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Dysbiosis of a microbiota–immune 
metasystem in critical illness is associated 
with nosocomial infections
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Christopher J. Doig    1,2,4, Mary J. Dunbar4,5,6, Kathy D. McCoy    2,3  
& Braedon McDonald    1,2 

Critically ill patients in intensive care units experience profound 
alterations of their gut microbiota that have been linked to a high risk of 
hospital-acquired (nosocomial) infections and adverse outcomes through 
unclear mechanisms. Abundant mouse and limited human data suggest 
that the gut microbiota can contribute to maintenance of systemic immune 
homeostasis, and that intestinal dysbiosis may lead to defects in immune 
defense against infections. Here we use integrated systems-level analyses 
of fecal microbiota dynamics in rectal swabs and single-cell profiling of 
systemic immune and inflammatory responses in a prospective longitudinal 
cohort study of critically ill patients to show that the gut microbiota and 
systemic immunity function as an integrated metasystem, where intestinal 
dysbiosis is coupled to impaired host defense and increased frequency of 
nosocomial infections. Longitudinal microbiota analysis by 16s rRNA gene 
sequencing of rectal swabs and single-cell profiling of blood using mass 
cytometry revealed that microbiota and immune dynamics during acute 
critical illness were highly interconnected and dominated b y E nt er ob ac-
te riaceae enrichment, dysregulated myeloid cell responses and amplified 
systemic inflammation, with a lesser impact on adaptive mechanisms of 
host defense. Intestinal E  n t  er  o b  ac  t e riaceae enrichment was coupled with 
impaired innate antimicrobial effector responses, including hypofunctional 
and immature neutrophils and was associated with an increased risk of 
infections by various bacterial and fungal pathogens. Collectively, our 
findings suggest that dysbiosis of an interconnected metasystem between 
the g  u t m  i c  ro  b i ota and systemic immune response may drive impaired host 
defense and susceptibility to nosocomial infections in critical illness.

Critically ill patients requiring life-support interventions in intensive 
care units (ICUs) suffer very high rates of hospital-acquired (nosoco-
mial) infections (20–50%) that contribute a markedly elevated risk of 
mortality1,2. Susceptibility to severe infections in critical illness has 

been linked to widespread impairment of innate and adaptive immu-
nity and a breakdown of host defense mechanisms, as well as breach-
ing of physical barriers by medical devices (intravascular catheters, 
endotracheal tubes and bladder catheters)3–6. In addition, nosocomial 
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critical illness were characterized by a loss of commensal anaerobic 
fermenters (Ruminococcaceaea and Lachnospiraceae) and emergence 
of pathobiont taxa (Enterococcaceae and Enterobacteriaceae) (Fig. 1a, 
Extended Data Fig. 1 and Supplementary Tables 2 and 3). To confirm 
that the observed microbiota differences were not due to the differ-
ence in median age between ICU and healthy cohorts, we also obtained 
publicly available datasets of 16s rRNA gene amplicon sequencing of 

infections in the ICU are often caused by pathogens that are rarely 
associated with invasive disease in healthy individuals, consistent with 
a state of severely impaired host defense1; however, the mechanisms 
that induce and propagate immune dysfunction in critical illness are 
poorly understood.

Evidence from both mice and humans has revealed an important 
role for gut microbes in the maintenance of immune homeostasis and 
protective host defense in the gut as well as extra-intestinal, systemic 
compartments7–9. Critically ill patients harbor profound dysbiosis 
of their gut microbiota10–14 and this dysbiosis observed in ICU and 
other hospitalized patients has been associated with an increased risk 
of adverse outcomes, including infections through unclear mecha-
nisms11,14–16. Colonization and overgrowth of pathobiont microbes may 
lead to translocation into the bloodstream as a direct mechanism link-
ing gut dysbiosis to infections15,17,18; however, additional mechanisms 
likely contribute to the high rates of infections across multiple body 
sites in ICU patients that are caused by diverse pathogens beyond typi-
cal gut pathobionts1. In particular, alterations to the gut microbiota 
may render the host susceptible to infections through pathological 
crosstalk with the immune system, leading to impaired host defense.

In this study, we tested the hypothesis that susceptibility to 
nosocomial infections in critical illness is driven by pathological 
microbiota–immune interactions, in which gut microbiota dysbio-
sis triggers impaired systemic immunity and host defense. Using 
integrated systems-level analysis of gut microbiota dynamics and 
systemic immune function in 51 critically ill adults, we propose that 
the gut microbiota and systemic immune response behave as an 
integrated microbiota–immune metasystem, wherein dysbiosis 
characterized by progressive enrichment of Enterobacteriaceae 
in the gut microbiota leads to dysregulated innate immunity and 
impaired host defense and increased susceptibility to bacterial and 
fungal nosocomial infections.

Results
Pathological gut microbiota dynamics associate with 
nosocomial infections in critically ill patients
We conducted a prospective, longitudinal, integrated multi-omics 
analysis of the fecal microbiota, systemic cellular immune and inflam-
matory responses in 51 critically ill adults in medical, surgical, trauma 
and neurological ICUs in Calgary (Table 1). We enrolled patients who 
were adults, newly admitted to the ICU and expected to require continu-
ous mechanical ventilation and intensive care for at least 72 h, as judged 
by the treating specialists. To avoid known confounders of microbiota 
ecology or systemic immune function, we excluded patients who were 
in hospital more than 48 h before ICU admission (during the current 
admission or any time in the previous 3 months), received systemic 
antibiotics in the 3 months before admission, were immunocompro-
mised (congenital or acquired), had inflammatory bowel disease or 
gastrointestinal (GI) malignancy, had a discontinuous GI tract or mori-
bund patients not expected to survive >72 h at the time of admission 
(Methods and Supplementary Table 1 provide additional details).

Fecal bacterial microbiota composition was analyzed at the time 
of ICU admission and then serially on days 3 and 7 of ICU admission 
using 16s rRNA gene amplicon sequencing (Fig. 1a). Owing to the need 
for precise timing of sample collection and unpredictable timing of 
bowel movements in critically ill patients, rectal swabs were utilized 
as previously described in multiple studies of gut microbiota in ICU 
patients11,19–21. From the time of admission, critically ill patients har-
bored evidence of gut dysbiosis compared to healthy volunteers, 
including reduced taxonomic diversity, richness and significant shifts 
in community β-diversity (Fig. 1a–d). Serial analysis of the microbiota 
over the first week of critical illness demonstrated progressive erosion 
of biodiversity, taxonomic richness and compositional shifts (Fig. 1a–d, 
Extended Data Fig. 1 and Supplementary Tables 2 and 3). Consistent 
with previous reports10–12, the shifts in fecal microbial communities in 

Table 1 | Demographic, clinical and treatment 
characteristics of study participants

Characteristics ICU patients 
(n = 51)

Healthy controls 
(n = 18)

Demographics

 Age (years), median (range) 61 (20–86) 32 (22–68)

 Male sex, n (%) 31 (60.8) 8 (44.4)

 Female sex, n (%) 20 (39.2) 10 (55.6)

Ethnicity, n (%)

 White 29 (56.9) 11 (61.1)

 Asian 12 (23.5) 5 (27.8)

 Black 3 (5.8) 1 (5.6)

 Hispanic 1 (2.0) 0

 Indigenous 6 (11.8) 1 (5.6)

Comorbidities

 Diabetes, n (%) 9 (17.6) 2 (11.1)

 Cardiovascular disease, n (%) 15 (29.4) 0

 Chronic lung disease, n (%) 10 (19.6) 2 (11.1)

 Cirrhosis 0 0

 Chronic kidney disease (on dialysis) 0 0

 GERD, n (%) 11 (21.7) 2 (11.1)

 Charlson index, median (range) 1 (0–8) 0 (0–1)

Admission diagnosis, n (%)

 Sepsis 24 (47.1) NA

 Trauma 12 (23.5) NA

 Neurological 10 (16.6) NA

 Medical (other)a 5 (9.8) NA

Illness severity

 Admission SOFA score, median 
(range)

8.0 (2–16) NA

Therapies, n (%)

 Invasive mechanical ventilation 51 (100) NA

 Antibiotics at ICU admission 28 (54.9) NA

 Enteral nutrition 51 (100) NA

 Parenteral nutrition 0 (0) NA

Outcomes

 Nosocomial infection (to day 30), 
n (%)

28 (54.9) NA

 Duration of mechanical ventilation 
(days), median (range)

6 (1–24) NA

 Duration of ICU stay (days), median 
(range)

7 (2–31) NA

 Duration of hospitalization (days), 
median (range)

