Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bodywide ecological interventions on cancer

Subjects

Abstract

Historically, cancer research and therapy have focused on malignant cells and their tumor microenvironment. However, the vascular, lymphatic and nervous systems establish long-range communication between the tumor and the host. This communication is mediated by metabolites generated by the host or the gut microbiota, as well by systemic neuroendocrine, pro-inflammatory and immune circuitries—all of which dictate the trajectory of malignant disease through molecularly defined biological mechanisms. Moreover, aging, co-morbidities and co-medications have a major impact on the development, progression and therapeutic response of patients with cancer. In this Perspective, we advocate for a whole-body ‘ecological’ exploration of malignant disease. We surmise that accumulating knowledge on the intricate relationship between the host and the tumor will shape rational strategies for systemic, bodywide interventions that will eventually improve tumor control, as well as quality of life, in patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Paradigm shifts in cancer research and therapy.
Fig. 2: Molecules and pathways linking components of the bodywide ecosystem to the tumor microenvironment.
Fig. 3: Future management of patients with cancer.

Similar content being viewed by others

Data availability

The paper does not contain any original or unpublished data.

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  3. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  Google Scholar 

  4. Vickovic, S. et al. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 13, 795 (2022).

    Article  CAS  Google Scholar 

  5. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  Google Scholar 

  6. Lopez-Otin, C. & Kroemer, G. Hallmarks of health. Cell 184, 33–63 (2021).

    Article  CAS  Google Scholar 

  7. Martinez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).

    Article  CAS  Google Scholar 

  8. Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: still emerging. Cell Metab. 34, 355–377 (2022).

    Article  CAS  Google Scholar 

  9. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).

    Article  CAS  Google Scholar 

  10. Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open 4, e213520 (2021).

    Article  Google Scholar 

  11. Yoo, S. K., Chowell, D., Valero, C., Morris, L. G. T. & Chan, T. A. Outcomes among patients with or without obesity and with cancer following treatment with immune checkpoint blockade. JAMA Netw. Open 5, e220448 (2022).

    Article  Google Scholar 

  12. Lopez-Otin, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016).

    Article  CAS  Google Scholar 

  13. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866 (2020).

    Article  CAS  Google Scholar 

  14. Brown, K. A. Metabolic pathways in obesity-related breast cancer. Nat. Rev. Endocrinol. 17, 350–363 (2021).

    Article  Google Scholar 

  15. Kratofil, R. M. et al. A monocyte–leptin–angiogenesis pathway critical for repair post-infection. Nature 609, 166–173 (2022).

  16. Boi, S. K. et al. Obesity diminishes response to PD-1-based immunotherapies in renal cancer. J. Immunother. Cancer 8, e000725 (2020).

    Article  Google Scholar 

  17. McQuade, J. L. et al. Association of body-mass index and outcomes in patients with metastatic melanoma treated with targeted therapy, immunotherapy, or chemotherapy: a retrospective, multicohort analysis. Lancet Oncol. 19, 310–322 (2018).

    Article  Google Scholar 

  18. Wang, Z. et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 25, 141–151 (2019).

    Article  CAS  Google Scholar 

  19. Hahn, A. W. et al. Obesity is associated with altered tumor metabolism in metastatic melanoma. Clin. Cancer Res. CCR-22-2661 (2022).

  20. Gurjao, C. et al. Discovery and features of an alkylating signature in colorectal cancer. Cancer Discov. 11, 2446–2455 (2021).

    Article  CAS  Google Scholar 

  21. Llovet, J. M. et al. Hepatocellular carcinoma. Nat. Rev. Dis. Prim. 7, 6 (2021).

    Article  Google Scholar 

  22. Papadimitriou, N. et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 12, 4579 (2021).

    Article  CAS  Google Scholar 

  23. Yonekura, S. et al. Cancer induces a stress ileopathy depending on beta-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 12, 1128–1151 (2022).

    Article  CAS  Google Scholar 

  24. Baazim, H., Antonio-Herrera, L. & Bergthaler, A. The interplay of immunology and cachexia in infection and cancer. Nat. Rev. Immunol. 22, 309–321 (2022).

    Article  CAS  Google Scholar 

  25. Larkin, J. R. et al. Metabolomic biomarkers in blood samples identify cancers in a mixed population of patients with nonspecific symptoms. Clin. Cancer Res. 28, 1651–1661 (2022).

    Article  Google Scholar 

  26. Zhang, H. et al. Multiplexed nanomaterial-assisted laser desorption/ionization for pan-cancer diagnosis and classification. Nat. Commun. 13, 617 (2022).

    Article  CAS  Google Scholar 

  27. Fujisaka, S. et al. Diet, genetics, and the gut microbiome drive dynamic changes in plasma metabolites. Cell Rep. 22, 3072–3086 (2018).

    Article  CAS  Google Scholar 

  28. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    Article  CAS  Google Scholar 

  29. Huang, S. et al. Identification and validation of plasma metabolomic signatures in precancerous gastric lesions that progress to cancer. JAMA Netw. Open 4, e2114186 (2021).

