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Interactions between the lipidome and 
genetic and environmental factors in autism

Autism omics research has historically been reductionist and diagnosis 
centric, with little attention paid to common co-occurring conditions (for 
example, sleep and feeding disorders) and the complex interplay between 
molecular profiles and neurodevelopment, genetics, environmental factors 
and health. Here we explored the plasma lipidome (783 lipid species) in 
765 children (485 diagnosed with autism spectrum disorder (ASD)) within 
the Australian Autism Biobank. We identified lipids associated with ASD 
diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function 
(n = 8) and found that long-chain polyunsaturated fatty acids may causally 
contribute to sleep disturbances mediated by the FADS gene cluster. We 
explored the interplay of environmental factors with neurodevelopment 
and the lipidome, finding that sleep disturbances and unhealthy diet 
have a convergent lipidome profile (with potential mediation by the 
microbiome) that is also independently associated with poorer adaptive 
function. In contrast, ASD lipidome differences were accounted for by 
dietary differences and sleep disturbances. We identified a large chr19p13.2 
copy number variant genetic deletion spanning the LDLR gene and two 
high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an 
ASD diagnosis and widespread low-density lipoprotein-related lipidome 
derangements. Lipidomics captures the complexity of neurodevelopment, 
as well as the biological effects of conditions that commonly affect quality of 
life among autistic people.

Autism spectrum disorder (ASD) is a neurodevelopmental condition 
characterized by social and communication difficulties, restricted 
and repetitive behaviors and differences in sensory sensitivity. ASD 
commonly co-occurs with other medical and psychiatric conditions, 
including sleep disorders, feeding disorders, gastrointestinal com-
plaints, anxiety and seizures1. Autistic people are greatly interested 
in these co-occurring conditions as they adversely impact on develop-
ment, quality of life and long-term health and wellbeing2,3. However, 
the biological interactions between ASD and co-occurring conditions 
are understudied. Emerging high-throughput omics technologies that 
assay molecular traits (for example, RNA transcripts, proteins and 
lipids) may help to improve biological understanding and identify 

novel biomarkers to improve the detection of ASD and commonly 
co-occurring conditions.

Rare variation in lipid metabolism genes (for example, EFR3A4) is 
associated with nonsyndromic idiopathic ASD, and genetic syndromes 
of lipid metabolism are frequently associated with neurodevelopmen-
tal delay5 (for example, Smith–Lemli–Opitz syndrome, Niemann–Pick 
syndrome and Tay–Sachs syndrome). Outside of these rare genetic 
diagnoses, others have investigated relationships between clinical 
lipids and ASD diagnosis, with mixed results. Smaller studies have iden-
tified potential associations between hypocholesterolemia and ASD 
diagnosis6–8, whereas a large study integrating genetic and electronic 
health record data suggested that there may be a dyslipidemia subtype 
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deficit hyperactivity disorder (ADHD)/behavioral medications (odds  
ratio (OR) = 5.6; s.e. = 0.4; P = 7.9 × 10−5), antipsychotics (OR = 10.5;  
s.e. = 1.0; P = 2.2 × 10−2), anxiolytics/antidepressants (OR = 19.4; s.e. = 1.1;  
P = 3.6 × 10−3), sleep medications (OR = 13.4; s.e. = 0.6; P = 1.3 × 10−5)  
and fish oil/docosahexaenoic acid (DHA) supplements (OR = 7.39;  
s.e. = 0.34; P = 4.2 × 10−9). Lower IQ /DQ was associated with  
antiepileptic drug use (b = −18.1; s.e. = 6.6; P = 6.6 × 10−3), sleep  
medications (b = −8.8; s.e. = 3.2; P = 6.5 × 10−3) and fish oil/DHA  
supplements (b = −4.9; s.e. = 2.5; P = 5.0 × 10−2). Sleep disturbances 
were associated with ADHD/behavioral medications (b = 2.7; s.e. = 1.3;  
P = 4.2 × 10−2) and sleep medications (b = 7.4; s.e. = 1.2; P = 3.6 × 10−9).

Associations between ASD diagnosis and inferred clinical lipids
In the absence of clinical lipid measurements, we inferred total 
plasma cholesterol and triglycerides from lipidome data (Methods). 
ASD diagnosis (n = 694, excluding storage duration outliers) was 
modestly associated with decreased cholesterol levels (OR = 0.82 
per s.d.; 95% confidence interval (CI) = 0.70–0.97; P = 1.9 × 10−2;  
Fig. 2a, Supplementary Fig. 3 and Methods) independent of dietary 
cholesterol, antipsychotics, ADHD/behavioral medications and fish 
oil/DHA intake (Methods). In contrast with ASD diagnosis, there 
were no associations between IQ/DQ (n = 642) or sleep disturbances 
(n = 607) and either inferred total cholesterol or triglycerides. As 
expected, body mass index (BMI) was associated with increased dietary  
cholesterol (b = 1.4 × 10−3; s.e. = 0.6 × 10−3; P = 2.3 × 10−2), inferred lipidome  
cholesterol (b = 1.3 × 10−7; s.e. = 0.3 × 10−8; P = 2.0 × 10−7) and  
triglycerides (b = 1.7 × 10−7; s.e. = 0.6 × 10−7; P = 8.0 × 10−3).

Trait variance associated with the lipidome
We investigated the lipidome’s overall association with neuro-
developmental and anthropomorphic traits under an additive model 
using omics data-based restricted maximum likelihood (OREML)22 
analysis (Fig. 2 and Supplementary Table 3). As primary analyses, we 
adjusted for demographics and batch effects (Fig. 2b, “covdemog”) to 
maximize sample size.

The lipidome explained false discovery rate (FDR)-significant 
(q < 0.05) variance in age (coefficient of determination (R2) = 86.4%;  
s.e. = 1.8%; P = ~0; n = 758), Tanner score for pubertal stage (R2 = 71.5%;  
s.e. = 7.1%; P = 5.6 × 10−17; n = 224), sex (R2 = 69.1%; s.e. = 4.6%; P = ~0;  
n = 758) and BMI (R2 = 63.7%; s.e. = 5.3%; P = ~0; n = 715) (Fig. 2b), as well  
as dietary traits (Supplementary Fig. 4).

Lipidome associations with the following neurodevelopmen-
tal traits were more modest (albeit still FDR significant; Fig. 2b): 
 IQ/DQ (R2 = 17.5%; s.e. = 6.2%; P = 2.8 × 10−6; n = 642), sleep disturbances  
(R2 = 9.0%; s.e. = 4.5%; P = 4.1 × 10−5; n = 607) and ASD diagnosis  
(R2 = 3.6%; s.e. = 2.7%; P = 4.7 × 10−3; n = 694), after excluding storage  
outliers. There was also a nominally significant association with the  
adaptive motor domain score of the second edition of the Vineland  
Adaptive Behaviour Scale (VABS-II) despite a small sample size (R2 = 8%;  
s.e. = 7%; P = 4.7 × 10−2; n = 217). The lipidome was not associated with  
stool consistency (R2 = 1.5%; s.e. = 3.2%; P = 0.28; n = 255).

The R2 estimates were broadly consistent in sensitivity analyses 
excluding covariates, adjusting for diet in a smaller subset of participants 
and adjusting for collection time of day (Fig. 2b and Methods), with two 
exceptions: analysis of ASD without covariates (“nocov”), probably 
reflecting residual confounding from storage duration, and analysis of 
sex adjusted for diet (“covdemogdiet”), which may reflect that the ASD 
group had more male participants and dietary differences (Methods).

Lipidome-wide association studies
Next, we performed lipidome-wide association studies (LWASs) to 
test for associations between individual lipids and six traits (ASD,  
IQ/DQ, sleep disturbances, age, Tanner stage and BMI) with significant 
lipidome associations in the variance component analyses (Extended 
Data Fig. 2).

of ASD9. Indeed, autistic people may be at a higher risk of treatable 
cardiometabolic disease10.

Co-occurring conditions could predispose autistic people to 
altered lipid and metabolic profiles. For example, ASD-associated 
restricted interests and sensory sensitivities predispose to specific 
dietary preferences11,12, in turn impacting metabolic health and develop-
ment. Furthermore, children diagnosed with ASD commonly have sleep 
disruption13, partly mediated by shared genetic predisposition14,15. In the 
general pediatric population, longitudinal studies have found that dif-
ficulty at mealtimes16 and sleep disorders16,17 in early childhood are asso-
ciated with overweight or obesity in childhood, and sleep disturbances 
may predispose to clinical lipid derangement18,19, although these reports 
are not yet conclusive20. Specifically for ASD, relationships between the 
wider lipidome and sleep disruption have not been investigated and it 
is unclear whether dietary patterns are a confounder.

Despite interest in the ASD lipidome spanning almost 20 years, 
there are limited well-powered and appropriately designed studies 
accompanied by extensive metadata (for example, genetic, dietary, 
sleep, medication, demographic and psychometric data) to disentan-
gle potential mediators of ASD–lipid relationships. In this article, we 
investigate relationships between the plasma lipidome (783 species) 
and autism-associated traits, using rich phenotypic and biological 
data from participants in the Australian Autism Biobank (AAB) and 
Queensland Twin Adolescent Brain (QTAB) Project. We looked for 
associations between autism-related traits (ASD diagnosis, cognitive 
function and sleep disruption) and various aspects of the lipidome. We 
also integrated lipidomics with genetic and environmental data (diet, 
the microbiome and medications).

Results
Overview of the dataset
The AAB combines deep biological and phenotypic data collected 
from children diagnosed with ASD, siblings without a diagnosis 
(SIB) and unrelated children without a diagnosis (UNR) (Fig. 1a and  
Supplementary Table 1). We profiled the plasma lipidome (783 species 
after quality control; Methods and Extended Data Fig. 1) in 765 children 
(n = 485 ASD, 160 SIB and 120 UNR, with 500 boys and 265 girls, includ-
ing 24 UNR participants from the QTAB Project) at the species level (the 
most granular classification) and class level (which species collapse 
into) within the lipid ontology21; these can be further annotated by 
subclass, feature and domain (Supplementary Table 2). We identified 
several outlier groups (n = 7 statistical outliers, n = 64 storage duration 
outliers (all in the ASD group; Supplementary Figs. 1 and 2) and n = 12 
visibly fatty samples). Depending on the analysis, some of these outlier 
groups were retained (Methods).

We considered three key neurodevelopmental phenotypes: ASD 
diagnosis, intelligence quotient/developmental quotient composite 
score (IQ/DQ; Methods) and sleep disturbances (measured using the 
Children’s Sleep Habits Questionnaire (CSHQ) total score) as the latter 
two are associated with ASD.

We assessed relationships between neurodevelopmental pheno-
types and covariates with potential lipidome effects: demographics, 
batch, diet and medications. Age was well matched between ASD, 
SIB and UNR groups, although children with higher IQ/DQ tended to 
be slightly older (linear model; b = 0.018; s.e. = 0.007; P = 5.9 × 10−3).  
Male sex was associated with ASD diagnosis (chi-squared test;  
P = 8.7 × 10−10) and lower IQ/DQ (linear model (IQ/DQ ~ sex); b = 6.6;  
s.e. = 1.9; P = 4.6 × 10−4). For batch variables, neurodevelopmental phe-
notypes were associated with sample storage duration but not injection 
batch or collection time of day, informing our approach to outliers 
(Methods and Supplementary Figs. 1 and 2). Reduced meat intake was 
associated with ASD diagnosis (dietary principal component 3 (PC3);  
see Methods) (b = −0.45; s.e. = 0.16; P = 5.8 × 10−3) and lower IQ/DQ  
scores (b = 2.4; s.e. = 1.1; P = 2.5 × 10−2), both adjusted for age and sex.  
For medication classes, ASD diagnosis was associated with attention  
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We identified lipid species significantly associated with ASD diag-
nosis (n = 8), IQ/DQ (n = 8) and sleep disturbances (n = 20) (Extended 
Data Fig. 2, Supplementary Tables 4–6 and Supplementary Fig. 5a). 