17 (4–207) NA

 Mortality (to day 30), n (%) 17 (33.3) NA
aMedical (other) admission diagnoses include cardiac arrest, hemorrhagic shock and 
pulmonary embolism. NA, not available.
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Fig. 1 | Intestinal dysbiosis with progressive Enterobacteriaceae enrichment 
in critical illness is associated with nosocomial infections. a, Taxonomic 
composition by relative abundance of bacterial families. b, Three-dimensional 
principal-coordinates analysis (Bray–Curtis dissimilarity distances, genus level) 
analyzed by PERMANOVA. c, Shannon index. d, Chao1 index in rectal swabs from 
critically ill patients on day 1 (n = 51) and again from survivors who remained in 
ICU on day 3 (n = 44) and day 7 (n = 15), compared to healthy volunteers (n = 15). 
Dots represent individual patients, central line indicates median, box shows 
interquartile range (IQR) and whiskers show range; analyzed by two-sided 
Kruskal–Wallis test (healthy versus ICU days) with pairwise comparisons of 
repeated measures across days using a mixed linear regression model with a 
post hoc Tukey’s test. e, MOFA of microbiota composition between healthy 
volunteers and ICU patients showing top ten taxonomic factors (families) and 
their relative contributions to explained microbiota variance (factor weight). 
f, Enterobacteriaceae relative abundance on days 1, 3 and 7 of ICU admission 
compared to healthy controls. Dots represent individual patients, central  
line shows median, box shows IQR and whiskers show range, analysis as per  

c and d. g, Correlation between Enterobacteriaceae relative abundance and 
Shannon index, analyzed using Spearman correlation test. Dots show individual 
patient samples, regression (line) and 95% confidence intervals (shaded area) are 
shown. h, Penalized ridge regression of the 15 most abundant bacterial families 
and their importance toward change in Shannon diversity from days 1–3 of 
ICU admission. i,j, Mean relative abundance († indicates Padj  < 0.1 by ANCOM-II 
differential abundance) (i) and correlation matrices (j) of the 15 most abundant 
bacterial families on ICU day 3. k, Longitudinal microbiota community stability 
index between patients with progressive Enterobacteriaceae enrichment (n = 18) 
or no enrichment (n = 26). Dots represent individual patients, central line shows 
the median, box shows IQR and whiskers show range; analyzed by two-sided 
Mann–Whitney U-test. l–n, The 30-d nosocomial infection-free survival analyzed 
by log-rank test (l), odds ratio of nosocomial infection caused by any pathogen or 
Enterobacteriaceae pathogen determined by two-sided Fisher’s exact test  
(m) and pathogens identified in nosocomial infections (n) (n = 30 infections in  
28 patients). P values as shown in b; *P < 0.05, **P < 0.01.
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rectal swabs from healthy volunteers with similar median age (62 years, 
range 42–80), sex and ethnicity distribution as our ICU patient cohort22. 
Again, the ICU microbiota displayed significantly different β-diversity, 
reduced α-diversity, as well as differential abundance and increased 
relative abundance of Enterobacteriaceae (Supplementary Fig. 1). 
Permutational multivariate analysis of variance (PERMANOVA) analysis 
identified that only biological sex and duration of antibiotic treatment 
before sampling were significantly associated with microbiota compo-
sition in the first week of critical illness, whereas age, ethnicity, burden 
of comorbidities (Charlson index), illness severity (sequential organ 
failure assessment (SOFA) score), duration of hospitalization before 
microbiota sampling and admission diagnosis (both subacute illnesses 
(sepsis) and hyperacute illnesses such as trauma, neurological injury 
and cardiac arrest) were not associated with microbiota composition 
(Extended Data Table 1 and Supplementary Fig. 2). All critically ill 
patients in this study were treated with enteral nutrition, none received 
stress-dose glucocorticoid therapy and one patient was treated with 
proton-pump inhibitor therapy during admission. Collectively, these 
data demonstrate that dysbiosis of the fecal bacterial microbiota is 
established at the time of ICU admission and exhibits dynamic and 
progressive changes during the acute phase of critical illness.

Using multi-omics factor analysis (MOFA)23 we found that vari-
ance in microbiome composition between critically ill patients and 
healthy volunteers was overwhelmingly explained by members of the 
Enterobacteriaceae family, both on admission as well as across all time 
points during the first week in ICU (Fig. 1e and Extended Data Fig. 2a).  
Proteobacteria, and in particular Enterobacteriaceae, expansion 
has been consistently observed in previous studies of hospitalized 
and critically ill patients11–14,20,24. Median Enterobacteriaceae relative 
abundance was ~tenfold higher in rectal swab samples of critically ill 
patients compared to healthy controls, with individual patient vari-
ability that was dynamic over the first week of ICU admission (Fig. 1f). 
Enterobacteriaceae abundance was inversely correlated with total 
microbiota richness and diversity (Fig. 1g and Extended Data Fig. 2b) 
and penalized ridge regression analysis revealed that Enterobacte-
riaceae was the most important family associated with the change 
in microbiota diversity over time in ICU patients (Fig. 1h). Increased 
Enterobacteriaceae relative abundance coincided with early reduction 
of anaerobic fermenters including Ruminococcaceae and Lachno-
spiraceae (Extended Data Fig. 1b,c). Community network visualization 
and Spearman correlation analyses between bacterial families did not 
reveal significant pairwise correlations between Enterobacteriaceae 

Table 2 | Nosocomial infections in study participants

Patient Progressive fecal Enterobacteriaceae 
enrichment

Infection diagnosis Clinical microbiology diagnosis

44 Yes VAP Staphylococcus aureus, Haemophilus influenzae

20 Yes VAP Escherichia coli

42 Yes VAP Pseudomonas aeruginosa, Haemophilus influenzae

13 Yes VAP and UTI No pathogen identified (tracheal aspirate)
Enterococcus faecalis (urine and secondary BSI)

27 Yes VAP Mixed bacterial growth not otherwise specified

45 Yes VAP Mixed bacterial growth not otherwise specified

46 Yes VAP Mixed bacterial growth not otherwise specified

51 Yes VAP No pathogen identifieda

28 Yes HAP No pathogen identified

14 Yes UTI Escherichia coli

17 Yes UTI Escherichia coli

4 Yes UTI Mixed bacterial growth not otherwise specified

9 Yes Peritonitis Escherichia coli, Bacteroides fragilis

38 Yes BSI Coagulase-negative Staphylococcus

43 Yes Diarrhea/colitis Clostridioides difficile

22 No VAP Pseudomonas aeruginosa, Klebsiella pneumonia

40 No VAP Staphylococcus aureus

10 No VAP No pathogen identified

41 No VAP No pathogen identified

32 No HAP Klebsiella pneumoniae

21 No HAP + UTI Escherichia coli

18 No HAP No pathogen identifiedb

1 No HAP No pathogen identified

2 No HAP No pathogen identified

12 No BSI Coagulase-negative Staphylococcus

48 No BSI Candida albicans

11 NA VAP Klebsiella oxytoca

29 NA VAP Mixed bacterial growth not otherwise specified

BSI, bloodstream infection; VAP, ventilator-associated pneumonia; UTI, urinary tract infection, HAP, hospital-acquired pneumonia (non-ventilated). aGrowth of C. paropsilosis in endotracheal 
aspirate but not deemed causative pathogen. bGrowth of C. tropicalis in endotracheal aspirate but not deemed causative pathogen.
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and anaerobic fermenters such as Ruminococcaceae, Lachnospiraceae 
and Bifidobacteriaceae at individual points in time (Extended Data  
Fig. 2c–e and Supplementary Tables 4–7). In contrast, longitudinal anal-
ysis of the change of Enterobacteriaceae relative abundance between 
admission (day 1) and day 3 of ICU using penalized ridge regression 
identified Lachnospiraceae and Bifidobacteriaceae as the most  
important families associated with Enterobacteriaceae dynamics 
(Extended Data Fig. 2f), which aligns with their known role in coloni-
zation resistance against Enterobacteriaceae expansion in the gut25.

Further interrogation of the temporal changes of Enterobacte-
riaceae over the first week of ICU admission demonstrated that 41% of 
patients with serial sampling had greater than doubling of Enterobacte-
riaceae relative abundance between consecutive sampling time points, 
hereafter referred to as progressive Enterobacteriaceae enrichment  
(14 of 18 between days 1 and 3 and 4 of 18 between days 3 and 7; Extended 
Data Fig. 2g and Supplementary Table 1). Notably, both univariable and 
multivariable regression analysis found that the development of pro-
gressive Enterobacteriaceae enrichment was independent of age, sex, 
comorbidities, admission diagnosis, antibiotic treatment (spectrum 
or duration before microbiota sampling), duration of hospitalization 
before microbiota sampling or illness severity (Extended Data Table 2).  
Progressive Enterobacteriaceae enrichment was not associated with 
expansion of other pathobionts, but was instead linked to a reduc-
tion in overall bacterial community stability (Fig. 1i–k). Furthermore, 
quantification of total fecal bacterial density by qPCR as well as total 
Enterobacteriaceae abundance (quantified by total bacterial density 
multiplied by relative abundance of Enterobacteriaceae, as previously 
reported20,26) revealed that patients with progressive Enterobacte-
riaceae enrichment had both progressive increase in total bacterial 
density and total Enterobacteriaceae quantity, indicating that enrich-
ment was mediated by Enterobacteriaceae expansion rather than 
contraction of other taxa (Extended Data Fig. 2h,i). Together, these 
findings reveal dynamic and progressive microbiota injury in acute 
critical illness dominated by Enterobacteriaceae enrichment.