    Article  Google Scholar 

  30. Ye, D., Guan, K. L. & Xiong, Y. Metabolism, activity, and targeting of d- and l-2-hydroxyglutarates. Trends Cancer 4, 151–165 (2018).

    Article  CAS  Google Scholar 

  31. Malczewski, A. B., Navarro, S., Coward, J. I. & Ketheesan, N. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy. J. Immunother. Cancer 8, e001383 (2020).

    Article  Google Scholar 

  32. Wang, H. et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34, 581–594 (2022).

    Article  CAS  Google Scholar 

  33. Taylor, S. R., Falcone, J. N., Cantley, L. C. & Goncalves, M. D. Developing dietary interventions as therapy for cancer. Nat. Rev. Cancer 22, 452–466 (2022).

    Article  CAS  Google Scholar 

  34. Montegut, L., de Cabo, R., Zitvogel, L. & Kroemer, G. Science-driven nutritional interventions for the prevention and treatment of cancer. Cancer Discov. 12, 2258–2279 (2022).

  35. Chen, A. C. et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N. Engl. J. Med. 373, 1618–1626 (2015).

    Article  CAS  Google Scholar 

  36. Mitchell, S. J. et al. Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 27, 667–676 (2018).

    Article  CAS  Google Scholar 

  37. Chandler, P. D. et al. Effect of vitamin D3 supplements on development of advanced cancer: a secondary analysis of the VITAL randomized clinical trial. JAMA Netw. Open 3, e2025850 (2020).

    Article  Google Scholar 

  38. Peila, R. et al. A randomized trial of calcium plus vitamin d supplementation and risk of ductal carcinoma in situ of the breast. JNCI Cancer Spectr. 5, pkab072 (2021).

    Article  Google Scholar 

  39. Ferrere, G. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6, e14207 (2021).

    Article  Google Scholar 

  40. Dmitrieva-Posocco, O. et al. β-hydroxybutyrate suppresses colorectal cancer. Nature 605, 160–165 (2022).

    Article  CAS  Google Scholar 

  41. Villarroel, A., Alvarez, O., Oberhauser, A. & Latorre, R. Probing a Ca2+-activated K+ channel with quaternary ammonium ions. Pflug. Arch. 413, 118–126 (1988).

    Article  CAS  Google Scholar 

  42. Panebianco, C. et al. Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomed. Pharmacother. 151, 113163 (2022).

    Article  CAS  Google Scholar 

  43. Hofer, S. J., Davinelli, S., Bergmann, M., Scapagnini, G. & Madeo, F. Caloric restriction mimetics in nutrition and clinical trials. Front Nutr. 8, 717343 (2021).

    Article  Google Scholar 

  44. Allott, E. H. et al. Statin use is associated with lower risk of PTEN-null and lethal prostate cancer. Clin. Cancer Res. 26, 1086–1093 (2020).

    Article  CAS  Google Scholar 

  45. Wang, Y. et al. A meta-analysis of statin use and risk of hepatocellular carcinoma. Can. J. Gastroenterol. Hepatol. 2022, 5389044 (2022).

    Article  Google Scholar 

  46. Xu, W. H. & Zhou, Y. H. The relationship between post-diagnostic statin usage and breast cancer prognosis varies by hormone receptor phenotype: a systemic review and meta-analysis. Arch. Gynecol. Obstet. 304, 1315–1321 (2021).

    Article  Google Scholar 

  47. Takada, K. et al. A propensity score-matched analysis of the impact of statin therapy on the outcomes of patients with non-small-cell lung cancer receiving anti-PD-1 monotherapy: a multicenter retrospective study. BMC Cancer 22, 503 (2022).

    Article  Google Scholar 

  48. Santoni, M. et al. Statin use improves the efficacy of nivolumab in patients with advanced renal cell carcinoma. Eur. J. Cancer 172, 191–198 (2022).

    Article  CAS  Google Scholar 

  49. Mao, W. et al. Statin shapes inflamed tumor microenvironment and enhances immune checkpoint blockade in non-small cell lung cancer. JCI Insight 7, e161940 (2022).

  50. Nam, G. H. et al. Statin-mediated inhibition of RAS prenylation activates ER stress to enhance the immunogenicity of KRAS mutant cancer. J. Immunother. Cancer 9, e002474 (2021).

    Article  Google Scholar 

  51. Khojandi, N. et al. Oxidized lipoproteins promote resistance to cancer immunotherapy independent of patient obesity. Cancer Immunol. Res 9, 214–226 (2021).

    Article  CAS  Google Scholar 

  52. Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Prim. 5, 66 (2019).

    Article  Google Scholar 

  53. Rebello, R. J. et al. Prostate cancer. Nat. Rev. Dis. Prim. 7, 9 (2021).

    Article  Google Scholar 

  54. Caplin, M. E. & Ratnayake, G. M. Diagnostic and therapeutic advances in neuroendocrine tumours. Nat. Rev. Endocrinol. 17, 81–82 (2021).