There were also numerous species-level associations with age (n = 181), 
Tanner stage (n = 43), BMI (n = 159) and sex (n = 71) (Extended Data 
Fig. 2 and Supplementary Tables 7–10), consistent with the strong 
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associations in the variance component analyses (Fig. 2b). We also iden-
tified lipid class associations (Extended Data Fig. 3). Sensitivity analyses 
gave consistent results (Supplementary Figs. 6–10 and Methods).

To interpret the LWAS hits, we assigned functional annotations 
using a lipid ontology (Fig. 3a and Extended Data Fig. 4). Across the 

neurodevelopmental traits, multiple LWAS hits mapped to long-chain 
polyunsaturated fatty acids (LC-PUFAs): between ASD diagnosis and 
decreased linoleic acid (ontology terms fatty acid 18:2 and omega-6;  
also a precursor to other LC-PUFAs); between sleep disturbances 
and decreased docosahexanoic acid (DHA; terms fatty acid 22:6 and 
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Fig. 2 | Associations with inferred clinical lipids and variance component 
analysis. a, Differences in residuals for inferred clinical lipids (cholesterol and 
triglycerides) and dietary cholesterol (after regressing out demographic and 
batch variables: age, age2, sex, batch, injection order and storage time) between 
ASD and non-ASD groups (n = 694). The box plots show median values and 
quartiles of the distribution. Statistical significance was determined by logistic 
regression (ASD diagnosis ~ age + sex + batch + injection order + clinical lipid). 
The P values are unadjusted for multiple testing (Methods). b, Percentage of 
trait variance associated with the overall lipidome. The error bars represent s.e. 

Sensitivity analyses were performed for the following covariate combinations: 
nocov (no covariates); covdemog (demographic, batch and storage duration); 
covdemogdiet (covdemog and dietary PC1–PC3; this analysis had the 
smallest subset of individuals with complete data and hence wider CIs); and 
covdemogtime (covdemog and collection time of day). For the covdemog 
analysis (that is, the primary analysis), the sample sizes were as follows: n = 694  
(ASD), n = 642 (IQ/DQ), n = 611 (sleep disturbances), n = 758 (age), n = 224 (Tanner  
(genital) score), n = 715 (BMI), n = 758 (sex), n = 217 (motor (VABS)) and n = 258  
(Bristol Stool Chart).
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omega-3); and both sleep disturbances and decreased IQ/DQ were 
associated with decreased arachidonic acid (terms fatty acid 20:4 
and omega-6). The neurodevelopmental LWAS hits typically belonged 
to plasmalogen subclasses (important roles in the brain include  
myelination, synaptic vesicles and secretory granules23) or ether lipid 
subclasses and had glycerophospholipid domains. The lipid set enrich-
ment analysis (LSEA) was highly consistent, including for the same 
LC-PUFAs: linoleic acid, arachidonic acid and DHA (Fig. 3b and Supple-
mentary Tables 11–13). We also performed LSEAs for age, Tanner score, 
BMI and sex (Extended Data Fig. 5 and Supplementary Tables 14–17).

Validation of LWAS hits using genetic data
In the absence of an equivalent pediatric dataset with matching  
lipidomic and phenotypic data, and given that the adult lipidome has 
a strong genetic basis24, we used genetic data to replicate lipid–neuro-
developmental trait associations. Among the 36 lipid species LWAS 
hits for the three neurodevelopmental traits, 24 had genome-wide 
association study (GWAS) summary statistics from the Busselton 
Health Study (BHS)24 (data generated by the same laboratory on a 
slightly smaller lipid panel). Aggregating the genome-wide-significant 
single-nucleotide polymorphisms (SNPs) for lipids significantly asso-
ciated with ASD, IQ/DQ and sleep disturbances, the majority of SNPs 
localized to the FADS gene cluster on chr11:61.4–61.7 Mb (Fig. 4a). Fatty 
acid desaturase (FADS) enzymes catalyze the two steps in the conver-
sion of linoleic acid to arachidonic acid, which is consistent with the 
LWAS hit annotations (Fig. 3a). This colocalization of genetic signal 
across multiple lipid species is consistent with strong phenotypic cor-
relation across the lipidome (Extended Data Fig. 1).

Leveraging this strong genetic signal for neurodevelopment- 
associated lipids, we investigated potential pleiotropy or causality 
between lipids and neurodevelopmental traits. We applied summary 
data-based Mendelian randomization (SMR) by integrating GWAS sum-
mary statistics from independent studies, choosing a locus-specific 
method (over a genome-wide one) as lipids have an oligogenic architec-
ture24. We selected lipids with: (1) neurodevelopmental trait associations 
in AAB/QTAB; and (2) strong chromosome 11 FADS region genetic effects 
in the external BHS lipidomics GWAS24. Hence, for IQ/DQ, we chose the 
phosphatidylcholine PC(O-18:0/20:4) and for sleep disturbances we 
chose the phosphatidylethanolamine PE(P-19:0/20:4)(b); both have 
arachidonic acid groups and both had strong LWAS associations and 
strong genetic effects related to FADS genes (Extended Data Fig. 6). 
There was no genetic signal for ASD in the FADS region (Fig. 4c), so we 
did not apply SMR to any ASD–lipid combination. For the neurodevel-
opmental GWAS summary statistics, we used intelligence quotient 
(IQ)25 and sleep duration26 GWAS summary statistics as proxy traits. 
We then chose the most strongly associated SNP for the lipid trait as  
the SMR instrument: rs99780 for the IQ/PC(O-18:0/20:4) GWAS lipid  
trait pair and rs102274 for the sleep duration/PE(P-19:0/20:4)(b) GWAS  
lipid trait pair.

SMR identified strong associations between PC(O-18:0/20:4)  
and IQ (b = −0.037; s.e. = 0.009; PSMR = 1.7 × 10−5) and between  

PE(P-19:0/20:4)(b) and sleep duration (b = −0.051; s.e. = 0.011;  
PSMR = 1.37 × 10−6) (Fig. 4b,c). However, only the latter passed the  
Heterogeneity in Dependent Instruments (HEIDI) test (IQ /PC 
(O-18:0/20:4) PHEIDI = 1.1 × 10−3 (n = 20 SNPs) and sleep duration/PE 
(P-19:0/20:4)(b) PHEIDI = 0.96 (n = 20 SNPs)), suggesting that the  
IQ/PC(O-18:0/20:4) association may be due to genetic linkage, whereas 
the sleep duration/PE(P-19:0/20:4)(b) association is consistent with a 
SNP-to-lipid-to-trait causal (or pleiotropic) relationship (Supplemen-
tary Table 18).

As another replication, we genetically predicted lipid levels  
and investigated their neurodevelopmental associations in the  
Adolescent Brain Cognitive Development (ABCD) study: a larger  
population-ascertained pediatric dataset. The directions of effect were  
consistent but not statistically significant (for IQ/PC(O-18:0/20:4),  
b = 4.6 × 10−2 (s.e. = 1.8 × 10−2; P = 0.79); for sleep disturbances/PE 
(P-19:0/20:4)(b), b = −2.1 × 10−3 (s.e. = 3.0 × 10−3; P = 0.48)), probably 
because genetic prediction of lipids in pediatric cohorts using adult 
summary statistics is imperfect (Methods) and because the FADS locus 
explains only a fraction of variance in sleep and cognitive traits.

We noted that the chromosome 11 locus is associated with multi-
ple lipids that were also associated with neurodevelopmental traits in  
AAB/QTAB. To capture the locus’ pleiotropic effects, we looked for 
associations between neurodevelopmental traits and predicted 
gene expression. We prioritized FADS1, FADS2 and TMEM258 for 
individual-level transcriptome-wide association study (TWAS) analyses 
using evidence from multistep SMR mapping gene expression–lipid 
trait associations (Supplementary Table 18). There were no associations 
between genetically predicted expression and neurodevelopmental 
traits in the AAB/QTAB dataset or the larger ABCD dataset (n = 4,592). 
However, genetically predicted FADS1 (R2 = 3.93% and P = 1.6 × 10−6 for  
the prefrontal cortex; R2 = 2.56% and P = 1.1 × 10−4 for whole blood),  
FADS2 (R2 = 2.01% and P = 6.4 × 10−4 for whole blood) and TMEM258  
(R2 = 3.11% and P = 2.1 × 10−5 for whole blood) could predict plasma 
PC(O-18:0/20:4) levels in AAB/QTAB (Methods).

Dissecting contributions to neurodevelopment-associated lipids
To contextualize our ability to replicate our findings using genetic 
data, we took the n = 646 AAB/QTAB children of European ancestry 
and generated polygenic scores (PGS) for 215 trait-associated lipid 
species from the LWAS analyses (Supplementary Tables 4–10) using 
BHS GWAS summary statistics. We confirmed that the lipid PGS sig-
nificantly predicted 152 out of 215 lipid species (analysis of variance 
(ANOVA); P < 0.05; 145 out of 215 after Benjamini–Hochberg cor-
rection) and checked that selected lipid GWAS results within the  
AAB/QTAB European cohort were comparable to the BHS GWAS results 
(Supplementary Fig. 11 and Methods).

Next, we dissected the relative contributions of common genetic 
variation (lipid PGS) and demographic, batch, dietary and neurodevel-
opmental factors to lipid variance. For neurodevelopment-associated 
lipids, up to 13% of variance could be explained by lipid PGS, demo-
graphic variables and the neurodevelopmental trait of interest (Fig. 4a  

Fig. 3 | Lipid pathways and annotations associated with ASD, IQ/DQ  
and sleep disturbances. a, Tile plot showing trait-associated lipid species  
from LWAS (x axis) and higher-level annotations (y axis). The values on  
the color scale bar show −log10[P] multiplied by the test statistic sign.  
15-MHDA, 15-methylhexadecanoic acid; CE, cholesteryl ester; dimethyl-CE, 
dimethylcholesteryl ester; FFA, free fatty acid; LPC, lysophosphatidylcholine; 
LPC(O), lysoalkylphosphatidylcholine; LPC(P), lysoalkenylphosphatidylcholine; 
PC, phosphatidylcholine; PC(O), alkylphosphatidylcholine; PC(P), 
alkenylphosphatidylcholine; PE(P), alkenylphosphatidylethanolamine;  
PI, phosphatidylinositol. b, LSEA results for ASD diagnosis, IQ/DQ and sleep 
disturbances (CSHQ total score). FDR-significant results (q < 0.05) are shown. 
The rows show lipid annotations. The bar lengths represent −log10[P value for the 
LSEA] multiplied by the test statistic sign. Asterisks represent annotations that 

were also significant by LWAS. Linoleic acid-containing lipid species map to fatty 
acid 18:2 and omega-6 features. Arachidonic acid-containing lipid species map to 
fatty acid 20:4 and omega-6 features. DHA-containing lipid species map to fatty 
acid 22:6 and omega-3 features. LC-PUFAs (including linoleic acid, arachidonic 
acid and DHA) correspond to lipids with both long fatty acid chains (18 carbons 
or more) and omega-3 or omega-6 features. At the feature hierarchical level, 
there were sometimes multiple annotations relating to a single feature (for 
example, feature–omega-6 as well as subclass–plasmalogen | feature–omega-6), 
so the values in b correspond to the most significant annotation. We have 
ensured that these match the LWAS hits (Supplementary Tables 11–13). AC-OH, 
hydroxylated acylcarnitine; LPE(P), alkenyllysophosphatidylethanolamine; 
PE(O), alkylphosphatidylethanolamine; SM, sphingomyelin.
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and Extended Data Fig. 7). Batch variables generally made little  
contribution (Supplementary Figs. 12–14). Adding dietary princi-
pal components explained significant variance in lipid concentra-
tions with a total R2 of up to 25% for the neurodevelopmental traits  
(Supplementary Figs. 12 and 15).

