. of terrain value based 
on 500-m home location buffers.

Psychiatric symptoms. There are 44 psychiatric symptoms in the 
category ‘mental health’ in the UKB that cover symptoms of affective 
and anxiety disorders, as well as personality (category ID: 100060). 
These items were obtained from a standardized mental health ques-
tionnaire that participants answered at the time of recruitment. 
Of this questionnaire, 21 items were excluded because the missing 
rate was greater than 50% from 502,616 participants of the UKB. To 
exclude psychiatric symptoms with extremely skewed data distri-
bution, we used the function nearZeroVar from the caret R package 
and excluded two items. Finally, a total of 21 psychiatric symptoms 
with complete data in 365,201 participants were included in the 
further analysis. A full list of the 21 psychiatric symptoms is shown in  
Supplementary Table 4.

Genomics data. We used the imputed genomic data (v.3) made 
available by the UKB for 487,411 individuals60, which was imputed 
from the Haplotype Reference Consortium reference panel61 and a 
merged UK10K and 1000 Genomes phase 3 reference panel62. Using 
participant-level quality control, we applied exclusion filters for par-
ticipants as follows: (1) participants with a mismatch in reported sex 
and chromosome X imputed sex or with putative sex chromosome ane-
uploidy; (2) participants with genetic kinship to other participants; (3) 
participants with excess heterozygosity or missing rates; (4) non-White 
participants; (5) participants without calculated genetic principal com-
ponents. Using SNP-level quality control, we applied exclusion filters 
for SNPs as follows: (1) minor allele frequency < 0.001; (2) imputation 
INFO quality score > 0.3. A total of 275,988 participants and 13,918,727 
SNPs were used in the further analysis.

Neuroimaging data. In this study, neuroimaging data were acquired 
from one 3 Tesla magnetic resonance imaging scanner from Siemens 
(Skyra running VD13A SP4 with a standard 32-channel radiofrequency 
receive head coil) at the UKB imaging center in Manchester. The 
standard parameters of a 3D MPRAGE sequence can be accessed at 
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. 
FAST gray matter segmentation was used to generate a further 139 
regional image-derived phenotypes by summing the gray matter par-
tial volume estimates within 139 regions of interest (ROIs): 111 cortical 
and subcortical gray matter volume (GMV) and 28 cerebellum GMV 
(field ID: 1101). These ROIs are defined in the MNI152 space, combin-
ing parcellations from several atlases: the Harvard-Oxford cortical 
and subcortical atlases (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) 
and the Diedrichsen cerebellar atlas (http://www.diedrichsenlab.org/
imaging/propatlas.htm). The detailed information can be accessed 
at https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf. 
The neuroimaging data for a total of 42,796 participants were used 
for the present study.

Confounding variables. Age, sex and assessment centers were 
adjusted as confounding covariates in the further analysis. A total 
of 502,616 participants had complete confounding variables. The 21 
psychiatric symptoms were first corrected for confounding variables 
and then normalized. For the neuroimaging-related analyses, total 
intracranial volume was also corrected.

Statistical analysis
Train and test sample split design. Participants from the UKB with 
complete urban living environmental data and psychiatric symptoms 
(n = 156,075) were divided into UKB-non-NI (n = 141,087) and UKB-NI 
(n = 14,988) datasets. The UKB-non-NI dataset was divided into training 
and test datasets to ensure validity of the results: 90% of participants 
were used as a training dataset (n = 126,978) and 10% of participants 
(n = 14,109) were used as a test dataset for model validation. The UKB-NI 
dataset (n = 14,988) was used for independent replication of the rela-
tionship between urban living environment, genomics and psychiatric 
symptoms, and for additional neuroimaging analyses (Table 1, Fig. 1 
and Extended Data Fig. 1).