    Article  Google Scholar 

  55. Buque, A. et al. Immunoprophylactic and immunotherapeutic control of hormone receptor-positive breast cancer. Nat. Commun. 11, 3819 (2020).

    Article  CAS  Google Scholar 

  56. Terrisse, S. et al. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J. Immunother. Cancer 10, e004191 (2022).

    Article  Google Scholar 

  57. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    Article  CAS  Google Scholar 

  58. Pernigoni, N. et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 374, 216–224 (2021).

    Article  CAS  Google Scholar 

  59. Vellano, C. P. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606, 797–803 (2022).

    Article  CAS  Google Scholar 

  60. Mauffrey, P. et al. Publisher Correction: Progenitors from the central nervous system drive neurogenesis in cancer. Nature 577, E10 (2020).

    Article  CAS  Google Scholar 

  61. Silverman, D. A. et al. Cancer-associated neurogenesis and nerve-cancer cross-talk. Cancer Res. 81, 1431–1440 (2021).

    Article  CAS  Google Scholar 

  62. Zhang, L. et al. Sympathetic and parasympathetic innervation in hepatocellular carcinoma. Neoplasma 64, 840–846 (2017).

    Article  CAS  Google Scholar 

  63. Ferdoushi, A. et al. Tumor innervation and clinical outcome in pancreatic cancer. Sci. Rep. 11, 7390 (2021).

    Article  CAS  Google Scholar 

  64. Ahmadi, N., Kelly, G., Low, T. H., Clark, J. & Gupta, R. Molecular factors governing perineural invasion in malignancy. Surg. Oncol. 42, 101770 (2022).

    Article  Google Scholar 

  65. March, B. et al. Tumour innervation and neurosignalling in prostate cancer. Nat. Rev. Urol. 17, 119–130 (2020).

    Article  Google Scholar 

  66. Gysler, S. M. & Drapkin, R. Tumor innervation: peripheral nerves take control of the tumor microenvironment. J. Clin. Invest. 131, e147276 (2021).

    Article  CAS  Google Scholar 

  67. Wu, Y., Berisha, A. & Borniger, J. C. Neuropeptides in cancer: friend and foe? Adv Biol (Weinh) 6, e2200111 (2022).

  68. Lu, C. et al. Hypoxia-activated neuropeptide Y/Y5 receptor/RhoA pathway triggers chromosomal instability and bone metastasis in Ewing sarcoma. Nat. Commun. 13, 2323 (2022).

    Article  CAS  Google Scholar 

  69. Chakroborty, D. et al. Neuropeptide Y, a paracrine factor secreted by cancer cells, is an independent regulator of angiogenesis in colon cancer. Br. J. Cancer 127, 1440–1449 (2022).

  70. Cheng, Y. et al. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Clin. Cancer Res. 25, 2621–2632 (2019).

    Article  CAS  Google Scholar 

  71. Gautam, J. et al. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol. Cancer 15, 75 (2016).

    Article  Google Scholar 

  72. Jiang, S. H. et al. Increased serotonin signaling contributes to the warburg effect in pancreatic tumor cells under metabolic stress and promotes growth of pancreatic tumors in mice. Gastroenterology 153, 277–291 (2017).

    Article  CAS  Google Scholar 

  73. Li, T. et al. Overproduction of gastrointestinal 5-HT promotes colitis-associated colorectal cancer progression via enhancing NLRP3 inflammasome activation. Cancer Immunol. Res. 9, 1008–1023 (2021).

    Article  Google Scholar 

  74. Gao, Y. et al. Glutamate decarboxylase 65 signals through the androgen receptor to promote castration resistance in prostate cancer. Cancer Res. 79, 4638–4649 (2019).

    Article  CAS  Google Scholar 

  75. Tsuboi, M. et al. Prognostic significance of GAD1 overexpression in patients with resected lung adenocarcinoma. Cancer Med. 8, 4189–4199 (2019).

    Article  CAS  Google Scholar 

  76. Huang et al. Cancer-cell-derived GABA promotes beta-catenin-mediated tumour growth and immunosuppression. Nat. Cell Biol. 24, 230–241 (2022).

    Article  CAS  Google Scholar 

  77. Joseph, A. et al. Effects of acyl-coenzyme A binding protein (ACBP)/diazepam-binding inhibitor (DBI) on body mass index. Cell Death Dis. 12, 599 (2021).

    Article  CAS  Google Scholar 

  78. Kim, H. B., Myung, S. K., Park, Y. C. & Park, B. Use of benzodiazepine and risk of cancer: a meta-analysis of observational studies. Int J. Cancer 140, 513–525 (2017).

    Article  CAS  Google Scholar 

  79. Iqbal, U. et al. Is long-term use of benzodiazepine a risk for cancer? Medicine 94, e483 (2015).

    Article  CAS  Google Scholar 

  80. Iqbal, U. et al. Benzodiazepines use and breast cancer risk: a population-based study and gene expression profiling evidence. J. Biomed. Inf. 74, 85–91 (2017).