Environmental associations of the neurodevelopmental 
lipidome
We investigated the potential contributions of environmental  
variables to neurodevelopment-associated lipidome profiles. To 
capture a trait’s lipidome profile in a single variable, we performed 
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principal component analysis (PCA) on the significant LWAS associations  
(species level) and took PC1. We verified that each trait’s lipidome pro-
file explained the majority (50–70%) of variance in the focal trait’s LWAS 
associations (Extended Data Fig. 8), that they primarily captured the 
intended variable (Supplementary Figs. 16–18), that the direction of 
effect of the loadings matched the LWAS effect direction and that, as 
expected, the lipidome profiles were strongly associated with their 
respective focal traits (for ASD, b = −0.83 (s.e. = 0.18; P = 8.7 × 10−6;  
n = 694); for IQ/DQ, b = 0.02 (s.e. = 0.003; P = 1.1 × 10−9; n = 642); for  
sleep disturbances, b = −0.073 (s.e. = 0.014; P = 3.2 × 10−7; n = 607)).

For ASD, we identified significant three-way interactions between 
the ASD lipidome profile, ASD diagnosis and reduced meat consump-
tion (captured by dietary PC3), suggesting that the ASD lipidome 
profile could be partially attributed to reduced meat intake among 
the ASD group (linear model (ASD lipidome profile ~ dietary PC3 + ASD  
diagnosis + covariates): b = −0.34 (s.e. = 0.12; P = 4.3 × 10−3; n = 261) for  

dietary PC3 and b = 0.88 (s.e. = 0.32; P = 7.0 × 10−3) for ASD diagnosis) 
(Fig. 5a,k). These findings are consistent with the LWAS annotations of 
reduced linoleic acid, for which meat is a primary source27. Variance in 
the ASD lipidome profile was also associated with stool microbiome 
features (genetic potential for decreased gut microbial acetate produc-
tion and increased pyrimidine ribonucleoside salvage) (Fig. 5d,g,k,  
Supplementary Fig. 19 and Supplementary Tables 19 and 20). Medica-
tions made limited contributions to the ASD lipidome profile.

The IQ/DQ lipidome profile was independently and more strongly 
associated with a plant-based, healthy diet (dietary PC1) than IQ/DQ  
itself (linear model (IQ/DQ lipidome profile ~ dietary PC1 + IQ/DQ +  
covariates): b = 0.42 (s.e. = 0.10; P = 1.7 × 10−5; n = 235) for dietary  
PC1 and b = 1.4 × 10−2 (s.e. = 0.6 × 10−2; P = 2.8 × 10−2; n = 235) for IQ/DQ).  
There was no direct association between the dietary and IQ/DQ  
measures (linear model (IQ/DQ ~ dietary PC1 + covariates): b = 1.66  
(s.e. = 0.98; P = 0.09; n = 235) for dietary PC1), suggesting convergent 
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Fig. 4 | Genetic contributions of LWAS hits for ASD, IQ/DQ and sleep 
disturbances. a, Plots showing chromosomes with genetic signals for the lipid 
species associated with ASD, IQ/DQ and sleep disturbances. b, Effect sizes (b) of 
SNPs in the chromosome 11 FADS gene region (used for the HEIDI test) from  
GWAS summary statistics for two lipid–neurodevelopmental trait pairs:  
IQ–PC(O-18:0/20:4) and sleep duration–PE(P-19:0/20:4)(b). Red indicates  
the SMR instrument—the SNP with the most significant association with both 
the lipid and neurodevelopmental trait in AAB/QTAB (Extended Data Fig. 6). 
The gold dashed line represents the estimate from SMR of the effect of the 
lipid on the neurodevelopmental trait at the instrumental SNP (bxy), rather 

than the regression line. c, Plot of the chromosome 11 FADS gene region (top), 
with Manhattan plots showing colocalization of the genetic signal from lipid 
(red plots) and neurodevelopmental (blue plots) trait GWASs. d, Bar plot of the 
variance (R2) explained in the ANOVA model with terms ordered as: lipid  
species ~ PGS + demographic information (age, age2 and sex) + trait (ASD,  
IQ/DQ or CSHQ total score). The displayed lipids are limited to those with 
summary statistics in the BHS lipid GWAS, which were used to generate the PGSs. 
The sleep-associated lipid PC(P-18:0/22:6) has R2

PGS = 0 as all participants had 
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and independent associations with the IQ /DQ lipidome profile  
(Fig. 5b,l). The IQ/DQ lipidome profile was associated with reduced 
stool microbiome genetic potential for glycerol degradation to 
butanol, as well as increased Bacteroides_B massiliensis and decreased 
CAG-103 sp000432375 (Fig. 5e,h,l, Supplementary Fig. 19 and Supple-
mentary Tables 21 and 22). While IQ/DQ was associated with multiple 
medications, only ADHD/behavioral medications were robustly asso-
ciated with a lower IQ/DQ lipidome profile, after conditioning on the 
measured IQ/DQ score (ANOVA (IQ/DQ lipidome ~ IQ/DQ + medica-
tions): R2 = 1.4% and P = 2.2 × 10−3 for ADHD/behavioral medications).

The sleep disturbances lipidome profile had the most complex 
interactions, being associated with decreased intake of a plant-based 
healthy diet (linear model (sleep disturbances lipidome pro-
file ~ dietary PC1 + sleep problems + covariates): b = −0.91 (s.e. = 0.15; 
P = 1.4 × 10−9; n = 261) for dietary PC1) and meat (linear model (sleep  
disturbances lipidome profile ~ dietary PC3 + sleep problems + covari-
ates): b = −0.46 (s.e. = 0.17; P = 8.3 × 10−3; n = 261) for dietary PC3) (Fig.  
5c,m). The effects of sleep disturbances and diet on the sleep distur-
bances lipidome profile were primarily independent ( joint model: 
b = 0.08 (s.e. = 0.02; P = 1.1 × 10−3; n = 201) for sleep disturbances,  
b = −0.90 (s.e. = 0.17; P = 4.4 × 10−7; n = 201) for dietary PC1 and b = −0.49  
(s.e. = 0.18; P = 6.6 × 10−3; n = 201) for dietary PC3) (Fig. 5c,m). The sleep  
disturbances lipidome profile was associated with increased stool 
microbiome metabolic potential for pyridoxal 5′-phosphate salvage 
and nicotinamide adenine dinucleotide (NAD) salvage and decreased 
metabolic potential for Clostridium acetobutylicum acidogenic fermen-
tation, pyruvate fermentation to butanoate, S-adenosyl-l-methionine 
biosynthesis, UDP-α-d-galacturonate biosynthesis and lipoate bio-
synthesis and incorporation, in addition to positive associations with 
Bifidobacterium MIC 9908 and Bifidobacterium catenulatum (Fig. 5f,i, 
Supplementary Fig. 19 and Supplementary Tables 23 and 24). There 
were overlapping associated microbiome features between the sleep 
disturbances lipidome profile and both dietary PC1 and dietary PC3 
(Fig. 5f,i and Supplementary Figs. 19 and 20). ADHD/behavioral medica-
tion and fish oil/DHA supplements were negatively associated with the 
sleep disturbances lipidome profile and explained significant variance 
independently of the measured sleep disturbances score (ANOVA (sleep 
disturbances lipidome ~ sleep disturbances + medications): R2 = 1.7% 
and P = 9.5 × 10−4 for ADHD/behavioral medication and R2 = 3.1% and 
P = 7.0 × 10−6 for fish oil/DHA supplements). The positive association of 
ADHD medications with sleep disturbances (here and in other studies28) 
is expected given that these medications are stimulants that interfere 
with sleep, whereas fish oil supplementation may improve sleep29 and 
can also lower triglycerides30.

To compare the relative strengths of relationships between trait 
lipid profiles and associated variables, we performed ANOVA (Fig. 5j), 

noting that this restricted the dataset to individuals with complete 
data. The neurodevelopmental traits, diet and the microbiome each 
made sizeable contributions to variance in the neurodevelopmental 
lipidome profiles (Fig. 5j). With regard to variance in the observed 
neurodevelopmental traits, the lipidome profile consistently explained 
significant variance, whereas dietary variables (dietary PC3) signifi-
cantly increased variance for ASD diagnosis only, implying a close 
relationship between ASD and dietary differences. Medications overall 
made small contributions to variance in trait lipidome profiles because 
relatively few individuals were taking these medications (n = 19 ADHD/
behavioral and n = 27 fish oil/DHA). In sensitivity analyses conditioning 
all other covariates on clinical lipid levels (Extended Data Fig. 9), the 
primary results persisted.

Interplay between neurodevelopmental traits and the lipidome
We hypothesized that the ASD lipidome may reflect co-occurring con-
ditions better than ASD itself (given the strong association between 
diet and the ASD lipidome in this cohort) and investigated sleep as a 
mediating factor. The relationship between ASD and the ASD lipidome 
profile was attenuated when adjusting for sleep disturbances and demo-
graphic and batch covariates (R2 = 1.4% (P = 7.7 × 10−2) to R2 = 0.96%  
(P = 2.7 × 10−2); Methods). Conversely, for the relationship between 
sleep disturbances and the respective lipidome profile, conditioning 
on ASD diagnosis and covariates had little effect on the primary asso-
ciation (R2 = 3.3% (P = 3.6 × 10−5) to R2 = 3.1% (P = 6.0 × 10−5); Methods).

Next, we investigated whether omics data relate to adaptive func-
tion for children with autism. We used the VABS-II composite score 
(only collected within the ASD group), which is strongly correlated 
with increased IQ/DQ and decreased sleep disturbances (univariate 
linear models: b = 0.36 (s.e. = 0.03; P = 3.5 × 10−33; n = 331) for IQ/DQ  
and b = −0.32 (s.e. = 0.07; P = 1.3 × 10−5; n = 356) for sleep disturbances). 
We found that the sleep disturbances lipidome profile explained 
significant variance in adaptive function independent of the meas-
ured sleep disturbances score (R2 = 3.2% (P = 3.2 × 10−2) to R2 = 1.7%  
(P = 1.7 × 10−2)). In contrast, the relationship between adaptive func-
tion and the IQ/DQ lipidome profile was dependent on IQ/DQ score 
(R2 = 2.3% (P = 2.9 × 10−3) to R2 = 1.3 × 10−5 (P = 0.94)).

Lipidome outliers
Finally, we investigated group differences in variance for measured 
lipids, reasoning that centrality (for example, mean) measures may not 
capture the intrinsic heterogeneity of ASD (for example, only a subset 
of the ASD group may have altered lipid profiles). Furthermore, lipid 
levels have a relatively oligogenic genetic architecture, which could 
overlap ASD-associated genetic regions (some of which include large 
regions of structural genetic variation).

