Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ensuring a future for gene therapy for rare diseases

Hematopoietic stem-cell gene therapy has proven to be an effective treatment for several primary immunodeficiencies, and yet companies in this space are withdrawing from the EU market. Technological and regulatory innovations and a change to cost–benefit models are needed so that rare disease patients can receive these life-saving medicines.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hematopoietic stem and progenitor cell gene therapy.


  1. Ferrari, G., Thrasher, A. J. & Aiuti, A. Nat. Rev. Genet. 22, 216–234 (2020).

    Article  Google Scholar 

  2. Orchard Therapeutics. Press release (March); (2022).

  3. Notarangelo, L. D., Bacchetta, R., Casanova, J.-L. & Su, H. C. Sci. Immunol. 5, eabb1662 (2020).

    Article  CAS  Google Scholar 

  4. Castagnoli, R., Delmonte, O. M., Calzoni, E. & Notarangelo, L. D. Front. Pediatr. 7, 295 (2019).

    Article  Google Scholar 

  5. Pai, S.-Y. et al. N. Engl. J. Med. 371, 434–446 (2014).

    Article  CAS  Google Scholar 

  6. Lankester, A. C. et al. J. Allergy. Clin. Immunol. 149, 1744–1754.e8 (2021).

    Article  Google Scholar 

  7. Aiuti, A., Roncarolo, M. G. & Naldini, L. EMBO Mol. Med. 9, 737–740 (2017).

    Article  CAS  Google Scholar 

  8. Fischer, A. & Hacein-Bey-Abina, S. J. Exp. Med. 217, e20190607 (2019).

    Article  Google Scholar 

  9. Tucci, F., Galimberti, S., Naldini, L., Valsecchi, M. G. & Aiuti, A. Nat. Comm. 13, 1315 (2022).

    Article  CAS  Google Scholar 

  10. Cicalese, M. P. et al. Blood 128, 45–54 (2016).

    Article  CAS  Google Scholar 

  11. Kohn, D. B. et al. N. Engl. J. Med. 384, 2002–2013 (2021).

    Article  CAS  Google Scholar 

  12. Kohn, D. B. et al. Nat. Med. 26, 200–206 (2020).

    Article  CAS  Google Scholar 

  13. Ferrua, F. et al. Lancet. Haematol. 6, e239–e253 (2019).

    Article  Google Scholar 

  14. Magnani, A. Nat. Med. et al. 28, 71–80 (2022).

    Article  CAS  Google Scholar 

  15. Mamcarz, E. et al. N. Engl. J. Med. 380, 1525–1534 (2019).

    Article  CAS  Google Scholar 

  16. Bluebird Bio. Press release (August); (2021).

  17. Tichelli, A. et al. JAMA Oncol. 5, 229–235 (2019).

    Article  Google Scholar 

  18. Sun, D. et al. JAMA Pediatr. 176, 176–184 (2022).

    Article  Google Scholar 

  19. Schoser, B. et al. Pharmacoecon Open 3, 479–493 (2019).

    Article  Google Scholar 

  20. Wang, Y. et al. J. Med. Econ. 23, 1503–1515 (2020).

    Article  Google Scholar 

  21. Simoens, S., De Groote, K. & Boersma, C. Front. Pharmacol. 13, 771966 (2022).

    Article  Google Scholar 

  22. Frangoul, H., Ho, T. H. & Corbacioglu, S. N. Engl. J. Med. 384, e91 (2021).

    Article  Google Scholar 

  23. Schiroli, G. et al. Cell Stem Cell 24, 551–565.e8 (2019).

    Article  CAS  Google Scholar 

  24. Ferrari, S. et al. Nat. Biotechnol. 38, 1298–1308 (2020).

    Article  CAS  Google Scholar 

  25. Jonker, A. H. et al. Nat. Rev. Drug Discov. 19, 495–496 (2020).

    Article  Google Scholar 

Download references


Work in the labs of L.N. and A.A. is supported by grants from Fondazione Telethon, the EU Horizon 2020 Program, the Italian Ministry of Health, the Italian Ministry of University and Research, the Louis-Jeantet Foundation through the Jeantet-Collen Prize for Translational Medicine 2019 (to L.N.) and the Else Kröner Fresenius Foundation through the Kröner-Fresenius Prize for Medical Research 2020 (to A.A). The authors thank Michela Gabaldo, Aida Paniccia, Sara Maffioletti and Francesca Pampinella for helpful comments and support.

Author information

Authors and Affiliations



All authors contributed to writing this Comment.

Corresponding author

Correspondence to Luigi Naldini.

Ethics declarations

Competing interests

A.A. is PI of clinical trials sponsored by Orchard Therapeutics, which licensed gene therapy products for ADA-SCID, WAS, metachromatic leukodystrophy (MLD), β-thalassemia and mucopolysaccharidosis type I (MPS-I) originally developed at SR-Tiget. A.A. is a member of the Committee for Advanced Therapies (CAT) and his views are personal and may not be understood or quoted as being made on behalf of the European Medicines Agency (EMA). L.N. is an inventor on pending and issued patents on LV technology and gene editing filed by the Salk Institute, Cell Genesys, Telethon Foundation and/or San Raffaele Scientific Institute. L.N. is a founder of, owns equity in, and is a consultant and member of the scientific advisory board of Genenta Science, a biotechnology company aiming at developing cancer gene therapy by tumor-infiltrating monocytes, and Genespire, a biotechnology startup developing lentiviral-vector-based liver gene transfer and hematopoietic cell gene editing. F.P. has no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiuti, A., Pasinelli, F. & Naldini, L. Ensuring a future for gene therapy for rare diseases. Nat Med 28, 1985–1988 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research