Microbiota dysbiosis has been linked to adverse outcomes 
including nosocomial infections in hospitalized and critically ill pati
ents11,14,16,20,24,27. Consistent with this, we found that patients with low 
microbiota Shannon diversity on admission (<3.59, cutoff determined 
by maximally selected rank statistics) had a significantly increased risk 
of nosocomial infection or death compared to patients with a high 
Shannon diversity (>3.59) on admission (Extended Data Fig. 3a,b). To 
explore whether this relationship between microbiota dysbiosis and 
nosocomial infection-free survival was associated with particular 
taxa (either quantity or temporal dynamics), we focused on bacte-
rial families that were differentially abundant in ICU patients com-
pared to healthy controls (Enterobacteriaceae, Ruminococcaceae 
and Lachnospiraceae; Extended Data Fig. 1). The relative abundance 
of these families at admission was not associated with nosocomial 
infection-free survival (Extended Data Fig. 3c–e). In contrast, patients 

who experienced any increase in Enterobacteriaceae relative abun-
dance between time points were at significantly higher risk of infection 
or death compared to patients with decreased Enterobacteriaceae, 
whereas no association was observed for Ruminococcaceae or Lachno-
spiraceae dynamics (Extended Data Fig. 3f–h). Furthermore, patients 
with doubling or more of Enterobacteriaceae relative abundance 
between time points (which we define as progressive Enterobacte-
riaceae enrichment) were found to have significantly increased risk 
of the composite of nosocomial infection or death, as well as higher 
odds of nosocomial infection (OR 6.8, 95% CI 1.7–25.3) compared 
to patients without progressive Enterobacteriaceae enrichment  
(Fig. 1l,m). Members of the Enterobacteriaceae family are common 
causative pathogens in nosocomial infections and previous studies 
have suggested a direct link between gut overgrowth and infection 
via translocation and dissemination11,15,17,24. Clinical microbiology 
data identified Enterobacteriaceae organisms in 27% of nosocomial 
infections in this cohort of critically ill patients (Table 2); however, no 
significant association was found between progressive Enterobacte-
riaceae enrichment in the fecal microbiota and the odds of infection 
caused by Enterobacteriaceae pathogens (OR 0.97, 95% CI 0.2–4.7), 
although this analysis is likely underpowered due to the relatively 
small number of Enterobacteriaceae infections in this study (Fig. 1m). 
Instead, pathogens identified in nosocomial infections were diverse 
and not different between those with fecal Enterobacteriaceae enrich-
ment and those without enrichment (Fig. 1n and Table 2). Therefore, 
microbiota dysbiosis and progressive Enterobacteriaceae enrichment 
are associated with an increased risk of nosocomial infections caused 
by a spectrum of bacterial and fungal pathogens, suggestive of a state 
of globally impaired host defense.

Dysbiosis of a microbiota–immune metasystem in critical 
illness
We next performed a systems-level analysis of the cellular immune 
and inflammatory landscapes in the bloodstream of each patient to 
test the hypothesis that microbiota injury in critical illness is cou-
pled with impaired systemic immunity. High-dimensional single-cell 
analysis of the circulating immune landscape using mass cytometry 
revealed profound shifts in innate and adaptive immunity in critically 
ill patients that were dynamic over the first week of admission (Fig. 2a,b 
and Extended Data Fig. 4). Consistent with previous reports3,4,28, the 
cellular immune response in acute critical illness was dominated by an 
early and sustained elevation of neutrophils, together with depletion 
of T and B lymphocytes as well as natural killer (NK) cells (Extended 
Data Fig. 4). Clustering of single-cell data using FlowSOM revealed that 
neutrophil expansion in critically ill patients was attributed largely 
to immature neutrophils (CD16lo/intCD11blo/int, clusters N1, N2 and N8) 
including a population resembling recently characterized dysfunc-
tional CD123+ neutrophils (cluster N4)29, with reduction of mature 
(CD16hiCD11bhi, clusters N3, N5 and N7) and aged (CXCR4+CD62Llo, 

Fig. 2 | Dynamic microbiota–immune metasystem dysbiosis in critical 
illness. a–d, The cellular immune landscape of blood (a,b) and plasma 
inflammatory mediators (c,d) were quantified by mass cytometry and 
multiplexed electrochemiluminescence assays, respectively, in blood samples 
from critically ill patients (n = 51) sampled on day 1 of admission (n = 49) and 
again from survivors who remined in ICU on day 3 (n = 43) and day 7 (n = 15), 
compared to healthy volunteer controls (n = 12). The abundance of all immune 
cell populations (shown as %CD45+) identified by FlowSOM clustering of single-
cell mass cytometry data (Methods) (a) and t-SNE dimensionality reduction of 
the single-cell immune landscape between healthy volunteers and ICU patients 
(b). Concentrations (pg ml−1) of inflammatory mediators in the plasma (c) and 
log2 fold change (FC) (d) in concentrations of each mediator in ICU patients 
on days 1, 3 and 7 compared to healthy volunteers. CRP, C-reactive protein; 
TNF, tumor necrosis factor; IFN, interferon; SAA, serum amyloid A. e,f, Chord 
diagrams depicting the significant Spearman correlations (false discovery 

rate (FDR)-adjusted P < 0.1) between microbiota composition, immune 
cell landscape and systemic inflammatory mediators in healthy volunteers 
and ICU patients at each time point (e) and quantification of the number of 
significant Spearman’s correlations (FDR-adjusted P < 0.1) between meta-
system compartments (f). g,h, Heat map of individual Spearman’s correlation 
coefficients between the 15 most abundant microbiota families (relative 
abundance) and immune cell clusters in blood (g) and plasma inflammatory 
mediators (h) across the first week of ICU admission. i,j, NMDS ordination of  
the single-cell immune landscape (i) and systemic inflammatory mediators  
(j) across the first 7 d of ICU admission in patients with (n = 18 patients) and 
without (n = 26 patients) progressive fecal Enterobacteriaceae enrichment. 
Statistical comparisons were performed using PERMANOVA (Supplementary 
Tables 15 and 16 show full model results) accounting for repeated measures, 
each point represents an individual patient-time point; P values as shown.  
t-SNE, t-distributed stochastic neighbor embedding.
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cluster N6) neutrophil populations (Fig. 2a, Extended Data Fig. 5a and 
Supplementary Table 8). Additional multi-lineage innate immune dys-
regulation was observed including monocyte dysregulation (early and 
sustained depletion of HLA-DR-expressing classical and intermedi-
ate monocyte clusters CM3, CM4, IM1 and IM2, as well as expansion 
of non-classical monocyte clusters NC2 and NC3), loss of HLA-DR+ 
dendritic cells (cluster DC3) and decreased activated interferon-γ+ 

NK cells (cluster NK2) (Extended Data Fig. 5b–d and Supplementary 
Table 8). Within the adaptive immune compartment, global T and 
B cell lymphopenia predominated in critically ill patients, with the 
remaining T cell pool enriched with PD-1+ CD4+ and CD8+ T cell clusters  
(CD4-2, CD4-3 and CD8-6) and regulatory T (Treg) cell (CD4+CD25+FoxP3+, 
CD4-4) clusters (Extended Data Fig. 6a,b and Supplementary Table 8). 
Quantification of circulating inflammatory mediators revealed acute 

Healthy volunteers ICU patients

Healthy volunteers ICU day 1 ICU day 3 ICU day 7

N
o.

 o
f s

ig
ni

fic
an

t c
on

ne
ct

io
ns

Fecal microbiota Single-cell immune composition Systemic inflammatory mediators

Single-cell immune landscape

Healthy
volunteers

ICU
day 1

ICU
day 1

ICU
day 3

ICU
day 3

ICU
day 7

Healthy
volunteers

ICU
day 1

ICU
day 3

ICU
day 7

Healthy
volunteers

Inflammatory biomarkers

Single cell immune landscape

Systemic inflammatory mediators

ICU
day 1

*P = 0.04

P = 0.8

ICU
day 3

ICU
day 7

ICU
day 7

log2FC

bFGF

Classical monocyte_1
DC_3

NK_4
NK_3
NK_2
NK_1
N9
N8
N7
N6
N5
N4
N3
N2
N1

CD4_1

–50

0

0.2

0.2

0

0.4
0.3

0.2
0.1

0
–0.1

–0.2 –0.2

0
0.2

0.4

0

–0.2

–0.6

–0.4

–0.2
0

0.2 –0.4

–0.2

0
0.2

25

50

75

–50 0 50 –50 0 50

50

100

0

CD4_2
CD4_3
CD4_4
CD4_5
CD8_1
CD8_2
CD8_3
CD8_4
CD8_5
CD8_6
DNT_1
DNT_2
DNT_3

DC_2
DC_1
B4
B3
B2
B1

Classical monocyte_2
Classical monocyte_3
Classical monocyte_4
Classical monocyte_5
Classical monocyte_6
Intermediate monocyte_1
Intermediate monocyte_2
Non-classical monocyte_1

Non-classical monocyte_2

Feature

CRP (×100,000)
Eotaxin
Eotaxin.3
Flt-1

6,000

0

0.25

0.50

0.75

1.00

c

e

g I

jh

f

a b

d

4,000

2,000

0
2
4
6

0

GM.CSF
IFN-γ

IL-10

IL-1α

IL-2

PIGF

TARC
Tie-2

VEGF
VEGF-A
VEGF-c
VEGF-D

CRP
SAA

IL-
6

IL-
8

VEGF-AIL-
15
VEGF

PIG
F

FIt
-1

sIC
AM-1

bFG
F
IL-

16
IL-

10
TN

F-a

MIP-1a

sV
CAM-1

MIP-1B IL-
5
IP-10 IL-

7
IL-

17
MCP-1

IL-
1b IL-

4
IL-

2

IL-
12.

p70IL-
13

GM-C
SF

IFN
-γ
TN

F-B

VEGF-DIL-
1a
TA

RC
IL-

12
MDC

Tie
-2

MCP-4

Eotax
in-3

Eotax
in

VEGF-c

TNF-α

TNF-β

SAA (×100,000)
sICAM.1 (×100,000)
sVCAM.1 (×100,000)IL-4

IL-5
IL-6
IL-7
IL-8
IP-10
MCP-1
MCP-4
MDC
MIP-1α

MIP-1β

IL-1β

IL-12

IL-13
IL-15
IL-16
IL-17

IL-12.p70

Systemic inflammatory landscape

C
on

ce
nt

ra
tio

n 
(p

g 
m

l–1
)