Fig. 5 | Relationships between neurodevelopmental traits, their lipidome 
profiles (LWAS hit PC1s) and dietary and microbiome variables.  
a–c, Relationships between ASD diagnosis (a), IQ/DQ (b) sleep disturbances  
(c), and their respective lipidome profiles and dietary profiles. The ASD and sleep 
disturbances lipidome profiles were multiplied by −1 to align the direction of 
effect. For the ASD plots (a), the right half of the second column corresponds to 
the ASD group (left half corresponds to the non-ASD group), as does the bottom 
half of the second row (top half of the second row corresponds to the non-ASD 
group). Upper triangle of a–c provides Pearson’s correlation coefficients and 
asterisks denote significance thresholds: **P <0.01, ***P <0.001. Box and whisker 
plots denote quartiles. d–i, Differentially abundant microbiome species (d–f) 
and MetaCyc pathways (g–i) for the neurodevelopmental lipidome profiles 
ASD LWAS PC1 (d,g), IQ/DQ LWAS PC1 (e,h) and sleep disturbances LWAS PC1 
(f,i) (covariates: age, age2, sex, batch, injection order and dietary PC1–PC3). The 
microbiome analysis sample size was n = 188. The x-axis (CLR mean difference) 
indicates the effect size on the centered log-ratio transformed scale, whereas 
y-axis (W statistic) indicates the degree of statistical significance, whereby 
W statistic > 0.7 indicates robust significance, whereas > 0.6 corresponds to 

nominal significance. j, Dissection of variance in the neurodevelopmental 
lipidome profiles. The results are from ANOVA models of the trait-specific  
lipidome profile ~ age + age2 + sex + BMI + batch (batch, injection order and  
storage duration) + neurodevelopmental trait + significantly associated  
medications (meds) + significantly associated dietary principal components  
(a–c) + significant microbiome features (d–i). k–m, Proposed models of  
the relationships between neurodevelopmental lipidome profiles (for ASD 
diagnosis (k), IQ/DQ (l), sleep problems (m)), neurodevelopmental traits, diet, 
microbiome, medications and adaptive function. The dashed line indicates that 
the lipidome association is not independent (that is, the association between 
adaptive function and the IQ/DQ lipidome profile can be explained by  
IQ/DQ lipidome associations). Bidirectional arrows indicate either bidirectional 
relationships or insufficient evidence (previous or otherwise) to suggest a 
direction of causality. The trait-specific lipidome profiles were the variables of 
interest, so analyses were not exhaustively performed between other variable 
pairs. The black arrows represent positive associations and the red arrows 
represent negative associations.
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First, we investigated whether the ASD group had greater variance 
in lipids versus the combined SIB plus UNR group. After regressing out 
covariates (age, age2, sex, batch, injection order and storage duration) 
and excluding storage duration outliers, we found that the sphingomyelin 

SM(34:3) was significantly more variable in the ASD group after multiple 
testing correction (Supplementary Table 25). The other significantly 
variable lipids appeared to be driven by sample degradation, despite 
adjustment for sample storage duration (Extended Data Fig. 10).
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Next, we investigated three partially overlapping groups for which 
there was a priori expectation of outlying lipid levels: (1) statistical outli-
ers (n = 7); (2) visibly fatty plasma samples (n = 12); and (3) individuals 
with copy number variants (CNVs; either clinically significant or large, 
rare CNVs, both called using genotyping array data31; n = 26) (Fig. 6a,b).

Four of the seven statistical outlier samples had biological expla-
nations. Three were among the n = 12 visibly fatty plasma samples 
and had the three highest concentrations of total deoxyceramide and 
triglycerides and three of the four highest total diacylglycerol levels 
(Fig. 6b). Two of these three outliers with fatty plasma were siblings, 
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Fig. 6 | Outlier analysis. a, Venn diagram showing the overlap between three 
groups of outliers: visibly fatty samples (total n = 12), statistical outliers (total 
n = 7) and individuals with large, rare CNVs (total n = 26). b, Violin plots showing 
the distribution of lipid class concentrations by group. Coloured points 
indicate where outliers sit within the overall distribution and denote the outlier 
category. AC, acylcarnitine; BA, bile acid; Cer, ceramide; DE, dehydrocholesteryl 
ester; deDE, dehydrodesmosterol ester; DG, diacylglycerol; dhCer, 
dihydroceramide; GM3, GM3 ganglioside; HexCer, hexosylceramide; Hex2Cer, 
dihexosylceramide; Hex3Cer, trihexosylceramide; methyl-CE, methylcholesteryl 

ester; methyl-DE, methyldehydrocholesteryl ester; PA, phosphatidic acid; PE, 
phosphatidylethanolamine; PG, phosphatidylglycerol; S1P sphingosine-1-
phosphate; SHexCer, sulfatide; ox., oxidized. c, Locus plot showing the CNV 
deletion region for the individual who was in both the CNV and statistical outlier 
groups. Blue indicates the LDLR gene, which is well known for its association 
with lipid traits. Red indicates the SMARCA4 and ELAVL3 genes, which are high-
confidence ASD genes in the Simons Foundation Autism Research Initiative 
database.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | April 2023 | 936–949 946

Article https://doi.org/10.1038/s41591-023-02271-1

only one of whom reported the current use of methylphenidate, sug-
gesting a shared effect (genetic or environmental) that is not explained 
by this medication. Statistical outliers were enriched for samples that 
were also fatty (OR = 26.5; 95% CI = 4.0–135.4; P = 6.4 × 10−4; Fisher’s  
exact test comparing three out of 12 statistical outliers that were fatty  
with seven out of 758 statistical outliers in the total sample).

The fourth outlier sample belonged to a participant with a 
chr19p13.2 CNV deletion (chr19:10609319–12464435; Fig. 6c) encom-
passing the low-density lipoprotein receptor (LDLR) gene that has key 
roles in cholesterol regulation. This CNV also spans ASD-associated 
genes in the Simons Foundation Autism Research Initiative’s SFARI 
Gene database32, including ELAVL3 and SMARCA4. Rare genetic vari-
ation in LDLR causes familial hypercholesterolemia and common 
LDLR variants are associated with high cholesterol24. Furthermore, 
others have found a five-exon cluster of the LDLR gene that carries 
ASD-segregating variation9. This participant’s lipidome was consist-
ent with high levels of LDL particles, with the highest plasma con-
centrations of cholesteryl ester and dehydrocholesterol ester, and 
was among the top five highest concentrations for free cholesterol. 
This was accompanied by high concentrations of a number of sphin-
golipid classes (dihydroceramides, di-hexosylceramides, sulfatide, 
ceramide(d), GM3 ganglioside and sphingomyelin) that are typically 
enriched in LDL particles, as well as a number of phospholipid classes 
(phosphatidylcholine, lysophosphatidylcholine, alkyl- phosphatidy-
lethanolamine and phosphatidylinositol) (Fig. 6b).

Of the n = 12 visibly fatty plasma samples, n = 7 had among the ten 
highest concentrations of diacylglycerols and n = 5 were among the 
ten highest for triacylglycerols and alkyldiacylglycerols, suggesting 
that these lipid classes may be related to fatty plasma appearance. It is 
possible that dietary differences or a fatty meal preceding sample col-
lection could explain lipidome differences; however, we were unable 
to test this as only two out of 12 individuals had matching dietary data.

Discussion
In a large neurodevelopmental lipidomics study, we leveraged exten-
sive phenotypic and omics data to dissect genetic, environmental and 
behavioral influences on the neurodevelopmental lipidome. The pedi-
atric plasma lipidome was associated with neurodevelopmental traits, 
including ASD diagnosis, IQ/DQ and sleep disturbances, although 
there were still stronger associations with age, puberty stage, sex, BMI 
and dietary traits. ASD diagnosis was modestly associated with lower 
cholesterol levels, whereas there was no association of IQ/DQ and sleep 
disturbances with either cholesterol or triglyceride levels. Neurode-
velopmental traits were associated with LC-PUFA-containing lipids: 
specifically, ASD with decreased linoleic acid, IQ/DQ with increased 
arachidonic acid and sleep disturbances with decreased DHA and ara-
chidonic acid. Furthermore, shared genetic signal within the FADS gene 
cluster33 suggested that arachidonic acid metabolism (or even omega-6 
fatty acids in general) may have a pleiotropic or mediating relationship 
with sleep disturbances. As the genetic signal for DHA was weaker, we 
did not perform SMR and thus do not rule out a causal effect of DHA 
on sleep. While previous observational34–37 and small randomized con-
trolled trials38–41 have investigated omega-3 or DHA supplementation 
in ASD, our results suggest that sleep disturbances could be the more 
relevant target29. We have focused our discussion on LC-PUFAs because 
they are interpretable; however, the species-level associations that 
we report remain largely uncharacterized and warrant further study.

We investigated the relationship between neurodevelopmen-
tal lipidome profiles and environmental factors (including diet, the 
gut microbiome and medication). Whereas the ASD lipidome profile 
appeared to be (at least in part) a consequence of diet, lipidome profiles 
for sleep disturbances and low IQ/DQ converged with unhealthy dietary 
patterns (independent of the IQ/DQ and sleep phenotypes) and with a 
potential mediating role for the microbiome. These findings suggest 
potential mechanisms with links between cardiometabolic disease 

and both sleep disturbances42 and ASD diagnosis10. While medica-
tions were extensively associated with these neurodevelopmental 
traits, only ADHD/behavioral medications and fish oil/DHA supple-
ments affected neurodevelopmental lipidome profiles beyond that 
explained by the trait itself. The sleep disturbances lipidome profile 
was nominally associated with poorer adaptive function independent 
of the severity of sleep disturbances. The microbiome analysis identi-
fied an association between sleep disturbances and higher microbiome 
potential for NAD salvage, which is notable given that NAD+ levels have 
been linked to circadian cycle control43–46. There was also a decrease in 
microbiome potential for l-methionine biosynthesis and its derivative 
S-adenosyl-l-methionine. The latter is involved in the synthesis of neu-
rotransmitters, including dopamine, serotonin and noradrenaline, and 
is being investigated as a potential therapy for depression47,48 (whose 
diagnostic criteria includes sleep disturbances).

Our findings have potential clinical implications. There may be a 
role for dietary LC-PUFAs or omega-3 or -6 supplementation in sleep 
disturbances. We also highlight the imperative to screen for and man-
age sleep disturbances among children with neurodevelopmental 
differences49, having found convergence in the sleep disturbances 
lipidome with dietary habits that may predispose to long-term health 
problems, as well as possible associations with poorer adaptive func-
tion. Furthermore, a participant diagnosed with ASD with a large CNV 
deletion in the chr19p13.2 region (which includes the LDLR gene and 
multiple high-confidence ASD genes) had a dramatically altered lipid 
profile reflecting higher levels of LDL particles.

Our results also have implications for ASD biomarker research. We 
advocate for biobanking, deep phenotyping and careful consideration 
of covariates to make biological inference about intermediate traits 
such as the lipidome, where differences reflect genetic, environmental, 
behavioral and technical effects. As demonstrated here and in previous 
work50, the omics signal for ASD diagnosis is weak compared with other 
factors, such as age, genetics, diet (which confounded ASD lipidome 
associations in this study) and co-occurring conditions (for example, 
sleep mediated some of the ASD lipidome association). Overall, omics 
studies in children with a pre-existing diagnosis are better suited to 
interrogating biological associations of co-occurring conditions and 
quality of life, which are of direct interest to autistic people, rather than 
the current focus on diagnostic biomarkers.

There are some limitations to this work. The sample collection 
protocol did not include fasting (and indeed this would be difficult to 
achieve, particularly within this population). We attempted to over-
come this by performing sensitivity analyses with cosine-transformed 
sample collection times, to account for cyclical patterns in lipid con-
centrations, and did not find major differences in the results. Clinical 
lipids were not directly measured and were instead inferred using 
lipidomics measures. We used conservative methods (ANCOM version 
2.1), multiple testing correction thresholds (see Methods) and covari-
ate inclusion (including sex and storage duration, although there was 
some confounding with ASD diagnosis) throughout this analysis, which 
may have induced false negatives. The sleep disturbances and IQ/DQ 
findings are most accurately interpreted in an ASD-specific context 
(where sleep disorders commonly co-occur), and it is unclear how 
our results translate to the broader pediatric population. Our more 
complex analyses drawing on multiple phenotypic data domains relied 
on smaller datasets due to missingness, to the detriment of statistical 
power. Furthermore, our external validation attempts were limited by 
the absence of other large ASD lipidomics datasets. We instead took 
a genetic replication approach using SMR applied to external GWAS 
summary statistics, but this approach is imperfect as the lipidome 
GWAS (BHS) data were derived from an adult sample, and lipid regula-
tion may differ in pediatric samples. The SMR results are also subject 
to the assumptions of Mendelian randomization. Additionally, our 
other validation approach—to predict lipidome levels in the external 
ABCD dataset—was underpowered as PGSs or individual-level TWASs 
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explain only a fraction of heritable variance in a lipid trait, which in 
turn can explain only a fraction of variance in a neurodevelopmental 
trait. These limitations will probably only be overcome with larger 
and better-matched datasets and it is unlikely that methodological 
improvements in estimating TWAS weights are the key limiting factor.