    Article  Google Scholar 

  81. Laforest, S. et al. Associations between markers of mammary adipose tissue dysfunction and breast cancer prognostic factors. Int J. Obes. 45, 195–205 (2021).

    Article  CAS  Google Scholar 

  82. de Candia, P. et al. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J. Exp. Med. 218, e20191593 (2021).

    Article  Google Scholar 

  83. Manieri, E. et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J. Exp. Med. 216, 1108–1119 (2019).

    Article  CAS  Google Scholar 

  84. Wu, Q. et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J. Immunother. Cancer 9, e002722 (2021).

    Article  Google Scholar 

  85. Matsushita, M. et al. Gut microbiota-derived short-chain fatty acids promote prostate cancer growth via IGF1 signaling. Cancer Res. 81, 4014–4026 (2021).

    Article  CAS  Google Scholar 

  86. Zhang, H. et al. Impact of corticosteroid use on outcomes of non-small-cell lung cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J. Clin. Pharm. Ther. 46, 927–935 (2021).

    Article  CAS  Google Scholar 

  87. Wang, Y. et al. Corticosteroid administration for cancer-related indications is an unfavorable prognostic factor in solid cancer patients receiving immune checkpoint inhibitor treatment. Int. Immunopharmacol. 99, 108031 (2021).

    Article  CAS  Google Scholar 

  88. Yang, H. et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat. Med. 25, 1428–1441 (2019).

    Article  CAS  Google Scholar 

  89. Deng, Y. et al. Glucocorticoid receptor regulates PD-L1 and MHC-I in pancreatic cancer cells to promote immune evasion and immunotherapy resistance. Nat. Commun. 12, 7041 (2021).

    Article  CAS  Google Scholar 

  90. Janowitz, T., Kleeman, S. & Vonderheide, R. H. Reconsidering dexamethasone for antiemesis when combining chemotherapy and immunotherapy. Oncologist 26, 269–273 (2021).

    Article  CAS  Google Scholar 

  91. Zhong, S. et al. Beta-blocker use and mortality in cancer patients: systematic review and meta-analysis of observational studies. Eur. J. Cancer Prev. 25, 440–448 (2016).

    Article  CAS  Google Scholar 

  92. Sivanesan, S., Tasken, K. A. & Grytli, H. H. Association of beta-blocker use at time of radical prostatectomy with rate of treatment for prostate cancer recurrence. JAMA Netw. Open 5, e2145230 (2022).

    Article  Google Scholar 

  93. Kokolus, K. M. et al. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 7, e1405205 (2018).

    Article  Google Scholar 

  94. Magnon, C. et al. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 (2013).

    Article  Google Scholar 

  95. Allen, J. K. et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 78, 3233–3242 (2018).

    Article  CAS  Google Scholar 

  96. Kamiya, A. et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat. Neurosci. 22, 1289–1305 (2019).

    Article  CAS  Google Scholar 

  97. Thaker, P. H. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat. Med. 12, 939–944 (2006).

    Article  CAS  Google Scholar 

  98. Zahalka, A. H. et al. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321–326 (2017).

    Article  CAS  Google Scholar 

  99. Rutledge, A., Jobling, P., Walker, M. M., Denham, J. W. & Hondermarck, H. Spinal cord injuries and nerve dependence in prostate cancer. Trends Cancer 3, 812–815 (2017).

    Article  Google Scholar 

  100. Daher, C. et al. Blockade of beta-adrenergic receptors improves CD8+ T-cell priming and cancer vaccine efficacy. Cancer Immunol. Res 7, 1849–1863 (2019).

    Article  Google Scholar 

  101. Shaashua, L. et al. Perioperative COX-2 and beta-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin. Cancer Res. 23, 4651–4661 (2017).

    Article  CAS  Google Scholar 

  102. Haldar, R. et al. Perioperative COX2 and beta-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: a randomized controlled trial. Cancer 126, 3991–4001 (2020).

    Article  CAS  Google Scholar 

  103. Wang, X. et al. Prognostic value of depression and anxiety on breast cancer recurrence and mortality: a systematic review and meta-analysis of 282,203 patients. Mol. Psychiatry 25, 3186–3197 (2020).

    Article  Google Scholar 

  104. Van der Elst, S., Bardash, Y., Wotman, M., Kraus, D. & Tham, T. The prognostic impact of depression or depressive symptoms on patients with head and neck cancer: a systematic review and meta-analysis. Head Neck 43, 3608–3617 (2021).

    Article  Google Scholar 

  105. Dinesh, A. A., Helena Pagani Soares Pinto, S., Brunckhorst, O., Dasgupta, P. & Ahmed, K. Anxiety, depression and urological cancer outcomes: a systematic review. Urol. Oncol. 39, 816–828 (2021).