Re
la

tiv
e 

ab
un

da
nc

e 
(%

)

t-S
N

E 
di

m
. 2

t-SNE dim. 1

Spearm
an R

B cells
Neutrophils
CD4+ T cells
CD8+ T cells
Classical monocytes
Intermediate monocytes
Nonclassical monocytes
NK cells
Dendritic cells
Other

N
M

D
S3

NMDS1
NMDS2

NMDS2 NMDS1

N
M

D
S3

Non-classical monocyte_3
Other monocyte

Enterobacteriaceae
Campylobacteraceae
Porphyromonadaceae
Veillonellaceae
Prevotellaceae
Family.XI
Lachnospiraceae
Rikenellaceae
Bacteroidaceae
Tannerellaceae
Coriobacteriaceae
Oscillospiraceae
Ruminococcaceae
Bifidobacteriaceae
Acidaminococcaceae

Enterobacteriaceae
Acidaminococcaceae
Bifidobacteriaceae
Coriobacteriaceae
Lachnospiraceae
Oscillospiraceae
Ruminococcaceae
Prevotellaceae
Porphyromonadaceae
Campylobacteraceae
Family.XI
Veillonellaceae
Tannerellaceae
Bacteroidaceae
Rikenellaceae

N
3

bFG
F

Eotaxin-3

Eotaxin
IL-12

IL-1a

IL-13
IL-7

IL-6
IL-2
IL-12.p70
IL-17

IL-1b
IL-16
IL-4

IL-5
SAA
G

M
-C

SF
VEG

F-D
C

RP
IFN

-γ
sIC

AM
-1

sVC
AM

-1

VEG
F-A

VEG
F

M
C

P-1
M

IP-1B

M
IP-1a

TN
F-a

IL-10

IL-15
IL-8
PIG

F

FIt.1
IP.10
M

C
P.4

Tie.2
TARC

TN
F.B

VEG
F.c

M
D

C

C
D

8_1
D

C
_1

D
C

_3
C

D
8_5

C
lassical m

onocyte_4
D

N
T_2

C
D

8_3
C

D
4_5

C
lassical m

onocyte_2
N

K_3
C

D
8_2

B3N
K_4

C
lassical m

onocyte_3
N

7
B4C

D
4_3

C
D

4_4
C

D
4_1

D
C

_2
N

6
D

N
T_3

C
D

8_4
N

5
B1D

N
T_1

Interm
ediate m

onocyte_1
N

onclassical m
onocyte_2

B2C
D

4_2
N

9
N

8
N

K_1
N

onclassical m
onocyte_1

N
K_2

Interm
ediate m

onocyte_2
C

lassical m
onocyte_1

N
on-classical m

onocyte_3

N
1

N
2

N
4

C
D

8_6
C

lassical m
onocyte_5

C
lassical m

onocyte_6

O
ther m

onocyte
0.4

0.2

0

–0.2

–0.4

Spearm
an R

0.4

0.2

0

–0.2

–0.4

No enrichment

Enterobacteriaceae
enrichment

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | April 2023 | 1017–1027 1023

Article https://doi.org/10.1038/s41591-023-02243-5

and dynamic upregulation of pro-inflammatory (interleukin (IL)-6, 
tumor necrosis factor-α, IL-8, C-reactive protein and serum amyloid 
A) and anti-inflammatory (IL-10 and IL-4) responses (Fig. 2c,d and 
Supplementary Figs. 3 and 4) characteristic of a cytokine storm syn-
drome30. Collectively, these data reveal dynamic cellular immune and 
inflammatory responses in critically ill patients characterized by early 
innate immune dysregulation and systemic inflammation, followed by 
progressive innate and adaptive immune dysfunction.

Given the overlapping temporal dynamics of microbiota injury and 
systemic immune dysregulation during acute critical illness, we sought 
to determine whether microbiota and immune dynamics demonstrated 
metasystem-level connectivity. Using Chord diagram analysis and 
visualization of connectivity between microbial taxa and immune 
components, a higher number of significant interactions was observed 
in ICU patients at admission compared to the connectivity observed 
in healthy volunteers (Fig. 2e,f). Augmented microbiota–immune 
connectivity was sustained through the early phase of critical illness, 
remaining elevated on days 3 and 7 of admission (Fig. 2e,f). To identify 
whether this surge in microbiota–immune connectivity was linked to 
specific taxonomic changes in the microbiota, we quantified Spearman 
correlation coefficients between each of the 15 most abundant bacterial 
families and individual immune cell subsets (Fig. 2g and Supplementary 
Tables 9–11) and inflammatory mediators (Fig. 2h and Supplementary 
Table 12–14). Hierarchical analysis (indicated by the dendrogram) 
revealed that the associations between Enterobacteriaceae and both 
cellular and inflammatory mediators were unique compared to all 
other microbial families (Fig. 2g,h). Strong correlations were found 
between Enterobacteriaceae relative abundance and innate immune 
responses, with increased Enterobacteriaceae correlating with higher 
levels of immature neutrophils (clusters N1, N2 and N4) and classical 
monocytes (clusters CM5 and CM6) and reduced mature neutrophils 
(cluster N3) (Fig. 2g). Furthermore, increased Enterobacteriaceae 
positively correlated with prototypical systemic inflammatory media-
tors (IL-8, IL-15, tumor necrosis factor-α, MIP-1α and IL-10), whereas no 
correlations were found with acute phase reactants C-reactive protein 
and serum amyloid A (Fig. 2g and Supplementary Fig. 5a–d). Temporal 
analysis over the first week of critical illness revealed changes in the 
magnitude of correlations between Enterobacteriaceae and inflam-
matory and innate immune landscapes (Supplementary Figs. 5e,f  
and 6 and Supplementary Tables 9–14).

Consistent with these observations, dimensionality reduction of 
the single-cell immune landscape using non-metric multidimensional 
scaling (NMDS) revealed that patients with progressive Enterobacte-
riaceae enrichment (doubling or more of Enterobacteriaceae relative 
abundance during the first week in ICU) displayed cellular immune 
responses that differed significantly compared to those without pro-
gressive enrichment (Fig. 2i), even after controlling for patient covari-
ables associated with immune cell composition including age, sex, 
admission diagnosis, ethnicity and illness severity (Supplementary 

Table 15). In contrast, no significant difference was observed in the 
circulating inflammatory mediator landscape between patients with 
and without progressive Enterobacteriaceae enrichment (Fig. 2j) as 
well as no association between the admission inflammatory mediator 
landscape and subsequent development of Enterobacteriaceae enrich-
ment (Extended Data Fig. 7). Collectively, these data demonstrate 
that microbiota and cellular immune dynamics during acute critical 
illness function as an integrated metasystem and identify progres-
sive Enterobacteriaceae enrichment as a possible driver of overall 
metasystem dysbiosis.

Metasystem dysbiosis leads to a breakdown of innate immune 
defense
Next, we investigated whether Enterobacteriaceae-associated metasys-
tem dysbiosis was characterized by defects in specific immune defense 
programs that may contribute to the elevated risk of bacterial and fun-
gal nosocomial infections. Dimensionality reduction analysis revealed 
that the adaptive immune cell compartment in patients with progres-
sive Enterobacteriaceae enrichment was not significantly different 
from those without (Fig. 3a). Aside from a single naive B cell population 
(cluster B2), there was little impact on lymphocyte responses in patients 
with progressive Enterobacteriaceae enrichment during the first week 
of critical illness (Fig. 3a,b). In stark contrast, the innate immune cell 
landscape was significantly different in patients with progressive Enter-
obacteriaceae enrichment in the fecal microbiota compared to those 
without enrichment (Fig. 3c,d). Analysis of individual innate immune 
cell clusters revealed that this difference was characterized primar-
ily by large shifts in neutrophil clusters, with more limited impact on 
monocytes, dendritic cells and innate lymphocytes (Fig. 3d,e).

Previous studies using mouse models have reported an important 
role for the gut microbiota in directing neutrophil-mediated host 
defense via regulation of granulopoiesis, maturation and aging of 
circulating neutrophils31–34. Strong correlations were observed in ICU 
patients between Enterobacteriaceae relative abundance and increased 
immature neutrophils (CD16lo/intCD11blo/int clusters N1, N2, N4 and N8) 
and decreased mature neutrophils (CD16hiCD11bhi clusters N3, N5, N7 
and N9) (Fig. 3f). Despite similar total numbers of circulating neutro-
phils, ICU patients with progressive Enterobacteriaceae enrichment in 
their fecal microbiota had a notable shift in the landscape of neutrophils 
over time, including early and sustained increases in immature clusters 
(N1, N2 and N4) (Fig. 3g). Consistent with the temporal directionality 
between microbiota–immune metasystem dysbiosis and subsequent 
risk of nosocomial infections, we also compared the immune landscape 
between patients who developed nosocomial infections versus those 
who did not and again found that differences in the innate immune cell 
landscape, including expansion of immature neutrophils, preceded 
the development of infections (Extended Data Fig. 8). Recent studies 
have shown that immature neutrophil populations in humans display 
hypofunctional pathogen killing mechanisms, including impaired 

Fig. 3 | Enterobacteriaceae dysbiosis and impaired neutrophil host defense 
in critical illness. a–d, NMDS ordinations (a,c) and comparisons of abundance 
(b,d) of adaptive immune cell (T and B cells) populations and innate immune cell 
populations (all neutrophils, monocytes, dendritic cells and innate lymphoid 
cell populations) (a,b) identified by clustering of mass cytometry data in the 
blood of ICU patients with (n = 18) or without (n = 26) progressive enrichment 
of Enterobacteriaceae in their fecal microbiota. Dots show individual patient-
time points across the first 7 d of ICU admission, with statistical analysis 
by PERMANOVA accounting for repeated measures (a,c). e, t-SNE plots of 
neutrophils (left) and all other innate immune cells (right; monocytes, dendritic 
cells and NK cell clusters as indicated), with heat map overlay showing the 
log2FC in abundance of each cell cluster between ICU patients with (n = 18) or 
without (n = 26) progressive enrichment of Enterobacteriaceae in their fecal 
microbiota. f, Correlation between fecal Enterobacteriaceae relative abundance 
and the quantity of mature (left) and immature (right) neutrophils (shown as 

proportion of total neutrophils) in ICU patients across the first week of admission 
analyzed using Spearman’s ranked correlation test. Dots show individual patient 
samples, regression (line) and 95% confidence intervals (shaded area) are shown. 
g, Comparison of neutrophil clusters in blood of ICU patients with (n = 18) or 
without (n = 26) Enterobacteriaceae enrichment (shown as log2 fold difference of 
cluster abundance between groups). To determine the independent contribution 
of Enterobacteriaceae enrichment status (a–e,g), analyses controlled for clinical 
covariables that were independently associated with immune cell composition 
(Supplementary Table 15). i,j, Quantification of plasma NET markers (i) cell-free 
DNA and (j) MPO–DNA complexes on ICU day 3 in patients with (n = 18) or without 
(n = 26) Enterobacteriaceae enrichment. Dots represent individual patients, 
central line shows the median, box shows the IQR and whiskers show the range; 
statistical comparison was performed using a two-sided Mann–Whitney U-test.  
P values are shown.
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production of neutrophil extracellular traps (NETs)35. Patients with 
progressive Enterobacteriaceae enrichment (and associated imma-
ture neutrophil expansion) were found to have reduced quantities 
of circulating NET markers in their plasma (both cell-free DNA and 
myeloperoxidase (MPO)–DNA complexes) compared to those without 
enrichment (Fig. 3h,i). Overall, these findings reveal that increased 
susceptibility to nosocomial infections in the setting of progressive 

Enterobacteriaceae enrichment is coupled to dysregulated and hypo-
functional neutrophil responses.

Discussion
Here we show that the intestinal microbiota and systemic immune 
response of acute critical illness are functionally integrated as a 
dynamic metasystem. Dysbiosis of this metasystem in critical illness 
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is associated with progressive Enterobacteriaceae expansion in the gut 
microbiota, dysregulated innate immunity and increased incidence of 
bacterial and fungal nosocomial infections.

Evidence from mouse models has shown that gut microbes regu-
late various mechanisms of systemic immunity and that germ-free and 
antibiotic-conditioned mice display impaired defense against a variety 
of bacterial, fungal and viral infections33,34,36–39. In critically ill humans, 
we observed that gut microbiota dysbiosis was coupled predominantly 
with innate immune dysregulation, with less impact on the landscape 
of adaptive immunity. In particular, the dominant response of neu-
trophils to microbiota alterations during the early stages of critical 
illness may reflect their rapid turnover and greater capacity for acute 
functional plasticity compared to the more protracted time course of 
adaptive immune responses. As our study focused on the first week of 
critical illness, it is possible that intestinal dysbiosis may drive adaptive 
immune dysregulation later in the course of illness, as previous studies 
have documented widespread lymphocyte apoptosis and functional 
exhaustion that persists in some patients and contributes to ongo-
ing organ dysfunction and opportunistic nosocomial infections3,6. 
The impact of metasystem dysbiosis on long-term imprinting of both 
innate and adaptive immunity remains to be explored, but a previous 
retrospective study of hospitalized patients suggested that intestinal 
dysbiosis may be associated with a prolonged increased risk of infec-
tions and recurrent sepsis that lasts for months (or longer)40.

Gut microbes have been implicated in systemic neutrophil homeo-
stasis through regulation of their maturation, aging, modulation of 
effector functions, as well as granulopoiesis in the bone marrow31–34. 
In mice, intestinal dysbiosis or germ-free status leads to suppressed 
myelopoiesis, impaired neutrophil maturation and defective anti-
microbial effector functions31–33,41. Consistent with this, we observed 
a profound shift in neutrophil responses in patients with intestinal 
dysbiosis and progressive Enterobacteriaceae enrichment, marked 
by immature and hypofunctional neutrophil responses, including 
decreased NETs. This mechanism of microbiota–immune metasystem 
dysbiosis involving a core program of innate host defense is consistent 
with the elevated risk of systemic infections caused by diverse bacterial 
and fungal pathogens across multiple organs.

The ecological pressures driving microbiota dysbiosis in critical 
illness are likely multifactorial, including host intrinsic factors (age, 
comorbidities, physiological alterations of gut motility, mucosal blood 
flow, pH and others) as well as host-extrinsic factors that are inherent 
to critical illness (altered nutritional intake, medications (including 
antibiotics), invasive devices and ICU environment). Of note, we and 
others have found that abnormalities of community composition, 
diversity, as well as expansion of pathobionts such as Enterobacte-
riaceae are present from the time of ICU admission10,11,20. Notably, this 
was observed in patients with both subacute pre-ICU illnesses (such as 
sepsis) as well as more acute presentations (trauma, neurological injury 
and cardiac arrest) and was present despite our stringent exclusion 
criteria that limited pre-ICU hospitalization or antibiotic exposure. 
Following admission to ICU, we observed progressive and dynamic 
changes to the microbiota during the acute phase of critical illness 
that was characterized by expansion of Enterobacteriaceae and reduc-
tion in anaerobic fermenters, consistent with evidence implicating 
anaerobic fermenters in colonization resistance against Enterobac-
teriaceae42. Notably, among the multi-taxa changes observed during 
acute critical illness, only progressive Enterobacteriaceae enrichment 
(but not reduced anaerobic fermenters such as Ruminococcaceae or 
Lachnospiraceae) was associated with impaired host defense and risk 
of nosocomial infections, suggesting that Enterobacteriaceae exerts 
a unique influence on the microbiota–immune metasystem during 
critical illness. A recent study of ICU patients found that expansion of 
Enterobacteriaceae in the gut in the setting of anti-anaerobic antibiotic 
administration was also coupled with an increased risk of nosocomial 
infections20. These findings raise the possibility that interventions such 

as antibiotics may propagate a vicious cycle of microbiota–immune 
metasystem dysbiosis through suppression of gut anaerobe-mediated 
colonization resistance and expansion of Enterobacteriaceae. Of note, 
intestinal Enterobacteriaceae expansion has been observed in other 
hospitalized non-ICU patient populations who are at risk of nosocomial 
infections and therefore our findings may have implications beyond 
critical illness.

Last, our findings may have important therapeutic implications 
for prevention and treatment of infections in the ICU. Nosocomial 
infections remain a leading cause of adverse outcomes in critical illness 
including mortality, prolonged hospitalization and resource utiliza-
tion1,2,43. The association between microbiota dysbiosis and nosocomial 
infections has led to clinical trials of microbiota-modifying therapies 
in critically ill patients, but studies have been hindered by a limited 
understanding of the mechanisms linking dysbiosis with infections, 
resulting in untargeted approaches such as probiotics and digestive 
tract decontamination that have yielded modest or negligible ben-
efits44,45,46, as well as possible harm in this vulnerable patient popula-
tion47–49. Our findings reveal that pathological microbiota alterations 
in critical illness may render the host more susceptible to infections 
via induction of immune dysfunction, suggesting that microbiota 
therapeutics in the ICU should be targeted at correcting the drivers of 
microbiota–immune metasystem dysbiosis. We have identified intesti-
nal Enterobacteriaceae expansion as a marker of metasystem dysbiosis 
in critical illness and therefore precision editing of intestinal Entero-
bacteriaceae colonization50 may represent a strategy to reduce infec-
tions and adverse outcomes by fortifying systemic immune defenses.

This study has a number of limitations, including a single-center 
design, limited sample size and inherent heterogeneity of critically 
ill patients (including diverse comorbidities and treatments). While 
our prospective and longitudinal analysis enabled the identification 
of notable associations with temporal directionality between micro-
biota–immune metasystem dysbiosis and subsequent nosocomial 
infections, we cannot definitively show causality. In addition, our 
interrogation of systemic immunity was limited to the bloodstream 
and microbiota analysis was limited to the rectal compartment, due to 
safety and ethical considerations of obtaining invasive tissue biopsies 
or endoscopic sampling of the proximal GI tract in critically ill patients. 
Furthermore, 16s sequencing and mass cytometry analysis provide 
detailed, albeit incomplete resolution of microbiota dysbiosis and 
immune cell heterogeneity. Therefore, future studies using expanded 
immune analysis and deeper microbiota sequencing may uncover 
additional mechanisms of immune dysfunction involving neutrophils 
and other antimicrobial effector cells and microbial alterations of the 
gut or other sites (lungs, oropharynx, skin or even ICU environment) 
that contribute to metasystem dysbiosis and impaired host defense 
in critical illness.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-023-02243-5.
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Methods
Study design and participants
This study was approved by the conjoint health research ethics board 
of the University of Calgary and Alberta Health Services (REB18-1294). 
Written informed consent was obtained from all study participants or 
appropriate surrogate decision maker for patients who were unable to 
provide consent due to incapacitating illness. Enrollment occurred 
between 23 July 2019 and 20 July 2021, with substantial delays and 
disruptions in enrollment due to the COVID-19 pandemic between 
March 2020 and April 2021. Patients admitted to the medical, surgi-
cal, neurological and trauma ICUs at the Foothills Medical Center in 
Calgary were screened for the following inclusion criteria (adapted 
from elsewhere44): adult (>18 years of age) with an index admission to 
ICU, requiring mechanical ventilation, who was expected to require 
continuous mechanical ventilation for >72 h as judged by the treat-
ing ICU specialist. Patients were excluded if they had a pre-existing 
immunocompromised state (systemic immunomodulatory therapy, 
chemotherapy, HIV infection or other congenital or acquired immu-
nodeficiency), had been hospitalized >48 h before ICU admission in 
the previous 3 months, had received systemic antimicrobial therapy 
in the previous 3 months, had inflammatory bowel disease or active 
GI malignancy, previous surgery leaving a discontinuous GI tract, 
pregnancy, goals of care that excluded life-support interventions or 
moribund patients not expected to survive >72 h. At the onset of the 
COVID-19 pandemic, the study team added SARS-CoV-2 infection as 
an exclusion criterion and therefore no patients with COVID-19 were 
included in this study.

Rectal swabs and blood samples were collected from prospectively 
enrolled patients on the day of ICU admission (n = 51) and again from 
survivors who remained in the ICU on day 3 (n = 45) and day 7 (n = 18) fol-
lowing admission. For reference comparisons, rectal swabs and blood 
samples were also collected from healthy volunteers (n = 18) for use as 
controls. As a discovery-based study of microbiota–immune interac-
tions, there were no previously published effect size estimates to facili-
tate an a priori sample size calculation, therefore we enrolled a cohort 
size that was comparable to other recently published multi-omic stud-
ies in critically ill patients51–55, as well as human microbiota–immune 
omics studies56–58. The number of patient samples included in each 
analysis is indicated in figure legends and varies slightly due to rare 
instances where the quality or quantity of individual samples were 
unsuitable for certain assays and could not be re-collected. Patient 
demographic and clinical data were collected at the time of admission 
and are displayed in Table 1. Clinical outcomes of nosocomial infec-
tion and death were recorded up to 30 d following ICU admission. 
Nosocomial infections were identified as newly diagnosed infections 
occurring at least 48 h after admission, diagnosed by the treating 
specialist physician, resulting in administration of new antimicrobial 
treatments and were independently confirmed by a physician member 
of the study team based on the following definitions: diagnosis of VAP 
and HAP required the presence of new or progressive radiographic 
infiltrate on chest radiograph plus two of fever, purulent sputum, white 
blood cell count >10 × 106 l−1 or <3.0 × 106 l−1, as previously described44 
and all cases of VAP met the Center for Disease Control and Prevention 
National Healthcare Safety Network (CDC NHSN) case definition of 
probable or definite VAP59. Nosocomial BSIs met the CDC NHSN defi-
nition of BSI/central-line-associated BSI, UTIs were identified based 
on Infectious Disease Society of America clinical practice guideline 
criteria for the diagnosis of catheter-associated urinary tract infections 
and Clostridium difficile infection was based on the presence of new 
diarrhea and positive stool testing for C. difficile toxin60,61. The sites of 
nosocomial infection and clinical microbiology data are presented in 
Table 2. Of note, all nosocomial infections reported in this study were 
assumed to be acquired after ICU admission/enrollment (see exclu-
sion criteria above) and are therefore separate from the admission 
diagnoses listed in Table 1 (in particular, admission diagnoses of sepsis 

in Table 1 were not caused by nosocomial infections, as all were due to 
community-acquired infections as shown in Supplementary Table 1).

16S rRNA gene amplification and sequencing
All experimental analyses were performed at the University of Calgary. 
Rectal swabs were collected and stored in sterile tubes at −80 °C. DNA 
was isolated using the DNeasy PowerSoil (QIAGEN) following the manu-
facturer’s protocol. Negative control swabs were processed identically 
and run through the study protocol as controls. PCR amplification 
of the 16S V4 region was performed using previously described dual 
indexed primers with sample barcodes and sequencing adaptors and 
PCR conditions62. PCR products were cleaned and size selected using 
Nucleomag beads (Macherey Nagel) following manufacturer’s instruc-
tions. Individual sample libraries were normalized using a SequalPrep 
Normalization Plate (Invitrogen), after which samples were pooled to 
create the final library. Quality control of the pooled next-generation 
sequencing library was performed using an Agilent Technologies 2200 
TapeStation and Qubit dsDNA analyzer. The pooled 16S V4 amplicon 
library was sequenced using an Illumina MiSeq platform to produce 
2 × 250-bp paired-end reads.

16S amplicon sequence data processing and analysis
De-multiplexed Illumina MiSeq paired-end reads (FASTQ) were pro-
cessed in R v.4.1.2 following the DADA2 pipeline v.1.14. Forward and 
reverse reads were truncated to 230 bp and 210 bp, respectively or to 
the first base with a quality score Q < 2. Reads containing any ambigu-
ous (N) nucleotides or reads containing more than two errors were 
removed. Samples with fewer than 1,000 reads following trimming 
and filtering steps were discarded from further analysis. Taxonomy of 
unique amplicon sequence variants (ASVs) was assigned in DADA2 by 
the RDP Classifier using the SILVA v.138.1 database. ASVs and sample 
data were combined using the Phyloseq package v.1.38.0 for further 
downstream analysis. Potential contaminants were identified and 
removed by the Decontam package v.1.14.0 based on the distributed 
frequency of ASVs and the DNA concentration of individual samples63. 
ASVs taxonomically assigned to Cyanobacteria, mitochondria or chlo-
roplast were removed. Publicly available datasets of healthy volunteers 
(n = 95, without colonic polyps) from Dadkhah et al.22 were processed 
on raw FastQ files as described above.

Microbiome α-diversity metrics were calculated using the Micro-
biome package v.1.16.0. Community dissimilarity (β-diversity) was 
calculated on the Bray–Curtis dissimilarity measure by PERMANOVA 
using the adonis function in Vegan v.2.6 and three-dimensional visu-
alization was performed by plotting the first three dimensions of the 
Bray–Curtis dissimilarity ordination using the plotly package v.4.10.0. 
Spearman correlation matrices were performed between the 15 most 
abundant bacterial families present in at least 10% of samples using 
the rcorr function in the Hmisc package v.4.7 and visualized using 
the ggplot2 package v.3.3.6 in R. Taxonomy plots showing relative 
abundances were plotted using ggplot2 package microbiomeutili-
ties v.1.00.16 and the Phyloseq packages v.1.38.0 in R. Penalized ridge 
regression analysis (glmnet R package v.4.1-4) was used to determine 
the importance of the 15 most abundant bacterial families toward speci-
fied microbiome outcomes (change in Shannon diversity or change in 
Enterobacteriaceae relative abundance between ICU days 1 and 3) using 
a threefold cross validation repeated ten times through the R package 
caret v.6.0-93. Results were visualized using the vip package v.0.3.2 in 
R. Community stability was determined using the codyn R package 
on data from days 1 and 3 of ICU admission. Differential abundance 
analysis was performed using ANCOM-II on relative abundances, with 
patients fit as a random effect to account for repeat measures using the 
microbiomeMarker R package v.1.0.2. Network analysis was performed 
on bacterial families using the NetCoMi R package64 v.1.1.0 and shows 
Spearman correlations >0.2 of the most abundant (upper quartile 25%) 
bacterial families in all samples. Data are reported as per the STORMS 
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(Strengthening the Organization and Reporting of Microbiome Stud-
ies) guidelines (Supplementary Table 18).

Quantitative analysis of fecal bacterial density
Bacterial density measurements were performed by qPCR using a univer-
sal 16s rRNA gene primer set (forward, 5′-TCCTACGGGAGGCAGCAGT-3′; 
reverse, 5′-GGACTACCAGGGTATCTAATCCTGTT-3′) as previously 
described65 and a standard curve was generated from Escherichia coli 
strain Xen14 DNA (PerkinElmer). The PCR reaction was performed 
using the PowerUp SYBR Green kit (Thermo Fisher) on a StepOnePlus 
Real-Time PCR System (Thermo Fisher). Cycle conditions were as fol-
lows: 50 °C 2 min, 95 °C 10 min, 95 °C for 15 s (40 cycles) and 60 °C 
for 1 min. Determination of Enterobacteriaceae abundance was per-
formed as previously reported by Chanderraj et al.20 by multiplying the 
absolute bacterial density by Enterobacteriaceae relative abundance 
determined by 16s rRNA gene amplicon sequencing.

Time-of-flight mass cytometry
Whole blood samples used for mass cytometry analysis were cryopre-
served in PROT1 proteomic stabilizer (SmartTube) at a ratio of 1:1.4 
and stored at −80 °C to enable batched analysis of patient samples as 
described58. Samples were thawed at room temperature and red blood 
cell lysis was performed using PROT1 RBC lysis buffer (SmartTube) and 
white blood cells were washed in cell staining medium (PBS with 1% 
BSA) followed by labeling with a custom metal-conjugated antibody 
panel (Supplementary Table 17). White blood cells were incubated 
with metal-conjugated surface antibodies, followed by fixation and 
permeabilized (BD Cytofix-Cytoperm), incubation with intracellular 
antibodies, then left overnight in a solution containing Cell-ID iridium 
intercalator (Fluidigm), 0.3% saponin and 1.6% paraformaldehyde in 
PBS. Cells were then mixed with EQ Four Element Calibration Beads 
(Fluidigm) and acquired on a Helios CyTOFII mass cytometer (DVS). 
Mass cytometry data were normalized using the internal Helios CyTOFII 
bead-based normalization software (DVS).

Single-cell mass cytometry data processing and analysis
Normalized mass cytometry data files were further processed in R using 
the CytoSpill package v.0.1.0 to correct for any signal overlap between 
markers66. Next, corrected FCS files were imported into Cytobank 
(Cytobank) for manual gating on CD45+ single-cell events and major 
cell populations (Supplementary Table 8). Manually gated events were 
then exported as FCS files for further analysis in R using the CATALYST 
package v.1.16.0. Batch correction was performed using the Remove-
BatchEffect function in the limma package v.3.48.3. Gated cell popula-
tions were clustered based on the expression of all available markers in 
CATALYST using the FlowSOM function. Extremely rare metaclusters 
(<0.5% of events in each population) or aberrant clusters (aberrant 
expression of all panel markers or less than three panel markers) were 
also removed. t-SNE dimensionality reduction was performed on 1,000 
randomly selected events from each sample using a perplexity of 80 for 
5,000 iterations. Figures were generated within the built-in functions 
of CATALYST in R. Visualization of dimensionality-reduced cellular 
immune landscapes between study participants was performed using 
NMDS of the relative abundance of immune cell populations using the 
Vegan metaMDS function in R. Figures showing log2FC of individual cell 
populations (between healthy volunteers and ICU patients or between 
ICU patients with or without Enterobacteriaceae enrichment) were 
calculated on absolute cell counts and controlled for clinical covari-
ables that were significantly associated with immune cell composition 
(Supplementary Table 15), using the DESeq2 package v.1.34.0.

Plasma inflammatory mediator quantification and analysis
Cryopreserved plasma samples were used for quantification of inflam-
matory cytokines, chemokines and biomarkers using the V-PLEX 
Human Biomarker 40-Plex kit (MesoScale Diagnostics). Cell-free 

DNA levels were quantified using the Quanti-iT PicoGreen kit (Invit-
rogen) according to the manufacturer’s instructions and quantifica-
tion of MPO–DNA complexes in plasma was performed as previously 
described55. Differential abundance of 40-plex plasma inflammatory 
biomarkers was performed on the log2-transformed concentration 
values using the limma package v.3.48.3 in R, as previously described67. 
Dimensionality reduction and visualization of the differences in plasma 
inflammatory mediators between patients with and without microbiota 
Enterobacteriaceae enrichment was performed using NMDS of media-
tor concentrations using the Vegan package v.2.6 in R. Figures showing 
log2FC of individual mediators between ICU patients with or without 
Enterobacteriaceae enrichment were calculated on absolute concen-
tration using the limma package v.3.48.3 and plotted with ggplot2 . No 
clinical covariables were significantly associated with inflammatory 
mediator landscape composition (Supplementary Table 16).

Multi-omics integration and analysis
To perform an integrated multi-omics analysis of the fecal microbiota, 
cellular immune composition and inflammatory mediator landscape 
in blood, we employed an unsupervised factor analysis approach in 
R with MOFA v.1.4.0, as previously described68. Briefly, microbiota 
taxonomic data were aggregated to the family level and filtered to a 
cutoff of 25% prevalence, after which the count data was transformed 
by center log ratio (clr). Single-cell mass cytometry count data and 
inflammatory mediator concentrations were log transformed before 
dataset integration. The resulting MOFA factors were then compared 
between healthy volunteers and ICU patients to determine latent 
factors that explain variation between these populations. Modeling 
of the combined datasets in MOFA was performed using the default 
parameters with model fitting identifying the top ten MOFA factors 
that explained the largest amount of variation between samples. Next, 
MOFA factors showing contributions from all meta-systems data-
sets (fecal microbiota, single-cell immune composition and systemic 
inflammatory mediators) that explained at least 5% of variance were 
compared between healthy volunteers and ICU patients. Within each 
MOFA factor, individual features weights (such as individual microbial 
taxa within microbiota factors) were compared between healthy vol-
unteers and ICU patients.

Connectivity between microbiota, cellular immune landscape and 
inflammatory mediators was determined using Chord diagram analy-
sis. A Spearman correlation coefficient was calculated for pairings of all 
microbial taxa (10% prevalence cutoff, relative abundance and family 
level), immune cell subset counts and inflammatory mediatory con-
centrations (FDR-adjusted for multiple comparisons with P < 0.1) and 
significant values were visualized using the circlize package v.0.4.15 in 
R. Heat maps depicting the Spearman correlation coefficients between 
the 15 most abundant bacterial families (10% prevalence cutoff) and 
immune components (cell counts and inflammatory mediator con-
centrations) were generated using the rcorr function in the Hmisc 
package v.4.7 and visualized using the pheatmap package v.1.0.12 in R.

Statistical analysis
Microbiota α-diversity metrics (Shannon index and Chao1), as well as 
relative abundance data of individual bacterial families were analyzed 
between healthy volunteers and ICU patient days using a Kruskal– 
Wallis test with a post hoc Tukey test. Analysis of paired measurements 
from ICU patients across days 1, 3 and 7 of admission was performed 
using a linear mixed-effects model to account for repeated measures 
and variable dropout across sampling time points using the lmerTest 
package v.3.1.3 in R (no additional clinical covariables were included 
in these models). A post hoc Tukey test was performed on the model 
for comparison between days in ICU using the emmeans package 
v.1.7.4 in R. Microbiota β-diversity was calculated on the Bray–Curtis 
dissimilarity by PERMANOVA using the adonis function in the Vegan 
package v.2.6, with pairwise ANOVA comparisons between healthy 
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volunteers and ICU patient days using the EcolUtils package v.0.1 in 
R. To determine the associations between microbiota β-diversity and 
patients demographic and clinical covariables (categorical variables 
of biological sex, admission diagnosis and ethnicity; and continuous 
variables of age, comorbidities Charlson index, SOFA score, duration of 
hospitalization and antibiotic treatment before microbiota sampling), 
multivariable permutational ANOVA was performed in Vegan v.2.6. 
in R with permutations blocked by patients to account for repeated 
measures across sampling time points, with results shown in Extended 
Data Table 1.

Statistical analyses of NMDS of immune cell population abun-
dances and inflammatory mediators between patients with and without 
progressive Enterobacteriaceae enrichment were performed using 
multivariable PERMANOVA in Vegan v.2.6. To account for repeated 
measures for multi-time-point comparisons, permutations were 
blocked by patients. To determine the associations between demo-
graphic and clinical covariables and control for their effects on immune 
cell composition and inflammatory mediator landscapes, both cat-
egorical variables (biological sex, admission diagnosis and ethnicity) 
and continuous variables (age, comorbidities Charlson index, SOFA 
score, duration of hospitalization and antibiotic treatment before 
microbiota sampling) were included in the models and are shown in 
Supplementary Tables 15 and 16.

To investigate associations between the outcome of progressive 
Enterobacteriaceae enrichment in ICU patients and demographic/
clinical covariables known to influence microbiota and/or immune 
composition, we performed both univariable and multivariable analy-
ses, with full model results shown in Extended Data Table 2. Univariable 
analyses were performed by Wilcoxon rank-sum test for continuous 
variables and Fisher’s exact test for categorical variables and multivari-
able analysis was performed using logistic regression to determine the 
association between demographic/clinical variables and the outcome 
of progressive Enterobacteriaceae enrichment.

The 30-d nosocomial infection-free survival data were visualized 
using a Kaplan–Meier curve and analyzed using a log-rank (Mantel–
Cox) test. Maximally selected rank statistics were utilized to define 
cutoff values for microbiota variables (admission Shannon diversity, 
admission relative abundance or progressive change in relative abun-
dance from day 1 to 3 of Enterobacteriaceae, Ruminococcaceae or 
Lachnospiraceae) to identify maximal separation of patients based on 
30-d nosocomial infection-free survival using the surv_cutpoint func-
tion in the survminer R package v.0.4.9. To avoid bias from exclusion 
of zero values, relative abundance values of zero were replaced with a 
value of 0.00001 (half the lowest abundance value). Odds ratios were 
calculated and analyzed using a two-sided Fisher’s exact test.

All statistical analyses were performed in R or GraphPad Prism 
v.9.3.1. Where applicable, FDR adjustment of P values was performed 
to account for multiple comparisons.

An analysis of all key data with study participants stratified by 
biological sex is provided in Supplementary Fig. 7.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Correspondence and requests should be addressed to B.M. (bamc-
dona@ucalgary.ca). DNA sequence datasets have been deposited 
and are available in the NCBI Sequence Read Archive under BioPro-
ject ID PRJNA851469. Additional datasets are available in Supplemen-
tary Tables. Other de-identified datasets are available upon request. 
Access to metadata containing potentially identifying patient informa-
tion requires an approved research ethics protocol and may require 
approval from Alberta Health Services as the steward of patient infor-
mation for all study participants; a material/data transfer agreement 

may be required. A publicly available dataset or 16s rRNA gene 
sequences from Dadkhah et al.22 was used in this study, as well as the 
DADA2 formatted SILVA database v.138.1, which is available at https://
doi.org/10.5281/zenodo.4587955.