Construction of urban living environmental categories. We included 
53 urban living environmental categories consisting of 128 variables 
in the study (Fig. 2a). Among these, 34 categories had one independ-
ent environmental item. In the remaining categories, redundancy 
between related environmental items was avoided by collapsing the 
information into 19 latent environmental categories using tenfold 
cross-validation CFA using the lavaan R package (https://cran.r-project.
org/web/packages/lavaan) (Extended Data Fig. 3). In the CFA models, 
tenfold cross-validation was performed to ensure unbiased estimates 
of generalizability throughout the analytical pipeline and to optimize 
the CFA models. For each fold, 90% of participants were used to build 
the CFA model; the optimized CFA model was then used to calculate 
latent variables for the remaining 10% of participants in each environ-
mental subcategory. We used two criteria to optimize the CFA model by 
selecting appropriate environmental measures. The first criterion was 
the goodness of fit of the CFA model assessed by Tucker–Lewis index 
(TSI), comparative fit index (CFI), chi-squared, root mean square error 
of approximation (RMSEA) and standard root mean square residual 
(SRMR). Criteria for an excellent model fit were TSI > 0.95, CFI > 0.95, 
RMSEA < 0.06 and SRMR < 0.08. The second criterion was the inclu-
sion of environmental measures that best reflected different aspects 
of the urban environment. For example, in residential sound pollution 
variables, we initially constructed a CFA model by including all five 
sound pollution measures in the training dataset. Based on the factor 
loadings of the five sound pollution measures, we removed the ‘average 
nighttime sound level of noise pollution’ item with the smallest factor 
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loading and repeated the CFA modeling. These steps were iterated until 
the resulting CFA model satisfied our criteria for excellent model fit in 
the training dataset. The factor loadings of the optimized CFA model 
were used to calculate the latent residential sound pollution measure 
in the test dataset. This process was applied into ten folds to predict all 
out-of-sample 19 urban living environmental categories.

Multivariate relation of urban living environmental profiles with 
psychiatric symptoms. To investigate the multivariate relationship 
between urban living environment and psychiatric symptoms, we 
conducted multivariate analyses using sCCA with the sgcca.wrapper 
function of the mixOmics R package based on our previous work63. 
The analysis design was carried out as follows: (1) the full dataset was 
randomly split into training and test datasets. The training dataset 
consisted of 90% of the data while the testing set consisted of the 
remaining 10%; (2) the training dataset was then randomly split into 100 
resamples. Each resample consisted of nt/2 participant scans, where nt 
is the total number of participants in the training dataset; (3) the first 
stage of the msCCA regression algorithm was then applied to each 
resample, with a sparsity constraint of 0.5 in each view of the data17; 
(4) the resulting weights for each urban environmental category and 
psychiatric symptom(s) were recorded for each resample. The urban 
environmental category and psychiatric symptom(s) with non-zero 
loading greater than 90% across the resamples were selected and 
retained as stable variables in subsequent analyses. Stability selection 
was also applied to limit false discoveries by selecting only variables 
that were stable under resampling. This resulted in a reduction in the 
number of variables necessary to achieve equivalent predictive per-
formance and properly accounts for correlations between them. Con-
sequently, stability selection effectively prevents variable categories 
with many candidate predictors from ‘overwhelming’ categories with 
fewer candidate predictors; (5) we then reapplied the sCCA algorithm 
to the data, without sparsity constraints, on the stable urban living 
environment category and psychiatric symptom(s) in the training 
dataset. The canonical correlation r value between urban living envi-
ronment category and psychiatric symptom(s) were recorded; (6) we 
then permuted the training data and repeated steps 2–5. This was done 
for 1,000 different permutations of the training data labeling. In each 
case, we recorded the canonical correlation r value between urban 
living environment category and psychiatric symptom(s). Thus, we 
built up a permutation distribution to assess the significance of the rela-
tionship between urban living environment category and psychiatric 
symptom(s) in the experimental labeling within the training dataset; (7) 
we then applied the trained model to the test dataset to produce canoni-
cal correlates of urban living environment (which we refer to as ‘urban 
living environment profile’) and psychiatric symptom(s) (referred to as 
‘psychiatric symptom groups’). We recorded the canonical correlation 
r value for the training and testing datasets; and (8) we then randomly 
permuted the data rows in the test dataset and recalculated the r values 
between urban living environment profile and psychiatric symptom 
groups for each of 1,000 permutations of the experimental labeling. 
The Pperm demonstrated the P value for a one-tailed permutation test 
(Pperm) in the training and test datasets. False discovery rate (FDR) cor-
rection was used to control for multiple testing and a PFDR = 0.05 was 
considered statistically significant.

Finding multiple modes between urban living environmental 
profiles and psychiatric symptom groups. After determining the 
significance of the first canonical correlate, we removed the effect of 
the first set of canonical vectors using projection deflation17,18,24. This 
is important to keep in mind to correctly interpret our findings, in 
particular the GWAS analysis. We then repeated the analysis to inves-
tigate the presence of a second canonical correlation that explains 
covariance over and above what is explained by the first component. 
These steps were iterated until the resulting canonical correlates were 

no longer statistically significant. Finally, we calculated the canonical 
correlation r value between the urban living environment profile and 
psychiatric symptom groups, the weight value of each environmental 
category and psychiatric symptom variables, and the explained vari-
ance and fraction of explained variance of crossloading of each urban 
living environmental category for each psychiatric symptom group 
in each mode.

Reliability analyses. We undertook the following analyses to evalu-
ate the robustness and reliability of the results in the sCCA analysis 
between urban living environment profiles and psychiatric symptoms: 
(1) sCCA stability: to assess the stability of sCCA in relation to sample 
size and composition, we performed a sensitivity analysis using boot-
strapping by rerunning the algorithm in 100 randomly generated 
subsamples, each containing 10–150% of the training dataset in 10% 
increments with replacement, recalculating the canonical correlation 
between urban living environmental profiles and psychiatric symp-
toms; (2) random resampling: we performed a sensitivity analysis 
using bootstrapping to resample the training data with replacement 
1,000 times, each containing 10–150% of the training dataset in 10% 
increments. We resampled 90% of the training dataset 1,000 times, 
reran the sCCA algorithm and calculated the canonical correlation 
between the resulting feature loadings in the remaining 10% of the 
training dataset each time; (3) Sex bias: to evaluate whether there was 
similarity of the original sCCA modes between males and females, we 
calculated the canonical correlation between urban living environment 
and psychiatric symptoms in males and females separately. The canoni-
cal correlation of males and females was then calculated for all three 
significant modes in both training and test datasets; and (4) Household 
sharing bias: the urban environment variable was measured at the 
individual level and connected to each participant’s address. However, 
there were genetically unrelated participants living in the same house-
hold. To rule out the influence of genetically unrelated members of the 
same household, we reperformed the sCCA regression to exclude the 
household sharing bias. Household sharing was not explicitly available; 
therefore, we used similar methods to previous studies64 to identify 
potential household sharing participants in the UKB. The household 
sharing information was used to extract participants who (1) reported 
living with their spouse (field ID: 6141); (2) reported the same length of 
time living in the house (field ID: 699); (3) reported the same number 
of occupants in the household (field ID: 709); (4) reported the same 
number of vehicles (field ID: 728); (5) reported the same accommoda-
tion type and rental status (field IDs: 670 and 680); (6) had identical 
home coordinates (rounded to the nearest km) (field IDs: 20074 and 
20075); and (7) were registered with the same UKB recruitment center 
(field ID: 54). If more than two participants shared identical information 
across all variables, these participants were potentially regarded as 
being in the same household. We identified 36,071 potential household 
sharing participants belonging to 17,500 independent households in 
141,087 participants with complete urban environmental measures and 
psychiatric symptom groups in the UKB-non-NI dataset. We randomly 
kept one participant from the potentially same household. Finally, 
18,571 participants were excluded and 122,516 participants were used 
to reperform the sCCA between urban environmental variables and 
psychiatric symptom groups.

Genome-wide-significant associations with environmental psy-
chiatric symptom groups. For the significant psychiatric symptom 
groups that correlated with urban living environment profile from 
the sCCA results, we conducted a GWAS of the corresponding psychi-
atric symptom groups in 76,508 participants with complete genomic, 
urban environment and psychiatric symptoms data (Table 1). Using 
BGENIE v.1.2 (https://jmarchini.org/bgenie/), we fitted an additive 
model of association at each variant, using the expected genotype 
count (dosage) from the imputed genetic data. The covariates included 
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age, sex, assessment center, processing batch and the top 10 ancestry 
principal components. Bonferroni-corrected P < 0.05 (uncorrected 
P < 0.05/13,918,727 × numbers of significant psychiatric symptom 
groups from the sCCA results) was considered as a statistically signifi-
cant threshold. All SNPs with genome-wide significance were mapped 
to genes based on physical distance from the human reference assem-
bly (GRCh37/hg19) using the FUMA portal (https://fuma.ctglab.nl/).

GSEA. To better understand the biological function of fine-mapped 
genes associated with psychiatric symptom groups, these genes were 
functionally annotated using the ToppGene portal (https://toppgene.
cchmc.org/) to identify significant enrichments for gene ontology 
(GO). Bonferroni correction (Q < 0.05) was applied to correct for mul-
tiple comparisons. The default full reference gene list of each category 
in ToppGene was used as the background gene set. The Human Protein 
Atlas portal (https://www.proteinatlas.org/) was additionally used to 
identify gene overexpression in 12 brain regions for moderating genes.

Gene score calculation. We created a score for the genes associated 
with each psychiatric symptom group, using PLINK 2.0 (ref. 65) with 
default parameter settings adjusted for linkage disequilibrium. Spe-
cifically, the clump-p1-indicated GWAS P threshold for an SNP to be 
included as an index SNP was set to 1 such that all SNPs were include 
for clumping. Clump-r2 was set to 0.5, indicating that SNPs having an r2 
greater than 0.5 with the index SNPs would be removed. Clump-kb was 
set to 250 kb, indicating that SNPs within 250k of the index SNP were 
considered for clumping. The score of each gene was then calculated 
as the sum of the count of risk alleles multiplied by the corresponding β 
value from the GWAS across the remaining index SNPs. Thus, we gener-
ated 22 gene scores associated with the affective symptom group, 11 
gene scores for the anxiety symptom group and six gene scores for the 
emotional instability symptom group.

Replication in the UKB-NI dataset. To replicate the multivariate 
relationship between urban living environment and psychiatric symp-
toms, we applied the sCCA analysis in an independent dataset of 14,988 
participants with complete environmental, mental health and neu-
roimaging data from the UKB-NI dataset. Again, we used a training 
dataset (n = 13,490, 90%) and a test dataset (n = 1,498, 10%), a resam-
pling method to ensure variable stability (with a threshold of 90% for 
non-zero weights from resampled data to consider as stable variables) 
and permutation tests to assess the significance of the results (10,000 
times) as used in the discovery sCCA analysis. Next, we independently 
replicated the significant SNPs associated with psychiatric symptom 
groups surviving from the discovery GWAS analysis (UKB-non-NI data-
set) in an independent 8,705 participants of the UKB-NI dataset at a 
Bonferroni-corrected P < 0.05 (uncorrected P < 0.05/the numbers of all 
significant SNPs of the GWAS of psychiatric symptom groups from the 
discovery analysis). Then, we calculated the corresponding gene scores 
as we did in the discovery analysis. Finally, we independently validated 
the associations between gene scores and psychiatric symptom groups 
in the UKB-NI dataset.

Brain volume differences are correlated with urban living environ-
mental profiles and psychiatric symptom groups. To investigate the 
neurobiological mechanisms underlying the associations between 
urban living environment and mental health, we carried out an msCCA 
between the urban environmental profiles, brain volume measures 
and psychiatric symptom groups using the mixOmics R package. This 
analysis was conducted in an independent sample of 14,988 partici-
pants with urban environmental, mental health and neuroimaging data 
from the UKB-NI dataset. Again, we used a training dataset (n = 13,490, 
90%) and a test dataset (n = 1,498, 10%), a resampling method to ensure 
variable stability (with a threshold of 85% for non-zero weights from 
resampled data to consider as stable variables) and permutation tests 

to assess the significance of the results (10,000 times). Finally, the 
brain volume canonical variables (referred to as brain component), 
the canonical correlation r value between urban environmental profile 
and brain component, the canonical correlation r value between brain 
component and psychiatric symptom groups, and the weights of the 
corresponding regional brain volume variables were calculated.

Moderated mediation analysis between urban living environmental 
profile, brain components and psychiatric symptom groups modu-
lated by genomics. The above analysis was carried out separately to 
identify the associations of urban living environment with psychiatric 
symptoms, genetic variation and brain volume, leaving the complex 
associations of urban living environment, genomics, brain component 
and psychiatric symptoms unexplored. To formally test whether the 
urban living environment and psychiatric symptom relationship can 
be mediated by brain components and modulated by genomics, we 
carried out a modulated mediation analysis in 8,705 participants using 
Model 59 in the process R package66. Moderated mediation analysis is 
an extension of mediation analysis, a valuable technique for assessing 
whether an indirect effect is conditional on a moderating variable. 
The bases of moderation and mediation effect were integrated into a 
combined model of moderated mediation within a linear regression 
framework. Finally, gene scores were defined as modulated variables, 
the urban living environment profile was defined as an independent 
variable, the brain component was defined as a mediator variable and 
the psychiatric symptom groups were defined as a dependent vari-
able. The modulator (gene score) was defined by the 16th, 50th and 
84th percentiles as the low, medium and high genetic risk based on 
the default parameter in the process R package66.

In the moderated mediation analyses, all indirect effects were 
estimated in one multiple regression analysis with independent vari-
ables as predictor variables. We used a nonparametric bootstrapping 
method to assess the significance of the mediation effect. After 5,000 
bias-corrected bootstrapping, we estimated the distribution of the 
indirect effect and calculated its 95% CI. If zero did not fall between 
the resulting 95% CI of the bootstrapping method, we confirmed the 
existence of a significant mediation effect (P < 0.05). In the multiple 
mediation analysis of this study, mediators and dependent variables 
were measured contemporaneously, thus not allowing the establish-
ment of any causal directionality. The EME and 95% CI were reported 
for the moderated mediation analyses. Confounding factors were 
controlled in the moderated mediation model.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All the UKB data used in the study are available at the UKB (https://www.
ukbiobank.ac.uk). The Human Protein Atlas portal can be accessed at 
https://www.proteinatlas.org/.

Code availability
The core code used to run the analyses reported in this study can be 
found at https://github.com/jiayuanqqxu/scca-regression.
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Extended Data Fig. 1 | A schematic summary of the study design. GWAS, 
genome-wide association analysis; msCCA, multiple sparse canonical-
correlation analysis; PSY, psychiatric; sCCA, sparse canonical-correlation 
analysis; SG, symptom groups; UE, urban-environmental; UKB-non-NI dataset 

and UKB-NI dataset, participants from UK Biobank with complete urban-living 
environmental data and psychiatric symptoms (n = 156,075) were divided into 
datasets without neuroimaging data (UKB-non-NI dataset, n = 141,087) and with 
neuroimaging data (UKB-NI dataset, n = 14,988).
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Extended Data Fig. 2 | Histograms of demographic, urban-living environment 
category and psychiatric symptoms variables in the analytical sample and 
total sample in UK Biobank. Histograms distributions of demographic variables 
of age (a) and gender (b), urban-living environment category variables with top 

weight including IMD score (c), air pollution (d), street network radius (e) and 
distance to service (f), psychiatric symptoms variables with top weight including 
frequency of unenthusiasm (g), anxious feelings (h), grief and stress (i) in the 
analytical sample and total sample in UK Biobank.
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Extended Data Fig. 3 | Urban-environmental categories construction.  
53 urban-living environment categories composed of 128 variables were 
included in the study. Among these, 34 categories had one independent 
environmental variable. In the remaining categories, redundancy between 

related environmental variables was avoided by collapsing the information into 
19 latent environmental categories using ten-fold cross-validation confirmatory-
factor-analysis (CFA).
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Extended Data Fig. 4 | Robustness assessment. a. We used bootstrapping to 
resample the training data (with replacement) 1000 times, each containing 
10% to 150% of the training dataset in 10% increments. Box and whiskers graphs 
showed the correlation coefficient r value in each resampling. The bounds of 
box demonstrated data extend from the 25th to 75th percentiles. The centre line 
in the box was plotted at the median. The whiskers went down to the smallest 

and up to the largest value. Stability in correlation coefficient after about 40% 
of the sample size were observed. b. To estimate the stability of the findings 
across subsamples, we resampled the same proportion 90% of original sample 
size as train dataset for 1000 times, reran the sCCA algorithm and calculated the 
correlation between the resulting feature in the remaining 10% test dataset.
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Extended Data Fig. 5 | The sCCA-regression between urban-living 
environment categories and psychiatric symptoms in 122,516 participants 
with different households. a. Top left: A total of 53 categories of urban-living 
environment belonged to 13 areas are included. Top right: Each dot demonstrates 
the 13 areas of urban-living environment. Bottom: A total of 21 psychiatric 
symptoms are included; b. The sCCA-regression model linking 53 urban-living 
environment categories to 21 psychiatric symptoms identified three significant 
correlates in train datasets (red dot), including affective symptoms group 
(r = 0.20, Pperm < 0.001), anxiety symptoms group (r = 0.12, Pperm < 0.001) and 
emotional instability symptoms group (r = 0.06, Pperm < 0.001). These results were 
still significant in test datasets of affective (r = 0.20, Pperm < 0.001, PFDR < 0.001), 

anxiety (r = 0.10, Pperm < 0.001, PFDR < 0.001) and emotional instability symptom-
groups (r = 0.03, Pperm < 0.001, PFDR < 0.001) (orange square). P values here were 
estimated using two-sided permutation tests (Pperm) and FDR correction have 
been made for multiple comparisons (PFDR); c–e. In the first (c), second (d) and 
third (e) correlates, urban-living environment profiles contributing to this 
relationship were shown on the top, psychiatric symptoms contributing to this 
relationship were shown on the bottom radar plots. Dist., Distance; LD, landuse 
density; IMD, Index of Multiple Deprivation; NDVI, normalized difference 
vegetation index; SG, symptoms of group; SN, street network; STD, standard 
deviation; UE, urban-living environment.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02365-w

Extended Data Fig. 6 | Correlations between urban-living environmental profile and psychiatric symptom groups. Correlation maps between the second urban-
living environmental profile and anxiety symptom-group (a) as well as the third urban-living environmental profile and emotional instability symptom-group (b).
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