    Article  Google Scholar 

  106. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  Google Scholar 

  107. Man, S. M. & Jenkins, B. J. Context-dependent functions of pattern recognition receptors in cancer. Nat. Rev. Cancer 22, 397–413 (2022).

    Article  CAS  Google Scholar 

  108. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  Google Scholar 

  109. Hou, J., Karin, M. & Sun, B. Targeting cancer-promoting inflammation—have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 18, 261–279 (2021).

    Article  Google Scholar 

  110. Hong, C. et al. cGAS–STING drives the IL-6-dependent survival of chromosomally instable cancers. Nature 607, 366–373 (2022).

    Article  CAS  Google Scholar 

  111. Hua, X. et al. Association between post-treatment circulating biomarkers of inflammation and survival among stage II–III colorectal cancer patients. Br. J. Cancer 125, 806–815 (2021).

    Article  CAS  Google Scholar 

  112. Shi, Y. et al. Circulating cytokines associated with clinical outcomes in advanced non-small cell lung cancer patients who received chemoimmunotherapy. Thorac. Cancer 13, 219–227 (2022).

    Article  CAS  Google Scholar 

  113. Schalper, K. A. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat. Med. 26, 688–692 (2020).

    Article  CAS  Google Scholar 

  114. Yuen, K. C. et al. High systemic and tumor-associated IL-8 correlates with reduced clinical benefit of PD-L1 blockade. Nat. Med. 26, 693–698 (2020).

    Article  CAS  Google Scholar 

  115. Kroemer, G., Lopez-Otin, C., Madeo, F. & de Cabo, R. Carbotoxicity—noxious effects of carbohydrates. Cell 175, 605–614 (2018).

    Article  CAS  Google Scholar 

  116. Chow, L. S. et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 18, 273–289 (2022).

    Article  CAS  Google Scholar 

  117. Font-Burgada, J., Sun, B. & Karin, M. Obesity and cancer: the oil that feeds the flame. Cell Metab. 23, 48–62 (2016).

    Article  CAS  Google Scholar 

  118. Coombs, C. C. et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes. Cell Stem Cell 21, 374–382 (2017).

    Article  CAS  Google Scholar 

  119. Hong, W. et al. Clonal hematopoiesis mutations in patients with lung cancer are associated with lung cancer risk factors. Cancer Res. 82, 199–209 (2022).

    Article  CAS  Google Scholar 

  120. Giles, A. J. et al. Activation of hematopoietic stem/progenitor cells promotes immunosuppression within the pre-metastatic niche. Cancer Res. 76, 1335–1347 (2016).

    Article  CAS  Google Scholar 

  121. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  Google Scholar 

  122. Zhang, Z. J., Lehmann, C. J., Cole, C. G. & Pamer, E. G. Translating Microbiome Research From and To the Clinic. Annu. Rev. Microbiol. 76, 435–460 (2022).

  123. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    Article  CAS  Google Scholar 

  124. Bae, M. et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 608, 168–173 (2022).

    Article  CAS  Google Scholar 

  125. Grajeda-Iglesias, C. et al. Oral administration of Akkermansia muciniphila elevates systemic antiaging and anticancer metabolites. Aging 13, 6375–6405 (2021).

    Article  CAS  Google Scholar 

  126. Schneider, K. M. et al. Imbalanced gut microbiota fuels hepatocellular carcinoma development by shaping the hepatic inflammatory microenvironment. Nat. Commun. 13, 3964 (2022).

    Article  CAS  Google Scholar 

  127. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    Article  CAS  Google Scholar 

  128. Derosa, L. et al. Intestinal Akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with advanced non-small-cell lung cancer. Nat. Med. 28, 315–324 (2022).

    Article  CAS  Google Scholar 

  129. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  Google Scholar 

  130. Zeng, X. et al. Gut bacterial nutrient preferences quantified in vivo. Cell 185, 3441–3456 (2022).

    Article  CAS  Google Scholar 

  131. Liu, Z. et al. Moderate-intensity exercise affects gut microbiome composition and influences cardiac function in myocardial infarction mice. Front. Microbiol. 8, 1687 (2017).

    Article  Google Scholar 

  132. Munukka, E. et al. Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Front. Microbiol. 9, 2323 (2018).

    Article  Google Scholar 

  133. Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. 28, 2344–2352 (2022).

    Article  CAS  Google Scholar 

  134. Kaplanov, I. et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc. Natl Acad. Sci. USA 116, 1361–1369 (2019).

    Article  CAS  Google Scholar 

  135. Aggen, D. H. et al. Blocking IL1β promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: multidimensional analyses. Clin. Cancer Res. 27, 608–621 (2021).

    Article  CAS  Google Scholar 

  136. Hailemichael, Y. et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 40, 509–523 (2022).

    Article  CAS  Google Scholar 

  137. Bent, E. H. et al. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat. Commun. 12, 6218 (2021).

    Article  CAS  Google Scholar 

  138. Lopez-Bujanda, Z. A. et al. Castration-mediated IL-8 promotes myeloid infiltration and prostate cancer progression. Nat. Cancer 2, 803–818 (2021).