Future, larger studies with longitudinal designs and recruitment 
from the broader population will be important to establish a funda-
mental understanding of the pediatric and neurodevelopmental lipi-
dome. Further work is required to replicate the association between 
reduced LC-PUFA metabolism (that is, arachidonic acid and DHA) and 
sleep disturbances, to determine whether this statistical result reflects 
causality, and thus whether it is clinically relevant. Longitudinal studies 
are required to confirm relationships between childhood sleep distur-
bances, pediatric lipidome profiles and long-term cardiometabolic 
health, both in autistic people and the general population.

In conclusion, in this detailed analysis of a deeply phenotyped 
dataset, we highlight complex relationships between neurodevelop-
ment, physical health, genetics (the FADS gene cluster and LDLR) and 
the environment (diet, the microbiome and medications). Our results 
point toward metabolic convergence for sleep disturbances and poor 
diet in autistic children, with implications for long-term wellbeing and 
quality of life.
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Methods
Ethics approvals
All families provided informed consent to be included in this study. 
For the AAB, ethics approvals were as follows. At the New South 
Wales recruitment site, ethics approval was through the Sydney Chil-
dren’s Hospital Network Human Research Ethics Committee (HREC) 
(approval number HREC/14/SCHN/269). At the Queensland recruit-
ment sites, ethics approval was through the Mater Health Services 
HREC (approval number HREC/14/MHS/212) and The University of 
Queensland (approval number 2014001079). At the Victoria recruit-
ment site, ethics approval was through La Trobe University (approval 
number HEC16/104). At the Western Australia site, ethics approval was 
through the Princess Margaret Hospital for Children (approval number 
2014029EP) and The University of Western Australia (approval num-
ber RA/4/1/8184). For the QTAB Project, ethics approval was through 
the Children’s Health Queensland HREC (approval number HREC/16/
QRCH/270) and The University of Queensland (approval number 
2016001784/ HREC/16/QRCH/270).

Statistics and reproducibility
No method was used to predetermine sample size. As a data-driven 
project, our aim was instead to maximize the sample size within budget 
constraints. Randomization was performed within the lipidomics 
data acquisition process to mitigate batch effects. As a data-driven, 
exploratory project, there were no interventions to randomize to. The 
investigators were not blinded to allocation during the clinical and 
survey assessment relating to phenotypic data for the AAB. However, 
investigators were blinded in the lipidomics sample preparation and 
data acquisition process. An in-depth explanation of sample exclusion 
by analysis is provided in the ‘Study participants’ and ‘Approach to 
outliers’ sections below.

Data
Study participants. This study included a total of 765 participants 
(predominantly recruited from the AAB, but with a smaller number 
from the QTAB Project): 485 with a diagnosis of ASD, 160 undiagnosed 
siblings without recorded ASD diagnosis and 120 unrelated undiag-
nosed children (96 from the AAB and 24 from QTAB) (Fig. 1).

Seven statistical outlier samples (six ASD and one UNR) were iden-
tified that met two criteria: (1) exceeding the 99th percentile of an 
extremeness score, calculated for each individual and representing 
the number of z-transformed metabolites that were >3 standard devia-
tions from the mean; and (2) a distance to the origin in PCA in the 99th 
percentile of the distribution. These outlier samples were excluded 
from all analyses except the outlier analysis (see the section ‘Lipidome 
outliers’), as four (potentially) had biological rather than technical 
explanations (for example, none were observed to have batch process-
ing hemolysis) (see the section ‘Approach to outliers’). We also excluded 
one participant with Smith–Magenis syndrome within the UNR group. 
Overall, in the main analyses (that is, excluding the ‘Lipidome outliers’ 
section), there were a total of 758 participants (479 ASD, 160 SIB and 
119 UNR). Supplementary Table 1 summarizes the data in this sample 
across the three groups.

We also identified a subset of n = 64 participants in the ASD group 
for whom the samples had been stored for a longer period of time 
than other samples (≥2,500 days; storage outliers; Supplementary  
Figs. 1 and 2). Preliminary analyses suggested an important relationship 
between storage duration and lipid profiles (specifically, an increase in 
oxidized species). Since these storage outliers all had ASD diagnoses, 
they were excluded from analyses of ASD diagnosis (leaving n = 694 
participants). However, they were retained for analyses of other traits 
(for example, age, IQ/DQ and CSHQ total score) after sensitivity analy-
ses confirmed that they did not significantly affect conclusions. We 
note that these older samples tended to have less phenotypic data 
collected (n = 17 with IQ/DQ, n = 59 with CSHQ total score) and none 

had provided dietary data, so they were already excluded from many 
analyses for these reasons.

A total of n = 12 participants had plasma samples that were visibly 
fatty. These were included in all analyses but were also examined as a 
group of interest for whom there was an a priori expectation of a dif-
ferent lipid profile.

Lipidomics. Lipidomics was performed as described previously51 with 
modifications. Analysis of plasma extracts was performed on an Agilent 
6495C Triple Quadrupole mass spectrometer with an Agilent 1290 
series high-performance liquid chromatography system and a single 
ZORBAX Eclipse Plus C18 column (2.1 × 100 mm; 1.8 µm; Agilent) with 
the thermostat set at 45 °C. Samples were randomized to processing 
batch and injection order.

Mass spectrometry analysis was performed in both positive 
and negative ion mode with dynamic scheduled multiple reaction 
monitoring. The running solvent consisted of solvent A (50% H2O, 
30% acetonitrile and 20% isopropanol (vol/vol/vol) containing 10 mM 
ammonium formate and 5 µM medronic acid) and solvent B (1% H2O, 
9% acetonitrile and 90% isopropanol (vol/vol/vol) containing 10 mM 
ammonium formate).

The following mass spectrometer conditions were used: gas tem-
perature = 150 °C; gas flow rate = 17 l min−1; nebulizer = 20 psi; sheath  
gas temperature = 200 °C; capillary voltage = 3,500 V; and sheath gas  
flow = 10 l min−1. Isolation widths for Q1 and Q3 were set to unit resolu-
tion (0.7 atomic mass units).

For the chromatography, we used a stepped linear gradient with 
a 16 min cycle time per sample and a 1 µl sample injection. The sample 
analytical gradient started with a flow rate of 0.4 ml min−1 at 15% B and 
increased to 50% B over 2.5 min, then to 57% over 0.1 min, 70% over 
6.4 min, 93% over 0.1 min and 96% over 1.9 min, and then ramped to 
100% over 0.1 min. The solvent was then held at 100% B for 0.9 min 
(total = 12.0 min). Equilibration was started as follows. The solvent 
was decreased from 100% B to 15% B over 0.2 min and held for a final 
run time of 16 min. We included three quality control sample types: 
pooled quality control, technical quality control and NIST 1950 SRM 
samples. Pooled quality control samples were included at a rate of 1:20 
per sample during the lipid extraction process. These provided an indi-
cator for variance across both the extraction and mass spectrometry 
analysis. The technical quality control samples were a pre-extracted 
set of pooled samples identical in composition. These were injected 
from an independent vial at a rate of 1:20 injections to measure varia-
tion across the mass spectrometry run. NIST 1950 SRM is a commonly 
used standardized reference material for aligning the lipidomic data 
between different studies and was injected at a rate of 1 per 40 sam-
ples. As an indicator of sample variability, we calculated percentage 
coefficients of variation for the three quality control sample types: 
technical quality control (6.7%), pooled quality control (7.6%) and the 
standardized NIST 1950 SRM (7.4%). These quality control types have 
been described previously51.

MassHunter Quantitative B08 was used to quantify lipid concentra-
tions from mass spectrometry data. Relative quantification of lipid spe-
cies was determined by comparison with the relevant internal standard. 
Lipid class total concentrations were calculated as the sum of individual 
lipid species concentrations, except in the case of classes triglycerides 
(TG) and akyldiacylglycerols (TG(O)), for which we measured both 
neutral loss and single ion monitoring (SIM) peaks and subsequently 
used the more numerous but less structurally resolved SIM species 
concentrations for summation purposes when examining lipid totals.

Blood samples are difficult to collect in children, and specifically 
those on the autism spectrum. To improve recruitment, a standard-
ized protocol for collection time of day was not enforced, nor were 
participants required to fast before sample donation.

Overall, the lipidomics assay panel quantified 793 species (out 
of 825 in the full Baker Institute panel at the time of data acquisition) 
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grouped into 41 lipid classes. The lipid species are the most granular 
level of lipid ontology and make up the lipid classes. There are also 
additional categories used in this ontology, including subclasses, fea-
tures and domains, which are not strictly collapsed within each other. 
We also inferred clinical lipid levels with total cholesterol, calculated 
as the sum of the free cholesterol lipid species and the cholesteryl ester 
lipid class. Triglyceride levels were approximated using the triglyceride 
(SIM) lipid class measure. Note that the lipidome includes highly cor-
related data at the species and class hierarchies (Extended Data Fig. 1).

We excluded n = 10 lipid species for which plate processing batch 
and injection order for the generation of lipid profiles explained >10% 
of the variance in lipid concentration (in a linear model of lipid concen-
tration regressed against these confounders). We also confirmed that 
these excluded lipids had negligible association with ASD diagnosis 
in a model of lipid concentration ~ ASD diagnosis (all explaining ≤1% 
of variance). Hence, after quality control, 783 lipid species remained.

Overview of metadata and covariates. We focused on three neu-
rodevelopmental traits: (1) ASD diagnosis; (2) IQ/DQ composite score 
(which we obtained by aggregating composite scores from the fourth 
edition of the Wechsler Intelligence Scale for Children52 (for older 
children in the AAB), the age-corrected NIH Toolbox Cognitive Func-
tion composite score (which can be interpreted similarly to a full-scale 
score53; for the QTAB study) and the nonverbal developmental quotient 
score from the Mullen Scales of Early Learning54 (for younger children 
in the AAB) as a proxy for cognitive ability and developmental delay); 
and (3) sleep disturbances, measured using the CSHQ55 total sleep 
disturbance score (which captures sleep disturbances across eight 
subdomains: bedtime resistance, sleep onset delay, sleep duration, 
sleep anxiety, night waking, parasomnias, sleep-disordered breathing 
and daytime sleepiness). As benchmarking traits and positive controls, 
we also performed analyses on age, Tanner score (genital; representing 
pubertal stage) and BMI z score (calculated using the R zscorer pack-
age56, which draws on the World Health Organization growth chart 
references for age and sex).

Lipidome measures are molecular traits with both genetic and 
environmental influences, so lipidomic analysis requires careful con-
sideration of covariates. For the neurodevelopmental traits, we gener-
ally considered demographic (age, age2 and sex) and batch variables 
(lipidomics batch and injection order and sample storage duration) and 
collection time (with cosine transformation to model periodicity) to be 
noise covariates (explanatory variables) that could affect lipid levels 
and were therefore adjusted for in most analyses. For the traits age and 
Tanner score (genital), we did not include age and age2 covariates. For 
BMI (z score), we did not include age, age2 and sex covariates, as these 
are accounted for within the population-normed z score.

We also examined the interplay of lipidomics data with PGSs for 
lipid, dietary and microbiome data as explanatory variables of interest. 
These datasets are described in more detail below.