Code availability
All analyses were performed using publicly available software and 
published code as described in Methods. No custom code was gener-
ated for data analyses in this study.
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Extended Data Fig. 1 | Fecal microbiota dynamics in critically ill patients. 
(a) Taxonomic composition (phylum level) and (b) analysis of the relative 
abundance of bacterial families in critically ill patients (N = 51) sampled on day 
1 of admission (N = 51), and again from survivors who remined in ICU on day 3 
(N = 44), and day 7 (N = 15), compared to healthy volunteer controls (N = 15). Dots 
are individual patients, central line is median, box shows IQR, whiskers show 
range. Statistical comparisons between healthy volunteers and ICU patients 

at each time point were performed using a Kruskal–Wallis test, while pairwise 
comparisons of repeated measures across ICU patient-days were performed 
using mixed linear regression model with post hoc Tukey’s tests to account for 
repeated measures and variable drop-out. P values as shown. (c) Differential 
abundance of bacterial families between ICU patients and healthy volunteers 
was determined using ANCOM-II with a mixed model to account for repeated 
measures (across sampling days) (*p-adj<0.1).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Inter-bacterial dynamics in the fecal microbiota of 
ICU patients. (a) Multi-Omics Factor Analysis (MOFA) was used to calculate the 
explained variance of microbiota composition between healthy volunteers and 
ICU patients on day 1 of admission, showing top 10 taxonomic factors (families) 
and their relative contributions to explained variance (factor weight). (b) 
Spearman correlation between the relative abundance of Enterobacteriaceae and 
taxonomic richness (Chao1) in ICU patients across all sampling timepoints. Dots 
show individual patient samples, regression line and 95% confidence interval 
(shaded area) shown. (c) Spearman correlation network of the most abundant 
bacterial families in healthy volunteers and ICU patients on day 1 of admission 
(upper quartile, 25%). (d, e) Spearman correlation between Enterobacteriaceae 
relative abundance and the relative abundance of Lachnospiraceae (D) and 
Ruminococcaceae (E) in ICU patients across all sampling timepoints. Dots 
show patient samples, regression line and 95% confidence interval (shaded 

area) shown. (f ) Penalized ridge regression of the 15 most abundant bacterial 
families in ICU patients and their importance towards the progressive 
change in Enterobacteriaceae relative abundance from day 1 to 3 of admission 
(∆Enterobacteriaceae). (g) Relative abundance of Enterobacteriaceae on days 1, 
3, and 7 of ICU admission in patients with (N = 18) or without (N = 26) progressive 
enrichment of Enterobacteriaceae in their fecal microbiota. (h) Progressive 
change in total bacterial density, and (i) Enterobacteriaceae absolute abundance 
in rectal swab samples from day 1 to 3 of admission (shown as log fold change) 
in patients with (N = 17, one patient had insufficient remaining sample for qPCR) 
or without (N = 26) progressive enrichment of Enterobacteriaceae in their fecal 
microbiota. Dots are individual patients, central line is median, box shows IQR, 
whiskers show range, statistical analysis by 2-sided Mann–Whitney test. P values 
as shown.
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Extended Data Fig. 3 | Microbiota dynamics and nosocomial infection-free 
survival in critical illness. (a) Maximally selected rank statistics identified that 
a Shannon diversity index value of 3.59 on day 1 of admission yielded the greatest 
separation of patients based on nosocomial infection-free survival. Patients with 
Shannon index above this cutoff (>3.59) were grouped as ‘high’ Shannon index, 
and those below cutoff (<3.59) were grouped as ‘low’ Shannon index. (b) Kaplan–
Meier curve of nosocomial infection-free survival between patients with  
high Shannon diversity or low Shannon diversity as determined in (A). (c–e) 
Maximally selected rank statistics identified relative abundance values on day 1  
of ICU admission of (C, top) Enterobacteriaceae, (D, top) Ruminococcaceae, 
and (E, top) Lachnospiraceae that yielded the greatest separation of patients 

based on nosocomial infection-free survival. Patients with relative abundance 
values above the cutoff were grouped as ‘high’, and those below cutoff were 
grouped as ‘low’ for each respective bacterial family. (Bottom panels) Kaplan–
Meier curves of nosocomial infection-free survival between patients with high 
versus low relative abundance of (C, bottom) Enterobacteriaceae, (D, bottom) 
Ruminococcaceae, and (E, bottom) Lachnospiraceae. (f–h) Kaplan–Meier curves 
of nosocomial infection-free survival in patients stratified by the change in 
relative abundance between day 1 and 3 of ICU admission (increase vs decrease) 
of (F) Enterobacteriaceae, (G) Ruminococcaceae, and (H) Lachnospiraceae. 
Statistical analysis was performed using log-rank test, p values as shown.
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Extended Data Fig. 4 | Immune cell dynamics in critically ill patients. Mass 
cytometry of whole blood was used to quantify the abundance of major immune 
cell populations in critically ill patients (N = 51) sampled on day 1 of admission 
(N = 49), and again from survivors who remined in ICU on day 3 (N = 43), and 
day 7 (N = 15), compared to healthy volunteer controls (N = 12). Data are shown 
as %CD45+ cells in blood for (a) neutrophil, (b) monocytes, (c) dendritic cells, 
(d) NK cells, (e) T lymphocytes, and (f) B lymphocytes. Dots are individual 

patients, central line is median, box shows IQR, whiskers show range. Statistical 
comparisons between healthy volunteers and ICU patients at each time point 
were performed using a Kruskal–Wallis test, while pairwise comparisons of 
repeated measures across ICU patient-days were performed using mixed linear 
regression model to account for repeated measures and variable drop-out,  
with post hoc Tukey’s tests. P values as shown.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02243-5

Extended Data Fig. 5 | Innate immune landscape during critical illness. 
FlowSOM clustering of single-cell mass cytometry data was used to identify 
unique clusters of (a) neutrophil, (b) monocytes, (c) dendritic cell, and (d) NK 
cells in blood from critically ill patients (N = 51) sampled on day 1 of admission 
(N = 49), and again from survivors who remined in ICU on day 3 (N = 43), and  

day 7 (N = 15), compared to healthy volunteer controls (N = 12). Graphs shown 
log2 fold difference of cluster abundance between healthy controls and ICU 
patients on ICU day 1, day 3, and day 7. Heatmaps show mean expression level of 
key markers for each cell type measured by mass cytometry (scaled by column/
marker), as well as total quantity (mean) of each cell cluster (cells/mL of blood).
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Extended Data Fig. 6 | Adaptive immune cell landscape during critical 
illness. FlowSOM clustering of single-cell mass cytometry data was used to 
identify unique clusters of (a) T cells, and (b) B cells in blood from critically 
ill patients (N = 51) sampled on day 1 of admission (N = 49), and again from 
survivors who remined in ICU on day 3 (N = 43), and day 7 (N = 15), compared to 

healthy volunteer controls (N = 12). Graphs shown log2 fold difference of cluster 
abundance between healthy controls and ICU patients on ICU day 1, day 3, and 
day 7. Heatmaps show mean expression level of key markers for each cell type 
measured by mass cytometry (scaled by column/marker), as well as total quantity 
(mean) of each cell cluster (cells/mL of blood).
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Extended Data Fig. 7 | Enterobacteriaceae enrichment in the fecal 
microbiota and systemic inflammatory response during critical illness. 
(a) Non-metric multidimensional scaling (NMDS) ordination of the systemic 
inflammatory mediators at time of ICU admission in patients who subsequently 
developed (N = 18 patients) or did not develop (N = 26 patients) progressive 
fecal Enterobacteriaceae enrichment. Statistical comparisons were performed 

using permutational analysis of variance (PERMANOVA), each point represents 
an individual patient-time point, p value as shown. (b–d) Plasma levels of 
inflammatory mediators were compared (shown as log2 fold difference) 
between ICU patients with (N = 18) or without (N = 26) progressive enrichment 
of Enterobacteriaceae in their fecal microbiota on day 1 of admission, and again 
from survivors who remined in ICU on day 3, and day 7.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-023-02243-5

Extended Data Fig. 8 | Cellular immune and inflammatory landscapes 
preceding nosocomial infections in critical illness patients. Non-metric 
multidimensional scaling (NMDS) ordination of the quantities across the first 
week of ICU admission of (a) adaptive immune cell (T and B cells) populations, 
(b) innate immune cell populations (all neutrophils, monocytes, dendritic cells, 
innate lymphoid cell populations) identified by unsupervised clustering of 
single cell mass cytometry analysis of blood, and (c) the systemic inflammatory 
mediators in patients who subsequently developed nosocomial infections 
(N = 28 patients) versus those who did not develop infections (N = 23 patients). 
Statistical comparisons were performed using permutational multivariate 

analysis of variance (PERMANOVA), each point represents an individual patient-
time point, p values as shown. To determine the independent associations of 
nosocomial infection status, analyses controlled for clinical covariables that 
were independently associated with immune cell composition (Supplementary 
Table 15). (d, e) Differential abundance analysis of the (d) adaptive immune cell 
clusters and (e) innate immune cell clusters identified by unsupervised clustering 
of single cell mass cytometry analysis of blood from ICU on Day 3 of admission 
(prior to any nosocomial infections) in patients who subsequently developed 
nosocomial infections (N = 28 patients) and those who did not (N = 23 patients).
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Extended Data Table 1 | Multivariable analysis of clinical factors and their association with microbiota composition during 
the first week of ICU admission
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Extended Data Table 2 | Demographic and clinical characteristics of patients with and without progressive 
Enterobacteriaceae enrichment in the fecal microbiota
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