    Article  CAS  Google Scholar 

  139. Perez-Ruiz, E. et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 569, 428–432 (2019).

    Article  CAS  Google Scholar 

  140. Montfort, A. et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin. Cancer Res. 27, 1037–1047 (2021).

    Article  CAS  Google Scholar 

  141. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  Google Scholar 

  142. Kohlhapp, F. J. et al. Venetoclax Increases intratumoral effector T cells and antitumor efficacy in combination with immune checkpoint blockade. Cancer Discov. 11, 68–79 (2021).

    Article  CAS  Google Scholar 

  143. Triana-Martinez, F. et al. Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun. 10, 4731 (2019).

    Article  Google Scholar 

  144. Guerrero, A. et al. Cardiac glycosides are broad-spectrum senolytics. Nat. Metab. 1, 1074–1088 (2019).

    Article  CAS  Google Scholar 

  145. Menger, L. et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 4, 143ra199 (2012).

    Article  Google Scholar 

  146. Lin, T. P., Fan, Y. H., Chen, Y. C. & Huang, W. J. S. Digoxin lowers the incidence of prostate cancer: a nationwide population-based study. J. Chin. Med. Assoc. 83, 377–381 (2020).

    Article  CAS  Google Scholar 

  147. Liao, X. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).

    Article  CAS  Google Scholar 

  148. Simon, T. G. et al. Association of aspirin with hepatocellular carcinoma and liver-related mortality. N. Engl. J. Med. 382, 1018–1028 (2020).

    Article  CAS  Google Scholar 

  149. Wang, Y. et al. Aspirin use and the risk of hepatocellular carcinoma: a meta-analysis. J. Clin. Gastroenterol. 56, e293–e302 (2022).

    Article  CAS  Google Scholar 

  150. Liu, J., Zheng, F., Yang, M., Wu, X. & Liu, A. Effect of aspirin use on survival benefits of breast cancer patients: a meta-analysis. Medicine 100, e26870 (2021).

    Article  CAS  Google Scholar 

  151. Xiao, S., Xie, W., Fan, Y. & Zhou, L. Timing of aspirin use among patients with colorectal cancer in relation to mortality: a systematic review and meta-analysis. JNCI Cancer Spectr. 5, pkab067 (2021).

    Article  Google Scholar 

  152. McNeil, J. J. et al. Effect of aspirin on all-cause mortality in the healthy elderly. N. Engl. J. Med. 379, 1519–1528 (2018).

    Article  CAS  Google Scholar 

  153. Zaman, F. Y., Orchard, S. G., Haydon, A. & Zalcberg, J. R. Non-aspirin non-steroidal anti-inflammatory drugs in colorectal cancer: a review of clinical studies. Br. J. Cancer 127, 1735–1743 (2022).

  154. Arber, N. et al. Celecoxib for the prevention of colorectal adenomatous polyps. N. Engl. J. Med. 355, 885–895 (2006).

    Article  CAS  Google Scholar 

  155. Burn, J. et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 395, 1855–1863 (2020).

    Article  CAS  Google Scholar 

  156. Pietrocola, F. et al. Aspirin recapitulates features of caloric restriction. Cell Rep. 22, 2395–2407 (2018).

    Article  CAS  Google Scholar 

  157. Castoldi, F. et al. Autophagy-mediated metabolic effects of aspirin. Cell Death Discov. 6, 129 (2020).

    Article  CAS  Google Scholar 

  158. Bessede, A., et al. Impact of acetaminophen on the efficacy of immunotherapy in cancer patients. Ann. Oncol. 33, 909–915 (2022).

  159. Aiad, M. et al. Does the combined use of aspirin and immunotherapy result in better outcomes in non-small cell lung cancer than immunotherapy alone? Cureus 14, e25891 (2022).

    Google Scholar 

  160. Li, H. et al. The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell 40, 36–52 (2022).

    Article  CAS  Google Scholar 

  161. Verdoodt, F. et al. Antihistamines and ovarian cancer survival: nationwide cohort study and in vitro cell viability assay. J. Natl Cancer Inst. 112, 964–967 (2020).

    Article  Google Scholar 

  162. Chiang, C. H. et al. Efficacy of cationic amphiphilic antihistamines on outcomes of patients treated with immune checkpoint inhibitors. Eur. J. Cancer 174, 1–9 (2022).

    Article  CAS  Google Scholar 

  163. Ridker, P. M. et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  Google Scholar 

  164. Wong, C. C. et al. Inhibition of IL1β by canakinumab may be effective against diverse molecular subtypes of lung cancer: an exploratory analysis of the CANTOS Trial. Cancer Res. 80, 5597–5605 (2020).