PGSs. We obtained summary statistics for genome-wide-significant 
SNPs from a GWAS of n = 490 overlapping lipid traits investigated in the 
BHS24 (one GWAS per lipid species), which investigated a near-identical 
plasma lipid panel from the Baker Heart and Diabetes Institute Metabo-
lomics Group. Briefly, their study identified 733 genomic regions with 
genome-wide-significant evidence (P ≤ 5 × 10−8) for association with 
lipid levels. Given the sample size of 6,057 individuals, this neces-
sarily reflects that many associations had a large effect size. We used 
the genome-wide-significant loci to construct PGSs for n = 490 lipid 
traits. For each lipid species trait, we performed linkage disequilibrium 
clumping with default settings (variants within a 250 kilobase distance 
with R2 ≥ 0.10) to identify an independent set of SNPs, using the AAB/
QTAB imputed genotypes as a linkage disequilibrium reference. With 
this set of SNPs, we generated PGSs with the beta statistics from the 
original GWAS in PLINK57 (version 1.90) using the --score function, 

which multiplies each SNP effect size by an individual’s allele dosage, 
then sums across all independent loci. We focused our analysis on  
European participants, whom we had identified in previous work31, 
so that ancestries were matched to the BHS GWAS dataset, which 
increased the predictive ability. We standardized the PGSs within the 
European dataset (including parents and children who provided SNP 
genotyping samples but did not have lipidomics data measured here) 
to have a mean of 0 and a standard deviation of 1.

Dietary data. Dietary data from the Australian Eating Survey (AES)58,59 
were available for a subset of n = 264 children with lipidomics data, of 
whom 261 remained in the main lipidomics dataset (ASD = 123, SIB = 60 
and UNR = 78) after excluding outliers. We focused on two forms of 
dietary data: (1) AES variables quantifying food groups such as pro-
teins, fats (including subtotals of saturated, polyunsaturated and 
monounsaturated fats), cholesterol and total carbohydrates (includ-
ing a subtotal for sugar); and (2) dietary profiles that were generated 
by performing compositionally aware PCA on data representing the 
percentage of energy from various food groups (that is, vegetables, 
fruit, meat, alternative proteins, grains, dairy, sweet drinks, packed 
snacks, confectionery, baked products, takeaway, condiments and 
fatty meats). To generate dietary profiles (referred to as dietary PCs), 
we applied a centered log-ratio transformation (to account for the 
compositional nature of the data) and then performed PCA. This data 
processing has previously been described within the AAB/QTAB data-
set50, but principal components were regenerated here for the n = 264 
individuals for whom there were both lipidomics and dietary data.

Microbiome data. Stool metagenomics data50 (including both 
taxonomic and functional count data) were available for a subset of 
n = 169 children in the AAB and QTAB cohorts (ASD = 90, SIB = 43 and 
UNR = 39) with matching lipidomics and dietary data (and after exclud-
ing outliers). We used metagenomics data (described previously50) that 
included species and multiple functional annotations; for the latter, 
we focused on the MetaCyc pathways as these had the most easily 
interpretable functional descriptions. In this analysis, we filtered for 
common microbiome features by focusing on microbiome features 
that were present in ten or more individuals in the subset of n = 169 
individuals with overlapping lipidomics data. This resulted in n = 511 
species and n = 764 MetaCyc pathways.

Medication data. Six self- or parent-reported medication/supplement 
categories were considered in this study: ADHD/behavioral, antipsy-
chotics, antidepressants/anxiolytics, antiepileptics, sleep medications 
or supplements and fish oil/DHA supplements.

Batch and technical variables. We considered three batch and techni-
cal variables, reflecting lipidomics data generation (processing batch 
and injection order), storage duration (see the section ‘Approach to 
outliers’) and collection time of day (as many lipids exhibit a diurnal 
pattern and plasma samples were not donated using a fasting protocol; 
Supplementary Fig. 1).

To model periodicity in the collection time of day (n = 657 with 
available data), we applied the following transformation, dividing by 
2,400 for simplicity as the data were provided in 24-h time.

sin (2π × collection time
2,400 )

Sex and gender reporting
This research included n = 500 boys and n = 265 girls. There were more 
males than females in this sample as ASD is diagnosed more frequently 
in boys and the majority of participants were in the ASD group. Our 
analyses focused on biological sex rather than gender (confirmed using 
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previously analyzed genetic data31). We also statistically accounted 
for biological sex by including this as a covariate in all analyses except 
where specified (for example, sensitivity analyses without covariates). 
We performed analyses to investigate the relationships between sex 
and the lipidome (Fig. 2b for variance component analysis; Supple-
mentary Table 10 for LWASs), as well as the relationship between sex 
and neurodevelopmental phenotypes (see the section ‘Overview of 
the dataset’). In Supplementary Table 1, we have provided the sex 
breakdown in each of the ASD, SIB and UNR groups. Individual-level 
data are available by application to the AAB and QTAB (see the ‘Data 
availability’ statement). We did not perform additional sex-stratified 
analyses as this would result in an underpowered analysis while also 
increasing the multiple testing burden.

Approach to outliers
The n = 7 statistical outliers (see the section ‘Study participants’) were 
excluded for all analyses except for those within the ‘Lipidome outliers’ 
section, in which they were specifically interrogated for potential biologi-
cal explanations. The rationale for this was that including these outliers 
when investigating mean group differences (that is, OREML analyses, 
LWASs, PGSs and trait lipidome associations) could bias the results.

For the analyses investigating mean group differences related to 
ASD diagnosis, we excluded n = 64 storage duration outliers, defined 
as samples with a storage duration of ≥2,500 days. This was motivated 
by our observation that the ASD OREML analysis without covariates 
(nocov; Fig. 2b) had a significantly higher R2 value than the analysis 
including demographic and batch variables (covdemo). Closer inspec-
tion of the data revealed that storage time was confounded with ASD 
diagnostic status (Supplementary Fig. 2), which was because the AAB 
initially recruited only children with an ASD diagnosis (who typically 
have co-occurring intellectual disability and sleep disturbances) before 
expanding to include undiagnosed children. Furthermore, we found 
that lipid species and classes that are known to correlate with sample 
degradation (for example, the LPC(O-18:0)/PC(O-18:0/20:4) ratio and 
the oxidized species class) were associated with ASD diagnostic status. 
To ameliorate this confounding effect, we excluded individuals with 
a sample storage of ≥2,500 days in the ASD analyses. However, other 
phenotypes did not suffer the same imbalance in sample storage time 
(Supplementary Fig. 2) and we confirmed in sensitivity analyses that 
excluding these individuals did not significantly affect our conclusions; 
hence, there was no need to exclude storage time outliers in these other 
analyses. We also note that samples from individuals with matched 
dietary data had shorter storage times, so including dietary data as 
covariates effectively excluded the storage time outliers.

To additionally decrease the effect of outliers on our results, we 
performed a rank-based inverse normal transformation of the lipidom-
ics data in the OREML, LWAS and trait lipidome analyses.

Statistical analysis
ASD diagnosis and inferred clinical lipids. To determine whether 
inferred lipidome cholesterol explained significant variance in ASD 
diagnosis beyond the contributions of potential confounding variables, 
we used a likelihood ratio test to compare the following two models:

Model0 ∶ diagnosis ∼ age + age2 + sex + batchlipidomics
+injectionorder

Model 1 ∶ diagnosis ∼ age + age2 + sex + batchlipidomics
+injectionorder + cholesterollipidome

We then performed sensitivity analyses to investigate lifestyle and 
clinical factors that could mediate the relationship between ASD diag-
nosis and lower plasma lipidome cholesterol levels, and their potential 
relationship with other lifestyle and clinical variables.

First, we examined the effect of dietary cholesterol intake among 
n = 261 participants for whom both datasets were available (about 
one-third of the total lipidomics dataset). We generated three logistic 
regression models to assess the conditional associations between 
diagnosis and dietary versus lipidome cholesterol:

Model0 ∶ diagnosis ∼ age + age2 + sex + injectionorder

Model 1 ∶ diagnosis ∼ age + age2 + sex

+injectionorder + cholesteroldietary

Model 2 ∶ diagnosis ∼ age + age2 + sex + injectionorder

+cholesteroldietary + cholesterollipidome

Second, we performed a sensitivity analysis excluding partici-
pants with current or previous self- or parent-reported antipsychotic 
or ADHD/behavioral medication usage (n = 630 included in the  
analysis, for whom self-report was available on n = 468, of whom n = 35 
self-reported antipsychotic usage and n = 99 reported medications 
prescribed for ADHD or challenging behavior). We repeated the likeli-
hood ratio test comparing:

Model0 ∶ diagnosis ∼ age + age2 + sex + injectionorder

Model 1 ∶ diagnosis ∼ age + age2 + sex

+injectionorder + cholesterollipdome

Third, we excluded participants with self- or parent-reported fish 
oil or DHA use and repeated the above likelihood ratio test, leaving 
n = 626.

Variance component analysis (per trait). We estimated the propor-
tion of variance in clinical phenotypes associated with the lipidomics 
data using the OREML method implemented in the OSCA package22 
(version 0.46).

Using a mixed linear model fitting all lipids as random effects:

y = Cβ +Wu + e

where Cβ represents fixed-effect covariates, W represents a matrix of 
standardized lipidome measures for all samples, and the random 
effects u ∼ N (0, Iσ2u)  and e ∼ N (0, Iσ2e)  represent the joint effects of all 
probes on the phenotype and error, respectively. The variance–covari-
ance matrix for y is below, and OREML solves for:

var (y) = WW′
σ2u + Iσ2e = Aoσ2o + Iσ2e

where σ2o represents the variance explained by the omics dataset (the 
value of interest) and Ao is the omic data-based relationship matrix, 
where diagonal elements tend toward 1 and off-diagonal elements 
represent the pairwise correlation of lipid measures between two 
individuals.

We applied a rank-based inverse normal transformation to each 
lipid measure and considered various sets of covariates: no covariates 
(nocov); the covariates age, age2 (except for when age, Tanner stage and 
BMI were taken as the clinical phenotypes), sex (except when the BMI 
z score and sex were taken as the clinical phenotypes), batch, injection 
order and storage duration (covdemog); and, as sensitivity analyses, 
adding either dietary profiles (covdemogdiet) or collection time of day 
(covdemogtime). We considered three categories of dietary variables: 
dietary profiles (dietary PC1–PC3, from PCA of per-food-group per-
centage energy contribution; see above and described previously50); 
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macronutrients (cholesterol, protein, fats, sugars and carbohydrate); 
and dietary diversity (measured using the Shannon index applied to the 
AES food-level data). For the analysis of dietary profiles, we included as 
covariates age, age2, sex, batch, injection order and storage duration. 
For the other dietary variables, we only included the covariates sex, 
batch, injection order and storage duration and instead performed a 
sensitivity analysis including energy intake as a covariate (covdemo-
genergy), reasoning that energy intake is strongly correlated with age 
and is more relevant to dietary data.

For all traits, we excluded the n = 7 participants identified as sta-
tistical outliers in the lipidomics data quality control. For the ASD 
diagnosis analysis, we additionally excluded the n = 64 storage duration 
outliers. We tested the effect of excluding the n = 64 storage outliers 
before and after performing the inverse normal transformation to 
the lipidomics dataset, finding negligible difference. Furthermore, 
excluding these outliers had minimal effects on the results for all traits 
other than ASD diagnosis.

We performed sensitivity analyses accounting for the time of 
sample collection and dietary data, as these variables are likely to be 
important but were only available in a subset of participants. We were 
unable to perform a sensitivity analysis including total cholesterol and 
total triglyceride levels due to collinearity between these covariates.

Our multiple testing strategy is described in the section ‘Multiple 
testing strategy’. Briefly, we took a phenome-wide approach, using  
Bonferroni–Hochberg correction across all 18 traits (neuro/develop-
mental and dietary) in the primary analysis.

LSEA. Lipid set annotations were provided by the Baker Heart and Dia-
betes Institute, corresponding to domain, class, subclass and feature. 
We used these annotations in correlated random variable LSEA (C.G. 
et al, in preparation), which tests for enrichment of pathways across the 
entire lipidome while accounting for the correlation structure between 
features. We first calculated association t-statistics of lipid concentra-
tions against outcomes. Covariate-adjusted lipid correlations were 
calculated by regressing covariates (age, age2, sex, batch, injection 
order and storage duration; for all analyses except those excluding 
age and age2 when age, Tanner stage or BMI (z score) were the traits 
of interest and those excluding sex when BMI (z score) or sex were the 
traits of interest) from the trait of interest against the adjusted lipid 
concentrations and generating a correlation matrix from the residu-
als. For each lipid set, the LSEA statistic was calculated as the sum of 
t-statistics, adjusting for lipid correlation (taking as the denominator 
the square root of the sum of the adjusted correlation matrix specific 
to the lipid set). The P value was approximated as the chi-squared of 
the LSEA statistic squared with one degree of freedom. Under the null 
hypothesis, the squared LSEA statistic follows the F statistic, which 
tends to the chi-squared statistic with large sample size.

LWASs. We performed LWASs using the linear/logistic models imple-
mented in OSCA22 (version 0.46). We performed these analyses for 
ASD diagnosis, IQ/DQ, sleep disturbances, age, Tanner stage and BMI, 
using the same transformations, subsets of participants and covariate 
combinations (demographic and batch) as in the OREML analysis.

As sensitivity analyses to control for false positives, we performed 
linear or logistic models with and without covariates (age, age2, sex, 
batch, injection order and storage duration for all traits; the exceptions 
were the following: excluding age and age2 as covariates for age, Tanner 
and BMI and excluding sex as a covariate for BMI and sex). We had also 
investigated OSCA-MOA (mixed linear model-based omic association)—
a mixed model method that accounts for the correlation structure 
between participants—but found that the median test statistic was 
lower than expected under a null hypothesis, implying that MOA was 
susceptible to false negatives when applied to these highly correlated 
lipidomics data. We also performed sensitivity analyses adjusting 
for clinical lipids, to determine lipidome changes independent of 

total quantities of lipoproteins. For these analyses, we included addi-
tional covariates representing inferred total cholesterol (the sum of 
free cholesterol + total cholesteryl ester lipids) and total triglyceride  
levels (total triglyceride (SIM)). We performed an additional sensitiv-
ity analysis adjusting for collection time of day (see the section ‘Batch 
and technical variables’) for the individuals for whom these data were 
available (n = 657).

We adjusted for multiple testing in a manner that was sensitive to 
the strong correlational structure within the lipidomics dataset (see 
the section ‘Multiple testing strategy’). Instead of applying Bonferroni 
correction (which would be overly conservative), we applied PCA to 
the lipidomics datasets (by lipid class and by lipid species, both with 
inverse normal transformation) and identified the number of princi-
pal components that explained 99% of the variance in the data as the 
effective number of variables60–63. For our multiple testing threshold, 
we divided P = 0.05 by the effective number of variables (n = 32 for lipid 
classes versus a total of n = 41, and n = 302 for lipid species versus a total 
of n = 783), analogous to Bonferroni correction. In addition, we per-
formed sensitivity analyses, taking as the multiple testing denominator 
the number of principal components explaining 95% of the variance 
(n = 23 for lipid classes and n = 129 for lipid species). Multiple testing 
correction was applied per trait lipidome analysis (for example, sepa-
rately for each combination of traits and lipid class/species analyses).

For each trait, we then conducted a linear model analysis, fitting 
simultaneously all significantly associated lipids and applying post-hoc 
backwards stepwise regression (using the R package MASS, which 
optimizes the model based on the Akaike information criterion) to 
identify the most associated set of lipids accounting for the correla-
tion between them.

We additionally used the lipid pathway annotations to label the 
LWAS significant hits.

GWAS replication. For a handful of lipid traits, we ran GWAS to examine 
whether genetic control was similar in this pediatric dataset to that of 
adults from the BHS lipidome GWAS24. We used GCTA (version 1.93.2 
beta) MLMA64, using inverse normal-transformed lipidome data for 
European participants from AAB/QTAB and including age, age2, sex, 
batch, injection order, storage duration and 20 genotyping principal 
components representing population stratification.

The purpose of this analysis was to replicate the large genetic 
effects on lipid levels identified in the BHS GWAS24 in the European 
subset of the AAB/QTAB cohort, which is pediatric and one-tenth of 
the size (n = 646).

Dissection of variance in lipid concentration. Focusing on the lipid 
species that were significantly associated with clinical traits (and for 
which GWAS summary statistics were also available), we dissected the 
variance in lipid concentrations explained by genetic and clinical data.

We quantified the variance explained in each lipid to understand 
the relative contributions of covariates to lipid traits. This was achieved 
by calculating R2 in a linear regression model. We performed ANOVA of 
the following models, quantifying R2 for each term:

 (1) Lipid trait ~ PGS + age, age2 and sex + group
 (2) Lipid trait ~ PGS + age, age2 and sex + dietary variables (protein, 

saturated fats, polyunsaturated fats, monounsaturated fats, 
cholesterol and sugars) + group

 (3) Lipid trait ~ PGS + age, age2 and sex + batch variables + time of 
day + group

SMR. We applied the SMR (version 1.03) method65 to external GWAS 
summary statistics to test for associations between: (1) two lipid species 
identified in our LWAS analyses (PC(O-18:0/20:4 and PE(P-19:0/20:4)
(b))24 and their associated neurodevelopmental traits (IQ25 and sleep 
duration26); (2) the same two lipidome traits24 and gene expression; 
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and (3) gene expression and the neurodevelopmental traits. For the 
lipid trait analyses, we selected rs99780 as the instrument to test the  
IQ/PC(O-18:0/20:4) association and rs102274 for the sleep distur-
bances/PE(P-19:0/20:4)(b) association. To investigate whether specific 
genes mediated the lipid trait associations, we performed SMR investi-
gating gene–lipid and gene–trait associations using eQTLGen summary 
statistics66 for genes in the window of chr11:61050000–62200000, 
using the same SNP instruments as for the lipid trait SMR. For each 
analysis, the HEIDI test65 was used to determine whether putative 
relationships between traits were due to genetic linkage, as opposed 
to pleiotropy or causality.

Lipid PGS prediction in AAB/QTAB and ABCD. For the LWAS hits, we 
also investigated whether genetically predicted lipid levels (that is, lipid 
PGSs) could predict the neurodevelopmental traits.

Within the AAB/QTAB dataset, we did not find significant associa-
tions between the neurodevelopmental traits and lipid PGSs, but the 
direction of effect was consistent for 17 out of 24 lipid species.

As a replication analysis to support our main results, we turned 
to the ABCD dataset to genetically predict levels of the two lipids 
used in the SMR analysis: PC(O-18:0/20:4) and PE(P-19:0/20:4)(b). 
As equivalent traits for IQ and sleep disturbances in the AAB/QTAB 
dataset, we used the NIH Toolbox Total Cognition Score and Sleep 
Disturbance Scale Total Sleep Score, respectively, among 4,952 Euro-
pean participants.

In this analysis, we regenerated PGSs by filtering the full BHS GWAS 
summary statistics for the PC(O-18:0/20:4) and PE(P-19:0/20:4)(b) lipid 
species to SNPs in the AAB/QTAB and ABCD datasets, then applying 
the same P value clumping and thresholding method, as described in 
the main analysis. As the P ≤ 5 × 10−8 threshold only yielded one SNP 
for prediction, we selected the P value threshold that explained the 
greatest proportion of variance in the lipid trait within the AAB/QTAB  
dataset. For PC(O-18:0/20:4), we took the threshold P ≤ 5 × 10−6 (AAB/ 
QTAB dataset: R2 = 4.6% and P = 3.7 × 10−8) and for PE(P-19:0/20:4)(b),  
we selected P ≤ 5 × 10−8 (AAB/QTAB dataset: R2 = 1.5% and P = 1.6 × 10−3).

In the ABCD dataset, we regressed IQ against the PC(O-18:0/20:4) 
PGS using a linear model and regressed sleep disturbances against the 
PE(P-19:0/20:4)(b) PGS using a gamma log-link function, including 
covariates for age, sex, genotyping principal components and parental 
socioeconomic status.

Individual-level TWAS in AAB/QTAB and ABCD. We performed an 
individual-level TWAS analysis, which involved summing TWAS weights 
to predict gene expression in the FADS gene cluster where there was 
individual-level genotyping data. The rationale for this analysis was 
that both lipids PC(O-18:0/20:4) and PE(P-19:0/20:4)(b) have a highly 
oligogenic genetic architecture (at least in adult datasets24); hence, 
TWASs can help to fine map causal genes underlying these lipids, and 
may provide supporting evidence for lipid–neurodevelopmental trait 
associations.

First, in the AAB/QTAB dataset, we confirmed that predicted 
FADS cluster gene expression corresponded with lipid levels of PC(O-
18:0/20:4) and PE(P-19:0/20:4)(b). We performed an ANOVA analysis 
(lipid concentration ~ age + age2 + sex + batch + injection order + TWAS 
estimate + trait) to quantify the variance associated with genetically 
predicted gene expression, conditioning on covariates. As there was 
differing availability of genes between TWAS weight datasets, we used 
TWAS Elastic Net weights from ref. 67 for FADS1 (generated using  
Elastic Net weights from the Young Finns Study; 21 non-zero SNPs in the  
AAB/QTAB dataset), FADS2 (Netherlands Twin Registry; 19 SNPs with 
Elastic Net weights) and TMEM258 (GTEx version 7; n = 6 SNPs). For 
prefrontal cortex prediction, we used weights generated from PsychEN-
CODE68, from which only FADS1 (26/36 SNPs in the AAB/QTAB dataset, 
of which 17 had matching alleles) and TMEM258 (6/11 SNPs available) 
were available. To genetically predict transcription levels, we multiplied 

TWAS weights by allele dosages for Europeans in the AAB/QTAB and 
ABCD datasets and then took their sum.

Given that the AAB/QTAB dataset was relatively small (n = 646 
Europeans), we turned to the ABCD dataset (n = 4,592 Europeans) to 
test for associations between genetically predicted FADS cluster gene 
expression and clinical phenotypes that were proxies for IQ (NIH Tool-
box Total Cognition Score) and sleep disturbances (Sleep Disturbance 
Scale Total Sleep Score).

LWAS hits and dietary and microbiome variables. To reduce dimen-
sionality, for each neurodevelopmental trait (ASD diagnosis, IQ/DQ 
and sleep disturbances), we performed PCA on the LWAS species-level 
associations, referring to PC1 as the lipidome profile for that trait. We 
used linear models to examine relationships between these lipidome 
profiles, dietary principal components and measures of the focal traits.

Separately, we investigated the relationships between the three 
trait lipidome profiles and microbiome species and MetaCyc pathways. 
We performed analyses in ANCOM version 2.1, taking LWAS PC1 as the 
dependent variable and including the covariates age, age2, sex, batch, 
injection order and storage duration. In ANCOM version 2.1, features 
passing the detection threshold ≥0.7 correspond to significant asso-
ciations, although a detection threshold of ≥0.6 may also be used. As 
a sensitivity analysis, we investigated the effect of including dietary 
principal components as additional covariates.

We used ANOVA to determine the proportion of variance in 
each neurodevelopmental trait’s lipidome profile that could be 
attributed to each explanatory variable (in the following order): 
age + age2 + sex + batch (batch number, injection order and stor-
age duration) + medications associated with that trait lipidome 
profile + associated dietary principal components + associated 
microbiome species or MetaCyc pathways determined using 
the nominally significant associations from ANCOM version 2.1  
(detection threshold ≥ 0.6).

Interplay of neurodevelopmental traits and the lipidome. We com-
pared two ANOVA models to explore the association between ASD 
and the ASD lipidome profile, with and without conditioning on sleep 
disturbances:

LipidomeprofileASD ∼ age + sex + batchplate + batchinjectionorder
+collection timecos transform + storage time + ASD

LipidomeprofileASD ∼ age + sex + batchplate + batchinjectionorder
+collection timecos transform + storage time + sleep + ASD

We performed a similar analysis for sleep disturbances, this time 
conditioning on ASD diagnosis:

Lipidomeprofilesleep ∼ age + sex + batchplate + batchinjectionorder
+collection timecos transform + storage time + sleep

Lipidomeprofilesleep ∼ age + sex + batchplate + batchinjectionorder
+collection timecos transform + storage time + ASD + sleep

To investigate the relationship between VABS-II composite score, 
IQ/DQ and sleep disturbances and their associated lipidome pro-
files (note that the VABS-II was only assessed within the ASD group), 
we performed the following ANOVA models and assessed whether 
the trait-associated lipidome profile explained additional variance 
in the VABS-II composite score beyond the neurodevelopmental  
trait alone:

VABScomposite ∼ IQ/DQ + lipidomeprofileIQ/DQ
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VABScomposite ∼ sleep + lipidomeprofilesleep

Group differences in variance. We tested for differences in  
variance between groups (ASD versus non-ASD) using Levene’s test. We 
accounted for covariates (age, sex, batch, injection order and storage 
duration) by regressing these effects out from each lipid concentration 
measure and taking the residuals. For this analysis, we included the out-
liers that had been identified using the quality control pipeline, which 
we justified due to finding that many of these outliers had a biological 
explanation. However, we excluded the n = 64 participants who were 
storage duration outliers, as: (1) storage duration was considered to 
be an undesirable batch effect; and (2) all of these outliers were in the 
ASD group, meaning that they may bias the group comparison. Our 
multiple testing strategy for this analysis is described in the section 
‘Multiple testing strategy’.

Multiple testing strategy
Approach when considering multiple lipids within one trait. Here 
we were investigating whether any specific lipids were associated with 
a given trait.

The null hypothesis was that no lipids were associated with trait X.
For the LWAS analysis at the lipid species level (Extended Data 

Figs. 2 and 3 and Supplementary Figs. 6–10) and the difference in vari-
ance analysis (Extended Data Fig. 10), we performed n = 783 tests for 
each trait. For the lipid class level, we performed n = 41 for each trait 
(Extended Data Fig. 3). Recognizing that the lipidome is highly corre-
lated (Extended Data Fig. 1), we sought a multiple testing correction 
method that would account for this correlation (which conventional 
methods such as Bonferroni and Benjamini–Hochberg correction do 
not) while being sufficiently conservative. We took an approach that is 
used widely in the lipidomics field (for example, refs. 62,63) and that has 
historical precedence in gene-based analyses, which similarly contend 
with highly correlated data (for example, refs. 60,61). To this end, we:

 (1) Applied PCA to the lipidomics dataset
 (2) Estimated the effective number of independent lipids by taking 

the number of principal components accounting for >99% of 
variance in the dataset (n = 302 for the lipid species and n = 32 
for the lipid classes)

 (3) Calculated the corrected P value threshold (essentially, Bonfer-
roni correction for the number of independent lipids) as:

Pcorrected =
0.05

Effective numberof lipids

We applied multiple testing correction within each trait, as 
opposed to across all traits, consistent with current conventions in 
the lipidomics field (for example, ref. 24) and in other omics fields (for 
example, ref. 69). For the lipid species data, significance was declared at 
P < 1.66 × 10−4 and for the lipid classes it was declared at P < 1.56 × 10−3.

We also performed an analysis investigating the association of 
inferred clinical lipid levels (cholesterol and triglycerides) with three 
neurodevelopmental traits (ASD diagnosis, IQ/DQ and sleep distur-
bances) (Fig. 2a). Using the approach described above, our multiple 
testing strategy was to correct for two lipids per trait.

We also performed extensive sensitivity analyses assessing dif-
ferent combinations of covariates (Supplementary Figs. 6–10). We 
did not account for these sensitivity analyses in our multiple testing 
for two reasons: (1) these analyses were performed with the inten-
tion of understanding other variables that may contribute to the pri-
mary association(s); and (2) correcting for multiple testing would 
be unreasonably conservative given that the primary and sensitiv-
ity analyses are essentially the same (that is, the dependent variable  
is identical).

Approach when considering the lipidome as a whole (OREML). Here 
we were taking a phenome-wide approach, testing the null hypothesis 
that no traits were significantly associated with the lipidome.

For the OREML analysis (Fig. 2b and Supplementary Table 3), we 
performed multiple testing correction across all tested traits (a total 
of 18 traits: ASD, IQ/DQ, sleep disturbances (CSHQ), age, Tanner score 
(genital), BMI (z score), sex, VABS-II adaptive motor domain, stool 
consistency (Bristol Stool Chart), protein, fats, carbohydrate, sugars, 
cholesterol, dietary PC1, PC2 and PC3 and dietary diversity. In this case, 
we applied a Benjamini–Hochberg correction to control the FDR across 
the 18 tests with the covdemog set of covariates (Fig. 2b; that is, the 
covariates age, age2 (except for when age, Tanner stage and BMI z score 
were taken as the clinical phenotypes), sex (except when BMI z score or 
sex were taken as the clinical phenotypes), batch, injection order and 
storage duration). We did not perform Bonferroni correction as these 
traits are correlated and this approach would be overly conservative. 
As data were not complete across all phenotypes, we were not able to 
perform the effective number of variables approach described above.

Again, we performed extensive sensitivity analyses to complement 
the main analyses and did not include these tests in multiple testing for 
the same reasons described above.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The AAB datasets (lipidomics, SNP genotyping, stool metagenomics 
and phenotype data) supporting the conclusions of this article are 
available by application to the AAB within the Autism CRC (https:// 
www.autismcrc.com.au/biobank). These data are not publicly available 
for ethical reasons. Applications are reviewed by a board including 
autistic people. The QTAB dataset used in these analyses is available 
with mediated access through The University of Queensland eSpace 
repository at https://doi.org/10.48610/dc9bf34. The ABCD dataset is 
available by application through the National Institute of Mental Health 
Data Archive (https://doi.org/10.15154/1523041). BHS lipidomics GWAS 
results are available at https://metabolomics.baker.edu.au/.

Code availability
Code is publicly available at https://github.com/cyap7/ 
ASD_lipidomics_AAB_QTAB.
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Extended Data Fig. 1 | Lipidome data correlation structures. Correlation (Pearson’s r) between a) lipid classes and b) lipid species (grouped by class).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Lipidome-wide association study (LWAS) forest plots 
at the lipid species level. Plots shown for ASD, IQ/DQ, sleep disturbances (CSHQ 
total score), age, Tanner score (genital), and BMI (z-score). Point denotes effect 
estimate and error bars denote standard error. All analyses included covariates 
of injection order and storage time; the ASD, IQ/DQ and sleep disturbances LWAS 
also included age, age2 and sex as covariates; the age and Tanner score (genital) 
LWAS also included sex; the BMI (z-score) LWAS did not include additional 
covariates as these are accounted for within the population-normed z-score.  

The ASD analysis excluded storage time outliers. Each point denotes a lipid 
species, grouped by rows as lipid classes. Lighter-grey open points represent 
species with association p > 0.05, darker-grey filled points represent species with 
association p < =0.05. Colour denotes species passing multiple testing correction 
(dividing by the effective number of independent lipids; see Methods). Text 
denotes lipid species retained in a backwards stepwise regression model with 
covariates, representing the effective number of independent LWAS hits.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Lipidome-wide association study (LWAS) forest plots 
at the lipid class level. Plots shown for ASD, IQ/DQ, sleep disturbances (CSHQ 
total score), age, Tanner score (genital), and BMI (z-score). Point denotes effect 
estimate and error bars denote standard error. All analyses included covariates 
of injection order and storage time; the ASD, IQ/DQ and sleep disturbances LWAS 
also included age, age2 and sex as covariates; the age and Tanner score (genital) 
LWAS also included sex; the BMI (z-score) LWAS did not include additional 
covariates as these are accounted for within the population-normed z-score. The 

ASD analysis excluded storage time outliers. Open points represent classes with 
association p > 0.05, filled points represent classes with association p ≤ 0.05. 
Colour denotes classes passing multiple testing correction (dividing by the 
effective number of independent lipids; see Methods). For IQ/DQ, there were no 
significantly associated lipid classes and the nominally significant classes  
(p < 0.05) are shown in dark grey. Text denotes lipid classes retained in a 
backwards stepwise regression model with covariates, representing the effective 
number of independent LWAS hits.
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Extended Data Fig. 4 | Lipid species annotations for age, BMI, sex and Tanner score. Annotated lipid species significantly associated with age, BMI (z-score), sex 
and Tanner score (genital) in the LWAS analysis.
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Extended Data Fig. 5 | Lipid-set enrichment analysis (LSEA) results for age, Tanner score (genital) and BMI (z-score). Results shown are FDR-significant (q < 0.05). 
Rows: lipid annotations. Length of bars: -log10 p-value for the LSEA analysis, multiplied by the test statistic sign. *: annotations that were also significant in LWAS.
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Extended Data Fig. 6 | GWAS locus plots (from the Busselton Health Study) in 
the FADS gene cluster on chromosome 11 for neurodevelopment-associated 
lipids. Lipids shown here were significant in the AAB+ QTAB LWAS for a) ASD, b) 
IQ/DQ, c) sleep disturbances. Colours respond to individual lipids. The size of 
the open circle is proportional to the -log10(P) between that lipid species and the 

neurodevelopmental trait. In c), the sleep disturbances-associated lipids have 
separate panels for readability. Note that only the LWAS significant lipids that 
also have summary statistics in the Busselton Health Study are shown here, hence 
why there are fewer lipids here than in Fig. 3a.
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Extended Data Fig. 7 | Bar plot of variance (R2) in lipid concentration associated with polygenic score (PGS), demographic variables and ASD diagnosis, for 
lipid species significantly associated with age, BMI (z-score), sex and Tanner score. ANOVA model: lipid concentration ~ PGS + (age and sex) + ASD diagnosis.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Validation of the LWAS PC1 as ‘lipidome profiles’ 
associated with ASD diagnosis, IQ/DQ and sleep disturbances. A LWAS PC1 
was calculated for each neurodevelopmental trait by performing PCA on the 
statistically significant LWAS lipid species. a-c) Scree plots demonstrating that 
LWAS PC1 captures >50% of variance in each set of trait-associated lipids; d-f) 
Plot of PCA loadings, demonstrating that PC1 captures increased levels of all 

trait-associated lipids. g) Heatmap demonstrating that PCs are representative 
of LC-PUFAs: there are strong loadings for the annotations corresponding with 
linoleic acid for the ASD LWAS hits PC1 (that is, fatty acid 18:2 and Omega-6), 
arachidonic acid (that is, fatty acid 20:4 and Omega-6) for the IQ/DQ LWAS hits 
PC1, and DHA (that is, fatty acid 22:6 and Omega-3) and arachidonic acid for the 
sleep LWAS hits PC1.
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Extended Data Fig. 9 | Dissection of variance in neurodevelopmental trait 
lipidome profiles after conditioning on total lipidome (a) cholesterol 
and (b) triglycerides. Similar to Fig. 5, results are from ANOVA models of the 
trait-specific lipidome profile ~ age + age2 + sex + BMI + batch (batch, injection 

order, storage duration) + neurodevelopmental trait + significantly-associated 
medications + significantly-associated dietary PCs (Fig. 5a–c) + significant 
microbiome features (Fig. 5d–i).
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Extended Data Fig. 10 | Group differences in lipid variance. (a, b) Violin plots 
for lipid classes and species with significant differences in variance (Levene’s 
test), before (a) and after (b) regressing lipid concentration against age, age2, 

sex, batch, injection order and storage duration. (c) Assessing the relationship 
between lipid classes and species with significant differences in variance and 
sample storage duration before (c) and after (d) regressing out covariates.
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