    Article  CAS  Google Scholar 

  165. Mullard, A. Novartis’s canakinumab stumbles in cancer, again. Nat. Rev. Drug Discov. 20, 888 (2021).

    Google Scholar 

  166. Fridman, W. H., Zitvogel, L., Sautes-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    Article  CAS  Google Scholar 

  167. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  Google Scholar 

  168. Yerly, L. et al. Integrated multi-omics reveals cellular and molecular interactions governing the invasive niche of basal cell carcinoma. Nat. Commun. 13, 4897 (2022).

    Article  CAS  Google Scholar 

  169. Tselikas, L. et al. Feasibility, safety and efficacy of human intra-tumoral immuno-therapy. Gustave Roussy’s initial experience with its first 100 patients. Eur. J. Cancer 172, 1–12 (2022).

    Article  Google Scholar 

  170. Le Cornet, C. et al. Circulating immune cell composition and cancer risk: a prospective study using epigenetic cell count measures. Cancer Res. 80, 1885–1892 (2020).

    Article  Google Scholar 

  171. Jacquelot, N. et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat. Commun. 8, 592 (2017).

    Article  CAS  Google Scholar 

  172. Lucca, L. E. et al. Circulating clonally expanded T cells reflect functions of tumor-infiltrating T cells. J. Exp. Med. 218, e20200921 (2021).

    Article  CAS  Google Scholar 

  173. Holm, J. S. et al. Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma. Nat. Commun. 13, 1935 (2022).

    Article  CAS  Google Scholar 

  174. Goubet, A. G. et al. Escherichia coli-specific CXCL13-producing TFH are associated with clinical efficacy of neoadjuvant PD-1 blockade against muscle-invasive bladder cancer. Cancer Discov. 12, 2280–2307 (2022).

  175. Luoma, A. M. et al. Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy. Cell 185, 2918–2935 (2022).

    Article  CAS  Google Scholar 

  176. Bochem, J. et al. Early disappearance of tumor antigen-reactive T cells from peripheral blood correlates with superior clinical outcomes in melanoma under anti-PD-1 therapy. J. Immunother. Cancer 9, e003439 (2021).

    Article  Google Scholar 

  177. Zitvogel, L., Perreault, C., Finn, O. J. & Kroemer, G. Beneficial autoimmunity improves cancer prognosis. Nat. Rev. Clin. Oncol. 18, 591–602 (2021).

    Article  CAS  Google Scholar 

  178. Paillet, J. et al. Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J. Exp. Med. 218, e20200853 (2021).

    Article  CAS  Google Scholar 

  179. Zitvogel, L. & Kroemer, G. Cross-reactivity between microbial and tumor antigens. Curr. Opin. Immunol. 75, 102171 (2022).

    Article  CAS  Google Scholar 

  180. Fluckiger, A. et al. Cross-reactivity between tumor MHC class I-restricted antigens and an enterococcal bacteriophage. Science 369, 936–942 (2020).

    Article  CAS  Google Scholar 

  181. Kalaora, S. et al. Identification of bacteria-derived HLA-bound peptides in melanoma. Nature 592, 138–143 (2021).

    Article  CAS  Google Scholar 

  182. Rouanne, M. et al. BCG therapy downregulates HLA-I on malignant cells to subvert antitumor immune responses in bladder cancer. J. Clin. Invest. 132, e145666 (2022).

    Article  CAS  Google Scholar 

  183. Biot, C. et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci. Transl. Med. 4, 137ra172 (2012).

    Article  Google Scholar 

  184. Meier, S. L., Satpathy, A. T. & Wells, D. K. Bystander T cells in cancer immunology and therapy. Nat. Cancer 3, 143–155 (2022).

    Article  Google Scholar 

  185. Upadhyay, R. et al. A critical role for fas-mediated off-target tumor killing in T-cell immunotherapy. Cancer Disco. 11, 599–613 (2021).

    Article  CAS  Google Scholar 

  186. Leem, G. et al. Tumour-infiltrating bystander CD8+ T cells activated by IL-15 contribute to tumour control in non-small cell lung cancer. Thorax 77, 769–780 (2022).

    Article  Google Scholar 

  187. Kohlhapp, F. J. et al. Non-oncogenic acute viral infections disrupt anti-cancer responses and lead to accelerated cancer-specific host death. Cell Rep. 17, 957–965 (2016).

    Article  CAS  Google Scholar 

  188. Newman, J. H. et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl Acad. Sci. USA 117, 1119–1128 (2020).

    Article  CAS  Google Scholar 

  189. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  Google Scholar 

  190. Derosa, L. et al. Microbiota-centered interventions: the next breakthrough in immuno-oncology? Cancer Discov. 11, 2396–2412 (2021).

    Article  CAS  Google Scholar 

  191. Smith, M. et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 28, 713–723 (2022).

    Article  CAS  Google Scholar 

  192. Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1313–1328 (2019).

    Article  CAS  Google Scholar 

  193. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  Google Scholar 

  194. Luu, M. et al. Microbial short-chain fatty acids modulate CD8+ T cell responses and improve adoptive immunotherapy for cancer. Nat. Commun. 12, 4077 (2021).

    Article  CAS  Google Scholar 

  195. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article  CAS  Google Scholar 

  196. Lopez-Otin, C., Pietrocola, F., Roiz-Valle, D., Galluzzi, L. & Kroemer, G. Meta-hallmarks of aging and cancer. Cell Metab. (in the press).

  197. Lopez-Otin, C., Blasco, M., Partridge, L., Serano, M. & Kroemer, G. Hallmarks of aging. An expanding universe. Cell (in the press).

  198. Vernieri, C. et al. Fasting-mimicking diet is safe and reshapes metabolism and antitumor immunity in patients with cancer. Cancer Discov. 12, 90–107 (2022).

    Article  CAS  Google Scholar 

  199. Khodabakhshi, A. et al. Effects of ketogenic metabolic therapy on patients with breast cancer: a randomized controlled clinical trial. Clin. Nutr. 40, 751–758 (2021).

    Article  CAS  Google Scholar 

  200. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  Google Scholar 

  201. Ma, X. et al. Sodium butyrate modulates gut microbiota and immune response in colorectal cancer liver metastatic mice. Cell Biol. Toxicol. 36, 509–515 (2020).

    Article  CAS  Google Scholar 

  202. Li, P. et al. 1α,25(OH)2D3 reverses exhaustion and enhances antitumor immunity of human cytotoxic T cells. J. Immunother. Cancer 10, e003477 (2022).

    Article  Google Scholar 

  203. Hiller, J. G. et al. Preoperative beta-blockade with propranolol reduces biomarkers of metastasis in breast cancer: a phase II randomized trial. Clin. Cancer Res. 26, 1803–1811 (2020).

    Article  CAS  Google Scholar 

  204. Sanchez-Paulete, A. R. et al. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Disco. 6, 71–79 (2016).

    Article  CAS  Google Scholar 

  205. Kalanxhi, E. et al. Systemic immune response induced by oxaliplatin-based neoadjuvant therapy favours survival without metastatic progression in high-risk rectal cancer. Br. J. Cancer 118, 1322–1328 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

G.K. and L.Z. are supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; Cancéropôle Ile-de-France; Fondation pour la Recherche Médicale (FRM); a donation by Elior; Equipex Onco-Pheno-Screen; Gustave Roussy Odyssea, the European Union Horizon 2020 Projects Oncobiome and Crimson; Institut National du Cancer (INCa); Institut Universitaire de France; LabEx Immuno-Oncology (ANR-18-IDEX-0001); a Cancer Research ASPIRE Award from the Mark Foundation; the RHU Immunolife; Seerave Foundation; SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and SIRIC Cancer Research and Personalized Medicine (CARPEM). This study contributes to the IdEx Université de Paris ANR-18-IDEX-0001. J.L.M. acknowledges the Transdisciplinary Research in Energetics and Cancer Research Training Workshop R25CA203650 and the MD Anderson Cancer Center (MDA) Center for Energy Balance in Cancer Prevention and Survivorship and is supported by ASCO/CCF, the Melanoma Research Alliance, the Elkins Foundation, Seerave Foundation, Rising Tide Foundation, the Mark Foundation for Cancer Research, MDA Melanoma SPORE Developmental Research Program Award, MDA Physician Scientist Program and MDA Moonshot Program. M.M. was supported by NIH grants U24 AI118644-05S1, R01CA257195 and R01CA254104 (Tumor macs), as well as by the Samuel Waxman Cancer Research Foundation. A.F. received ANR funding for IHU-B PRISM.

Author information

Authors and Affiliations

Authors

Contributions

G.K. wrote the first draft and then received major input from J.L.M., M.M., F.A. and L.Z. All authors have read, edited and approved the paper.

Corresponding author

Correspondence to Guido Kroemer.

Ethics declarations

Competing interests

G.K. holds research contracts with Daiichi Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Tollys and Vascage. G. K. consults for Reithera. G.K. is on the board of directors of the Bristol Myers Squibb Foundation France. G.K. is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio. G.K. is the inventor of patents covering therapeutic targeting of aging, cancer, cystic fibrosis and metabolic disorders. G.K.’s brother, R.omano Kroemer, was an employee of Sanofi and now consults for Boehringer-Ingelheim. J. M. has served in advisory roles for BMS, Merck and Roche. M.M. reports grants from Regeneron, Inc, outside the submitted work. F.A. has grants and advisory roles (compensated to the hospital) for Daiichi Sankyo, Pfizer, Novartis, Astra Zeneca, Lilly and Roche. L.Z. has held research contracts with 9 Meters Biopharma, Daiichi Sankyo, and Pilege, was on the on the Board of Directors of Transgene, is a co-founder of everImmune, and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota. None of the funders had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Peer review

Peer review information

Nature Medicine thanks Marcel van den Brink, Matthew Spitzer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroemer, G., McQuade, J.L., Merad, M. et al. Bodywide ecological interventions on cancer. Nat Med 29, 59–74 (2023). https://doi.org/10.1038/s41591-022-02193-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-022-02193-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer